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Abstract—Over the most recent couple of years, the greater 
part of the information, for example books, recordings, pictures, 
clinical, forensic, criminal and even the hereditary data of people 
are being pushed toward digitals and cyber-dataspaces. This 
problem requires sophisticated techniques to deal with the vast 
amounts of data. We propose a novel solution to the problem of 
gaining actionable intelligence from the voluminous existing and 
potential digital forensic data. We have formulated an 
Automated Learning Framework ontology for Digital Forensic 
Applications relating to collaborative crime analysis and 
prediction. The minimum viable ontology we formulated by 
studying the existing literature and applications of Machine 
learning has been used to devise an Automated Machine 
Learning implementation to be quantitatively and qualitatively 
studied in its capabilities to aid intelligence practices of Digital 
Forensic Investigation agencies in representing, reasoning and 
forming actionable insights from the vast and varied collected 
real world data. A testing implementation of the framework is 
made to assess performance of our proposed generalized Smart 
Forensic Framework for Digital Forensics applications by 
comparison with existing solutions on quantitative and 
qualitative metrics and assessments. We will use the insights and 
performance metrics derived from our research to motivate 
forensic intelligence agencies to exploit the features and 
capabilities provided by AutoML Smart Forensic Framework 
applications. 

Keywords—Forensic investigation; digital forensic; automated 
machine learning; smart forensic framework 

I. INTRODUCTION 
The overall utilization of portable savvy gadgets has 

expanded dramatically in the course of recent decades and now 
is essential in the running and preservation of every aspect of 
our day to day life. The gadgets range from the assortment of 
devices that incorporate cell phones, tablets, GPS, etc. The 
ubiquity of these digital gadgets is expanded essentially 
because of their utility, immense capacities and abilities and 
furthermore the depreciation in their prices as production 
becomes cheaper. Subsequently, they can hold the huge 
measure of business and private client's information. These 
gadgets are now a fundamental aspect of our day by day life 
since they contain private and basic data of clients [1]. In any 
case, these gadgets are additionally helpless against aggressors 
and are regularly turning into the significant vector of crimes, 
IP burglary, interruptions, security dangers, counterfeit 
reproductions and identity theft and etc. The quantity of 

advanced wrongdoings similarly increments as the new 
innovations, for example advanced gadgets and web 
increments. Therefore, these devices are turning into the 
vulnerable objectives for different sorts of cybercrimes and 
advanced assaults. However, Thanks to advancements in the 
field of Digital Forensics we get ways to also combat the ever 
encroaching aspect of criminal wrongdoing that pervades into 
our lives. 

We will use a working definition for the term Digital 
Forensics Investigations (DFI) as, “The use of objective 
analysis toward the conservation, aggregation, validation, 
recognition, interpretation, documentation and representation 
of digital evidence got from digital sources for the intent of 
reconstruction of occurrences found to be illegal, or helping to 
predict events shown to be disruptive to peace or functioning 
of society”. 

II. RESEARCH PROCESS OUTLINE 
Our study will be conducted in three phases: 

1) Outlining a divergent meta study of the current 
research in the field ranging in their application potential and 
efficacy. This is outlined in our survey and commentary on the 
mentioned relevant literature on the subject. This will inform 
us in our second phase in finding applications and testable 
implementations of principles outlined. We will also use this 
to construct an accessible minimum viable ontology for 
collaborative and universal DFI practices based on the insights 
of the survey. 

2) The assessments we made in the first phase will be 
used to propose architecture for our machine learning 
experimentations in this phase. We will describe the 
algorithms and review their capabilities amongst themselves. 
We will expand upon our methodology of collecting records 
of forensic & criminal data to test out the algorithms in terms 
of the accuracy in dealing with these large datasets. 

3) From the results obtained by the techniques outlined in 
phase II, we conduct further review and analyses on the 
practicality of application and efficacy of the algorithms and 
also give further commentary on the contextual advantages 
and disadvantages of the analysed techniques. This will lead 
into using the learnings from the previous phases of research 
to implement a version of our proposed framework. We will 
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then use this implementation to comment on real world use 
case scenarios and test the practical feasibility of such a 
formulation of Forensic Framework after validation of 
proposed system along the mentioned quantitative and 
qualitative performance indices. 

