
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

Smart Digital Forensic Framework for Crime
Analysis and Prediction using AutoML

Sajith A Johnson1
M. Tech, Department of Computer Science and Engineering
(Cyber Security and Digital Forensics), Koneru Lakshmaiah

Education Foundation, Vaddeswaram - 522502, Guntur
Andhra Pradesh, India

S Ananthakumaran2
Associate Professor, Department of Computer Science and
Engineering, Koneru Lakshmaiah Education Foundation

Vaddeswaram - 522502, Guntur
Andhra Pradesh, India

Abstract—Over the most recent couple of years, the greater
part of the information, for example books, recordings, pictures,
clinical, forensic, criminal and even the hereditary data of people
are being pushed toward digitals and cyber-dataspaces. This
problem requires sophisticated techniques to deal with the vast
amounts of data. We propose a novel solution to the problem of
gaining actionable intelligence from the voluminous existing and
potential digital forensic data. We have formulated an
Automated Learning Framework ontology for Digital Forensic
Applications relating to collaborative crime analysis and
prediction. The minimum viable ontology we formulated by
studying the existing literature and applications of Machine
learning has been used to devise an Automated Machine
Learning implementation to be quantitatively and qualitatively
studied in its capabilities to aid intelligence practices of Digital
Forensic Investigation agencies in representing, reasoning and
forming actionable insights from the vast and varied collected
real world data. A testing implementation of the framework is
made to assess performance of our proposed generalized Smart
Forensic Framework for Digital Forensics applications by
comparison with existing solutions on quantitative and
qualitative metrics and assessments. We will use the insights and
performance metrics derived from our research to motivate
forensic intelligence agencies to exploit the features and
capabilities provided by AutoML Smart Forensic Framework
applications.

Keywords—Forensic investigation; digital forensic; automated
machine learning; smart forensic framework

I. INTRODUCTION
The overall utilization of portable savvy gadgets has

expanded dramatically in the course of recent decades and now
is essential in the running and preservation of every aspect of
our day to day life. The gadgets range from the assortment of
devices that incorporate cell phones, tablets, GPS, etc. The
ubiquity of these digital gadgets is expanded essentially
because of their utility, immense capacities and abilities and
furthermore the depreciation in their prices as production
becomes cheaper. Subsequently, they can hold the huge
measure of business and private client's information. These
gadgets are now a fundamental aspect of our day by day life
since they contain private and basic data of clients [1]. In any
case, these gadgets are additionally helpless against aggressors
and are regularly turning into the significant vector of crimes,
IP burglary, interruptions, security dangers, counterfeit
reproductions and identity theft and etc. The quantity of

advanced wrongdoings similarly increments as the new
innovations, for example advanced gadgets and web
increments. Therefore, these devices are turning into the
vulnerable objectives for different sorts of cybercrimes and
advanced assaults. However, Thanks to advancements in the
field of Digital Forensics we get ways to also combat the ever
encroaching aspect of criminal wrongdoing that pervades into
our lives.

We will use a working definition for the term Digital
Forensics Investigations (DFI) as, “The use of objective
analysis toward the conservation, aggregation, validation,
recognition, interpretation, documentation and representation
of digital evidence got from digital sources for the intent of
reconstruction of occurrences found to be illegal, or helping to
predict events shown to be disruptive to peace or functioning
of society”.

II. RESEARCH PROCESS OUTLINE
Our study will be conducted in three phases:

1) Outlining a divergent meta study of the current
research in the field ranging in their application potential and
efficacy. This is outlined in our survey and commentary on the
mentioned relevant literature on the subject. This will inform
us in our second phase in finding applications and testable
implementations of principles outlined. We will also use this
to construct an accessible minimum viable ontology for
collaborative and universal DFI practices based on the insights
of the survey.

2) The assessments we made in the first phase will be
used to propose architecture for our machine learning
experimentations in this phase. We will describe the
algorithms and review their capabilities amongst themselves.
We will expand upon our methodology of collecting records
of forensic & criminal data to test out the algorithms in terms
of the accuracy in dealing with these large datasets.

3) From the results obtained by the techniques outlined in
phase II, we conduct further review and analyses on the
practicality of application and efficacy of the algorithms and
also give further commentary on the contextual advantages
and disadvantages of the analysed techniques. This will lead
into using the learnings from the previous phases of research
to implement a version of our proposed framework. We will

412 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

then use this implementation to comment on real world use
case scenarios and test the practical feasibility of such a
formulation of Forensic Framework after validation of
proposed system along the mentioned quantitative and
qualitative performance indices.

We will then finally conclude consolidating our learnings
and insights during the process of our research and
implementation and outline the scope and certain key
directions for future research for our problem definition.

III. LITERATURE SURVEY
Literature survey is a valuable step in software

development workflows. Here we outline the general
conceptions of machine learning approaches to this problem of
parsing varied and voluminous digital and criminal forensic
data for knowledge representation and getting actionable
insights for DFI practices [2].