We will then finally conclude consolidating our learnings 
and insights during the process of our research and 
implementation and outline the scope and certain key 
directions for future research for our problem definition. 

III. LITERATURE SURVEY 
Literature survey is a valuable step in software 

development workflows. Here we outline the general 
conceptions of machine learning approaches to this problem of 
parsing varied and voluminous digital and criminal forensic 
data for knowledge representation and getting actionable 
insights for DFI practices [2]. 

Knowledge Discovery shows smart computing at its finest, 
and is an interesting end-product of advancements in 
Information Technology. The ability to parse and to extract 
intelligence from data is a task that is of crucial importance to 
many fields of human development [3]. There is a lot of hidden 
synthesis waiting to be uncovered, this is the potential created 
by today’s surplus of rich data. Data Mining and Knowledge 
Discovery Handbook, Second Edition organizes some current 
ideas, theories, notions, methodologies, and applications of 
data mining and knowledge discovery in databases (KDD) into 
a unified and comprehensive repository. Such KDDs provide 
additional intelligence utility ranging from preliminary on-field 
forensic assessments to mobile network flow and community 
cluster analysis. 

Tensor Flow is an interface for expressing algorithms in 
machine learning and an implementation for such algorithms to 
be implemented. On a wide range of heterogeneous systems, 
from mobile devices such as phones and tablets to large-scale 
distributed systems with hundreds of machines and thousands 
of computing devices such as GPU cards, computations 
represented using machine learning can be performed with 
little to no modification, This paper describes the machine 
learning interface and an implementation of that interface that 
they have built at Google [4]. The system is versatile and may 
be accustomed specific a good sort of algorithms, as well as 
coaching and logical thinking algorithms for deep neural 
network models, and it's been used for conducting analysis and 
for deploying machine learning systems into production across 
over a dozen areas of engineering and alternative fields, as well 
as mechatronics, speech recognition, data retrieval, computer 
vision, natural language processing (NLP), geographic data 
extraction, and automated drug discovery. 

Examining Deep Learning Architectures for Crime 
Classification and Prediction, A detailed study is presented on 
the classification and prediction of crime utilising deep 
learning architectures [5]. We analyse the efficacy of deep 
learning algorithms in this field and include suggestions for the 
design and training of deep learning systems using open data 
from police reports to predict areas of crime. A comparative 
analysis of 10 state-of-the-art methods against 3 different deep 
learning configurations is performed as a training data time 

series of crime types per venue. We show that the deep 
learning-based methods consistently outperform the current 
best-performing methods in our experiments with five publicly 
accessible datasets. In addition, in the deep learning 
architectures, we evaluate the effectiveness of different 
parameters and provide insights for configuring them in order 
to achieve improved performance in the classification of crime 
and ultimately prediction of crime. 

H2O is machine learning and data analysis applications. A 
number of well-known businesses are using H2O for their 
processing of big data, and over 5000 organizations are 
currently using it, the website states. The main things H2O 
brings to R and Python developers, who already feel they have 
all the machine learning libraries they need, are ease of use and 
efficient scalability for datasets that are too large to fit into a 
large machine's memory. One of the things that make the H2O 
APIs so efficient and simple to use is that a large part of their 
interface is common to each of the machine learning 
algorithms. This allows the ensemble to model different 
learning architectures via trained submodels [6]. H2O also 
offers some changes in the quality of life, such as being able to 
manually or parametrically stop training until the model 
achieves acceptable user quality. It also comes with scalable 
and robust algorithm implementations, such as a multitude of 
feature encoding options, modelling options, hyperparameter 
tuning, scoring, etc. These algorithms also help to exploit the 
advantages of cluster computing and model ensemble 
preparation, but H2O lacks complete support for options for 
GPU computing. Although the latter can be applied via Java or 
C++ or via the implementations of TensorFlow. 

Review: From our meta study on these publications and 
their methodologies and proposed architectures, we will be 
taking some of these approaches to DFI and ensure that our 
proposed system will be able to provide similar capabilities. 
Before building the proposed system, the techniques and 
consideration from these papers are also taken into account for 
the experiment implementation and validation. 

IV. PROPOSED WORK 
The assessments we made in the Literature Survey will be 

used to propose architecture for our machine learning 
experimentations in this phase. We will describe the ontology 
modelling and the pipeline methodology and review their 
capabilities. We will expand upon our methodology of 
collecting records of forensic & criminal data to test out the 
algorithms. 

A. Operational Ontology 
In each step of the process, the system is based on Machine 

Learning principles and uses AI to ensure that decisions made 
by instruments have minimal false positives. However, a 100% 
precise and intelligent system cannot be conceptualised, the 
possibilities cannot be ignored for errors and false positives. 
Rigorous testing before use will be needed for the working 
model. While user inputs can be minimised at all possible 
levels, it is desirable to verify at each step to avoid errors, 
especially the system-generated report should be validated and 
cross-checked with objects before it is submitted to the court of 
law. 
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An abstract representation of our proposed Smart Machine 
Learning Digital Forensic framework is shown in Fig. 1. 

 
Fig. 1. Smart Digital Forensic Framework. 

The proposed system is case-based and is considered to be 
a single package capable of resolving all three digital forensic 
method steps [7]. Most of the current instruments support these 
three measures, but they lack the rich interoperable intelligence 
described in our proposed system formulation, and this is the 
drawback we want to mitigate. Our structure is built with 
widely recognized traditional programming, AI and ML 
processes and toolkits, where existing data sets from previous 
forensic investigations are trained in the framework. These sets 
of data are useful for the system to understand what decision to 
take in which case. The probability of integration of AI at each 
point is discussed in the following subsections. In this context, 
the measures are called smart because they act on the basis of 
their knowledge and learning from it. Each phase needs to be 
retrained after training to see reliable outcomes. The test data 
sets can be used to validate the learning process and the 
instrument can be rigorously trained with more training data 
sets based on contextual performance metrics needed [11]. 

B. Automated Machine Learning (AutoML) 
The most important aspects of making a prediction model 

is being able to use domain expertise and iterated learning 
(either by an intelligent human agent or meta learning 
methods) to find out what the important features are for the 
prediction task and how to optimize the hyperparameters of the 
learning algorithms for successful learning over large 
databases, which cannot be pruned or cleaned by a human data 
scientist. 

We will be using the H2O AutoML framework for our 
proposed implementation. It is capable of doing Categorical 
Ensembling in a live production environment. This allows it to 
effectively combine multiple trained pipelines and use the 
combined data of previous user runs of Smart Forensic (SF) 
Analysis as shown in Fig. 2, where new data is appended to 
trained models of previous runs. 

 
Fig. 2. Experiment Pipeline Steps. 

This is where good implementations of AutoML pipelines 
will help us in satisfying the basic requirements for our SF 
framework. In addition, open-source libraries that implement 
AutoML techniques are available, focusing on the particular 
data transformations, models, and hyperparameters used in the 
search space and the types of algorithms used to traverse or 
optimise the possibilities of the search space, with the most 
popular being variants of Bayesian Optimization [8]. However 
by using H2O we also get access to state-of-the-art techniques 
like pruned decision trees, Gradient Boosting and even tuned 
Deep Learning Algorithms and advanced encoding and feature 
preprocessing methods. 

There are hyperparameters in any machine learning system, 
and the most basic task in AutoML is to set these hyper-
parameters to optimise performance automatically. 

It has capabilities to:- 

• Reduce the human effort needed for machine learning 
to be implemented. In the sense of AutoML, this is 
especially important. 

• Improve the efficiency of machine learning algorithms 
(by adapting them to the problem at hand); this has led 
to new state-of-the-art performances in many studies 
for significant machine learning benchmarks. 

• Improving the reproducibility of scientific experiments 
and their justice. Clearly, automated HPO is more 
reproducible than manual search. It makes reasonable 
comparisons simpler since different approaches can 
only be equally compared if they all obtain the same 
degree of tuning at hand for the problem. 

Fig. 3 shows the description of processes through the lens 
of our SF Acquisition pipeline. 
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Fig. 3. SF Acquisition Pipeline. 

These algorithms are also robust for transfer learning 
implementations and combining dataframes for better 
modelling and richer feature space definition derived from the 
merged datasets. Fig. 4 shows the overview of the server 
architecture used for our work. 

 
Fig. 4. Client Server Architecture. 

C. Implementation Specification 
We posit that an H2O based implementation would be 

extremely effective for SF Analysis and SF Acquisition and by 
an effective user interface as per the UX pertaining to different 
use case and ethno-social differences. A SF application based 
on our ontology and framework description seems promising 
for the tasks of distributed data mining and forensic analysis 
for agencies and Investigator across all levels of hierarchy upto 
policy makers and field agents. As the autoML computation 
pipeline also supports TensorFlow which also enables 
distributed computing applications [9]. However, this is not 
supported “out of the box” and requires additional engineering 
to implement robustly. 

H2O's REST API allows all H2O capabilities to be 
accessed via JSON over HTTP from an external programme or 
script. H2O's web interface (Flow UI), R binding (H2O-R), and 
Python binding are used for the rest of the API (H2O-Python). 

We will use its REST API via its driverless.ai cloud 
implementation to construct our pipeline via the “codeless” 
interface provided by the proprietary driverless.ai web interface 
through a 2 hour evaluatory trial that can be accessed here 
https://www.h2o.ai/try-driverless-ai/. 

D. Experiment Overview 
We built a LightGBM Model using Driverless AI to predict 

RAPE given 32 original features from the input dataset 
“01_District_wise_crimes_committed_IPC_2001_2012.csv”. 
This regression experiment was completed in 41 minutes and 
13 seconds (0:41:13), using 1 of the 32 original features, and 2 
of the 2 engineered features. 

E. Data Overview 
The dataset is obtained from www.data.gov.in, a 

government website; the data being provided by the National 
Crime Records Bureau (NCRB). 

9017 rows and 13 columns of 1.3 MiB file size are included 
in the crime datasets we used for our experiment. 

F. Experiment Pipeline 
For this experiment, Driverless AI performed the following 

steps (shown in Fig. 5) to find the optimal final model: 

 
Fig. 5. Experiment Pipeline Steps. 

The steps in this pipeline are described in more detail 
below: 

1) Ingest data: detected column types 
2) Feature preprocessing: turned raw features into 

numeric 
3) Model and feature tuning: This stage combines random 

tuning of hyperparameters with selection and generation of 
characteristics. Features are modified in each iteration using 
variable significance as a probabilistic from the previous 
iteration before determining what new features to build. The 
best performing model and features are then passed to the 
feature evolution stage. 

• Identified the optimal parameters for constant, decision 
tree, lightgbm and xgboost methods by training models 
with different variables. 

• The best parameters will be those who produce the 
least root mean square error (RMSE) on the internal 
validation data. 

• To evaluate features and prediction models, 105 
models were trained and scored. 

4) Feature evolution: To find the best set of model 
parameters and feature transformations to be used in the final 
model, this stage uses a genetic algorithm. 

• Found the best representation of the data for the final 
model training by creating and evaluating 2 features 
over 34 iterations. 
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• Trained and Scored 116 models to further evaluate 
engineered features. 

5) Final model: created the best model from the feature 
engineering iterations. 

• No stacked ensemble is done because a time column 
was provided. 

6) Create scoring pipeline: created and exported the 
Python scoring pipeline 

Driverless AI trained models throughout the experiment in 
an effort to determine the best parameters, model dataset, and 
optimal final model. The processes are shown in Table I. 

TABLE I. DRIVERLESS AI EXPERIMENT STAGES 

Driverless AI Stage Timing (seconds) Number of Models 

Data Preparation 20.81 0 

Model and Feature Tuning 799.57 105 

Feature Evolution 1,322.19 116 

Final Pipeline Training  142.09 1 

G. Experiment Settings 
Table II shows the settings selected for our experiment. The 

Defined Parameters represents the high-level parameters. 

TABLE II. PARAMETERS AND SELECTED VALUES 

Parameter Value 

num prediction periods 1 

num gap periods 0 

accuracy 7 

time 5 

gpus enable  True 

is image False 

seed False 

is timeseries True 

is classification False 

interpretability interpretability 

H. Supported Algorithms 
We specify here the ML algorithms used as candidate 

models for our AutoML SF Framework which includes the 
following algorithms. 

1) LightGBM: LightGBM is a Microsoft-developed 
gradient boosting framework that uses tree-based learning 
algorithms. It was specifically designed for lower memory 
consumption and greater performance and faster training 
speed. Analogous to XGBoost, it is among the highest quality 
implementations for gradient boosting. It also is used within 
Driverless AI for the fitting of Random Forest, DART 
(experimental algorithm), and Decision Tree approaches. 

2) XGBoost: XGBoost is a supervised learning model that 
enacts a method to make accurate models called boosting. 

Boosting alludes to the ensemble teaching technique of 
sequentially constructing many models, with each latest model 
attempting to rectify the inadequacies in the previous version 
[10]. In tree boosting, a decision tree is each new model that is 
added to the ensemble. XGBoost offers parallel tree boosting 
(identified as GBDT, GBM) that quickly and accurately 
accomplishes many challenges of data science. XGBoost is 
one of today's best gradient boosting machine (GBM) 
frameworks for several issues. Driverless AI implements the 
DART (experimental algorithm) methods of XGBoost GBM 
and XGBoost. 

3) Decision Tree (DT): A DT is a binary (single) tree 
model dividing the population of training data into leaf nodes 
(sub-groups) with consistent conclusions. No column or row 
sampling is undertaken, and hyper-parameters [12] monitor 
the depth of the tree and the growth method (depth-wise or 
loss-guided). 

4) Constant model: The algorithm Constant Model 
predicts same constant value for any input data. By optimising 
the given scorer, the constant value is computed. For example, 
for MSE/RMSE, the constant is the target column's (weighted) 
mean. It is the (weighted) median for MAE. For other scorers, 
such as MAPE or custom scorers, an optimization process 
finds the constant. For classification issues, the constant 
probabilities are the priors identified. A constant model is 
considered as a baseline reference model. A warning will be 
issued if it ends up being used in the final pipeline, because it 
shows vulnerability in the dataset or target (e.g. in attempting 
to predict a stochastic possibility). 

5) Follow The Regularized Leader (FTRL): A DataTable 
implementation [13] of the FTRL-Proximal online learning 
algorithm suggested in [16] is Follow the Regularized Leader 
(FTRL). For parallelization, such an implementation utilises a 
hashing trick and a Hogwild approach [15]. For categorical 
targets, FTRL facilitates binomial and multinomial 
classification, along with regression for continuous targets. 

6) RuleFit: Through first adapting a tree model and then 
fitting a Lasso (L1-regularized) GLM model, the RuleFit [14] 
algorithm creates an optimum set of decision rules to create a 
linear model composed of the most crucial tree leaves (rules). 

V. RESULTS 
We will now display the quantitative metrics of our 

implemetation’s performance on the prediction and analysis 
tasks. Further in the discussion we will elucidate briefly on the 
performance of the implementation on its quantitative metrics 
and further comment on its capabilities and viability with 
respect to qualitative concerns of DFI and how our formulation 
fares in those regards. 

A. Model Tuning 
Driverless AI automatically split the data into training and 

validation data, ordering the data by YEAR. The experiment 
predicted 131536000 seconds ahead with no gap between 
training and forecasting. 
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Table III shows the score and training time of the constant, 
decision tree, lightgbm and xgboost models evaluated by AI. 
Following table also shows the top 10 parameter tuning models 
evaluated, ordered based on a combination of least score and 
lowest training time. 

TABLE III. SCORES AND TRAINING TIME OF ALGORITHMS 

job order booster nfeatures scores training 
times 

17 lightgbm 127 10.021 11.7719 

10 lightgbm 39 10.0522 10.5283 

1 lightgbm 38 38.2283 12.4251 

3 lightgbm 33 39.3688 7.5582 

19 lightgbm 116 45.1921 11.2392 

21 lightgbm 98 51.531 8.3811 

15 gbtree 66 58.8309 15.0382 

13 lightgbm 70 60.9843 7.9107 

4 gbtree 33 82.8789 6.5336 

16 decision tree 77 90.2014 5.2849 

More detailed information on the parameters evaluated for 
each algorithm is shown in the following tables, (Table IV 
Constant tuning, Table V Decision Tree tuning, Table VI 
LightGBM tuning and Table VII gbtree tuning). 

B. Feature Evolution 
During the Model and Feature Tuning Stage, we evaluate 

the effects of different types of algorithms, algorithm 
parameters, and features. The goal of the Model and Feature 
Tuning Stage is to determine the best algorithm and parameters 
to use during the Feature Evolution Stage. 

In the Feature Evolution Stage, Driverless AI trained 
lightgbm models (116) where each model evaluated a different 
set of features. The Feature Evolution Stage uses a genetic 
algorithm to search the large feature engineering space. The 
graph in Fig. 6 shows the effect the Model and Feature Tuning 
Stage and Feature Evolution Stage had on the performance. 

TABLE IV. CONSTANT TUNING 

job order booster nfeatures scores training times 

23 constant 1 215.4763 2.1245 

TABLE V. DECISION TREE TUNING 

tree 
method 

grow 
policy 

max 
depth 

max 
leaves nfeatures scores training 

times 

gpu_ 
hist 

depth 
wise 8.0 128.0 77 90.202 5.285 

gpu_ 
hist 

loss 
guide 6.0 128.0 58 90.205 4.977 

gpu_ 
hist 

loss 
guide 8.0 64.0 74 90.208 5.282 

gpu_ 
hist 

loss 
guide 10.0 128.0 91 90.268 5.299 

gpu_ 
hist 

loss 
guide 4.0 32.0 35 90.319 4.706 

TABLE VI. LIGHTGBM TUNING 

tree 
method 

grow 
policy 

max 
depth 

max 
leaves 

n 
features scores training 

times 

gpu_ 
hist depthwise 6.0 0.0 127 10.021 11.772 

gpu_ 
hist depthwise 6.0 0.0 39 10.053 10.529 

gpu_ 
hist lossguide 0.0 1024.0 38 38.228 12.426 

gpu_ 
hist depthwise 10.0 0.0 33 39.369 7.5582 

gpu_ 
hist depthwise 10.0 0.0 116 45.192 11.239 

gpu_ 
hist loss guide 0.0 1024.0 98 51.531 8.3811 

gpu_ 
hist loss guide 0.0 1024.0 70 60.985 7.9107 

gpu_ 
hist depthwise 6.0 0.0 35 10.587 10.116 

gpu_ 
hist depthwise 10.0 0.0 38 10.645 12.5988 

gpu_ 
hist depthwise 6.0 0.0 35 11.566 9.3648 

TABLE VII. GBTREE TUNING 

tree 
method 

grow 
policy 

max 
depth 

max 
leaves nfeatures scores training 

times 

gpu_ 
hist loss guide 0.0 1024.0 66 58.83 15.04 

gpu_ 
hist 

depth 
wise 10.0 0.0 33 82.88 6.534 

gpu_ 
hist loss guide 0.0 1024.0 111 112.49 5.176 

gpu_ 
hist 

depth 
wise 6.0 0.0 35 26.821 23.9731 

 
Fig. 6. Feature Evolution Graph. 

C. Feature Transformations 
Table VIII, ordered by value, the top features used in the 

final model are shown. The characteristics in the table are 
limited to the top 50 and are restricted to those with relative 
significance equal to or greater to 0.003. The function is an 
original column if no transformer has been applied. 
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TABLE VIII. TOP FEATURES USED IN FINAL MODEL 

no. Feature Description Transformer Relative 
Importance 

1 

29_InteractionAdd: 
CUSTODIAL 
RAPE: OTHER 
RAPE 

[CUSTODIAL 
RAPE] + 
[OTHER 
RAPE] 

Interaction 1.0 

2 22_OTHER RAPE OTHER RAPE 
(Original) None 0.9322 

3 

29_InteractionSub: 
CUSTODIAL 
RAPE: OTHER 
RAPE 

[CUSTODIAL 
RAPE] - 
[OTHER 
RAPE] 

Interaction 0.5503 

Fig. 7 shows the bar graph of Features and Relative Feature 
Importance. 

 
Fig. 7. Features and Relative Importance. 

D. Final Model 
Final pipeline of LightGBMModel with ensemble level is 

equal to 0 Transforming 30 initial characteristics. In each of 1 
model, 3 characteristics each suit on time-based hold-out. 
Fig. 8 shows the Final Model Pipeline Feature. 

 
Fig. 8. Feature to Pipeline. 

Details: 

• The fitted features of the final model are the best 
features found during the feature engineering 
iterations. 

• The target transformer indicates the type of 
transformation applied to the target column. 

Table IX describes final model transformation details. 
Model Index: 0 has a weight of 1 in the final ensemble. 

TABLE IX. FINAL MODEL TRANSFORMATION DETAILS 

Model 
Index Type Model 

Weight 
Fitted 
features 

Target 
Transformer 

0 LightGBMModel 1 3 log 

TABLE X. PERFORMANCE OF FINAL MODEL 

Scorer Better 
score is 

Final ensemble scores 
on validation 
(internal or external 
holdout(s)) data 

Final ensemble 
standard deviation on 
validation (internal or 
external holdout(s)) 
data 

RMSE lower 6.478455 2.335938 

Performance of the final model is shown in Table X. The 
scorer we used here is RMSE. 

Fig. 9 shows the graph of performance for Actual vs 
predicted. 

 
Fig. 9. Performance (Actual vs Predicted). 

E. Alternative Models 
During the experiment, we trained 27 alternative models 

using Driverless AI. The following Table XI shows the 
algorithms were evaluated during our experiment. 

An array of algorithms, including but not limited to the 
Constant, Decision Tree, Light GBM, gbtree, XGBoost GLM, 
XGBoost GBM, XGBoost Dart, RuleFit, Tensorflow, and 
FTRL models, can be tested by Driverless AI. Table XII below 
illustrates why, if any, such algorithms for the final model were 
not chosen. 

TABLE XI. DETAILS ABOUT ALGORITHMS EVALUATED IN EXPERIMENT 

algorithm package version documentation 

constant custom 
package 1.9.0 reference model that predicts a constant 

aimed at minimizing the given scorer 

decision 
tree light gbm 2.2.4 

LightGBM, Light Gradient Boosting 
Machine. Contributors: 
https://github.com/microsoft/LightGB
M/graphs/contributors. 

lightgbm light gbm 2.2.4 
LightGBM, Light Gradient Boosting 
Machine.Contributors: 
https://github.com/microsoft/LightGB
M/graphs/contributors. 

gbtree xgboost 1.1.0 
XGBoost: eXtreme Gradient Boosting 
library.Contributors: 
https://github.com/dmlc/xgboost/blob/
master/CONTRIBUTORS.md 
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TABLE XII. DETAILS ABOUT ALGORITHM SELECTION IN FINAL MODEL 

algorithm selection 

gblinear algorithm not evaluated due to experiment configuration 

rulefit algorithm not evaluated due to experiment configuration 

tensorflow algorithm not evaluated due to experiment configuration 

ftrl algorithm not evaluated due to experiment configuration 

dart algorithm not evaluated due to experiment configuration 

gbtree Due to low performance during the model tuning process, 
not selected 

decision tree Due to low performance during the model tuning process, 
not selected 

lightgbm selected for final model 

F. Deployment 
For our experiment, Python Scoring Pipelines are available 

for productionizing the final model pipeline for a given row of 
data or table of data. 

Python Scoring Pipeline pack provides an assembled model 
and samples of the Python 3.6 code base to generate models 
designed with H2O Driverless AI. Below is the Python Scoring 
Pipeline: 

• admin/h2oai_experiment_21c8e18c-059c-11eb-833e-
0242ac110002/scoring_pipeline/scorer.zip. 

In this package, the files allow us to transform and score 
new data in a few different ways: 

• We can import a scoring module from Python 3.6, then 
use the module to convert and score on updated data. 

• We can use the TCP/HTTP scoring service included 
with this package for other applications and scripts to 
call the scoring pipeline module via remote procedure 
calls (RPC). 

VI. DISCUSSION 
We have provided the quantitative measurements as a 

comparison between the algorithms as they offer multiple 
varied expressions of our SF Framework and the real world 
value of the three implementations but they cannot be assessed 
by raw performance alone [17]. However, the general 
improvements provided by an AutoML engine can be assessed 
from the quantitative results provided. There is significant 
improvement in training time and prediction accuracy because 
of the appropriate algorithm selection and hyper-parameter 
optimization capabilities of the AutoML engine. This also 
validates our assumption that H2O autoML can be a well-
rounded candidate for a simple and generalized metalearner for 
DFI by using our SFI Framework Ontology. 

The report generated by SF framework also provided the 
performance metrics we have referenced in this paper. This 
generated report demonstrates the SF Report Generation aspect 
of a well-rounded SF Framework. One of the main scaling 
problems of our traditional legal is justice and bureaucratic 
sluggishness. The major factor of this bottleneck is the inability 
of human agents involved in such institutions to process the 
data effectively and manually create paperwork. If we augment 

the SF Reporting with scripts and templates to interface with 
existing legal protocols we will be able to greatly improve 
efficiency and efficacy of forensic agencies, with minimal 
feature re-tooling. Such elegant yet exhaustive SF Acquisition 
and SF Reporting implementation provides an easy way to 
bridge the gap and aid the traditional institutions to translate 
and transition into more appropriate mechanisms and 
institutions for our current needs for law enforcement and 
judicial systems. 

Hence, we see how well our H2O implementation fares in 
our proof of concept in a well-rounded qualitative assessment 
of its capabilities in our three pronged ontology of SF 
Framework. We have provided the quantitative measurements 
as a comparison between the algorithms as they offer multiple 
varied expressions of our SF Framework and the real world 
value of the three implementations but they cannot be assessed 
by raw performance alone. We posit that H2O autoML 
provides us the most well rounded candidate for a simple and 
generalized metalearning for DFI by using our SFI Framework 
Ontology. Such smart report generation capabilities of the DFI 
framework is crucial in avoiding opaque and dangerous black 
boxes and can help illustrate the workings and reasoning 
behind the models learning biases. This is extremely important 
for real world applications in judicial or criminal and forensic 
use. 

VII. CONCLUSION 
The topic of DFI is increasingly complex, and is 

blossoming to be a field that usually requires a huge abundance 
of complex data to be parsed and acquired from the scene of 
forensic interest. DFI practices include evaluating the digital 
evidence about the committed crime to be used as legal proof 
in the court of law. In this cycle, AI can be seen as an ideal 
way to deal with and take care of the issues that exist in the 
computerized criminology field. Different AI calculations and 
strategies can be valuable during the time spent separating and 
breaking down computerized proof. Automates Machine 
Learning Frameworks will improve this cycle by managing a 
lot of information in a brief timeframe range. It is clear that 
these improvements will be capable of providing solutions for 
taking vast volumes of forensic data and representing the data 
to make practical and highly intelligent investigative actions 
and prosecution decisions with a high degree of precision and 
good outcome consistency. In the forensic analysis phases, 
investigators are encouraged to use these methods as they give 
them the opportunity to counter various forms of crimes far 
beyond what is actually capable of doing so.. Well defined and 
minimum viable collaborative ontologies of Digital Forensic 
Investigations, provide avenues for advancements in the field 
of Machine Learning and Artificial Intelligence a way to be 
incorporated with ease into traditional Criminal and Forensic 
Agencies. 
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