Knowledge Discovery shows smart computing at its finest,
and is an interesting end-product of advancements in
Information Technology. The ability to parse and to extract
intelligence from data is a task that is of crucial importance to
many fields of human development [3]. There is a lot of hidden
synthesis waiting to be uncovered, this is the potential created
by today’s surplus of rich data. Data Mining and Knowledge
Discovery Handbook, Second Edition organizes some current
ideas, theories, notions, methodologies, and applications of
data mining and knowledge discovery in databases (KDD) into
a unified and comprehensive repository. Such KDDs provide
additional intelligence utility ranging from preliminary on-field
forensic assessments to mobile network flow and community
cluster analysis.

Tensor Flow is an interface for expressing algorithms in
machine learning and an implementation for such algorithms to
be implemented. On a wide range of heterogeneous systems,
from mobile devices such as phones and tablets to large-scale
distributed systems with hundreds of machines and thousands
of computing devices such as GPU cards, computations
represented using machine learning can be performed with
little to no modification, This paper describes the machine
learning interface and an implementation of that interface that
they have built at Google [4]. The system is versatile and may
be accustomed specific a good sort of algorithms, as well as
coaching and logical thinking algorithms for deep neural
network models, and it's been used for conducting analysis and
for deploying machine learning systems into production across
over a dozen areas of engineering and alternative fields, as well
as mechatronics, speech recognition, data retrieval, computer
vision, natural language processing (NLP), geographic data
extraction, and automated drug discovery.

Examining Deep Learning Architectures for Crime
Classification and Prediction, A detailed study is presented on
the classification and prediction of crime utilising deep
learning architectures [5]. We analyse the efficacy of deep
learning algorithms in this field and include suggestions for the
design and training of deep learning systems using open data
from police reports to predict areas of crime. A comparative
analysis of 10 state-of-the-art methods against 3 different deep
learning configurations is performed as a training data time

series of crime types per venue. We show that the deep
learning-based methods consistently outperform the current
best-performing methods in our experiments with five publicly
accessible datasets. In addition, in the deep learning
architectures, we evaluate the effectiveness of different
parameters and provide insights for configuring them in order
to achieve improved performance in the classification of crime
and ultimately prediction of crime.

H2O is machine learning and data analysis applications. A
number of well-known businesses are using H2O for their
processing of big data, and over 5000 organizations are
currently using it, the website states. The main things H2O
brings to R and Python developers, who already feel they have
all the machine learning libraries they need, are ease of use and
efficient scalability for datasets that are too large to fit into a
large machine's memory. One of the things that make the H2O
APIs so efficient and simple to use is that a large part of their
interface is common to each of the machine learning
algorithms. This allows the ensemble to model different
learning architectures via trained submodels [6]. H2O also
offers some changes in the quality of life, such as being able to
manually or parametrically stop training until the model
achieves acceptable user quality. It also comes with scalable
and robust algorithm implementations, such as a multitude of
feature encoding options, modelling options, hyperparameter
tuning, scoring, etc. These algorithms also help to exploit the
advantages of cluster computing and model ensemble
preparation, but H2O lacks complete support for options for
GPU computing. Although the latter can be applied via Java or
C++ or via the implementations of TensorFlow.

Review: From our meta study on these publications and
their methodologies and proposed architectures, we will be
taking some of these approaches to DFI and ensure that our
proposed system will be able to provide similar capabilities.
Before building the proposed system, the techniques and
consideration from these papers are also taken into account for
the experiment implementation and validation.

IV. PROPOSED WORK
The assessments we made in the Literature Survey will be

used to propose architecture for our machine learning
experimentations in this phase. We will describe the ontology
modelling and the pipeline methodology and review their
capabilities. We will expand upon our methodology of
collecting records of forensic & criminal data to test out the
algorithms.

A. Operational Ontology
In each step of the process, the system is based on Machine

Learning principles and uses AI to ensure that decisions made
by instruments have minimal false positives. However, a 100%
precise and intelligent system cannot be conceptualised, the
possibilities cannot be ignored for errors and false positives.
Rigorous testing before use will be needed for the working
model. While user inputs can be minimised at all possible
levels, it is desirable to verify at each step to avoid errors,
especially the system-generated report should be validated and
cross-checked with objects before it is submitted to the court of
law.

413 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

An abstract representation of our proposed Smart Machine
Learning Digital Forensic framework is shown in Fig. 1.

Fig. 1. Smart Digital Forensic Framework.

The proposed system is case-based and is considered to be
a single package capable of resolving all three digital forensic
method steps [7]. Most of the current instruments support these
three measures, but they lack the rich interoperable intelligence
described in our proposed system formulation, and this is the
drawback we want to mitigate. Our structure is built with
widely recognized traditional programming, AI and ML
processes and toolkits, where existing data sets from previous
forensic investigations are trained in the framework. These sets
of data are useful for the system to understand what decision to
take in which case. The probability of integration of AI at each
point is discussed in the following subsections. In this context,
the measures are called smart because they act on the basis of
their knowledge and learning from it. Each phase needs to be
retrained after training to see reliable outcomes. The test data
sets can be used to validate the learning process and the
instrument can be rigorously trained with more training data
sets based on contextual performance metrics needed [11].

B. Automated Machine Learning (AutoML)
The most important aspects of making a prediction model

is being able to use domain expertise and iterated learning
(either by an intelligent human agent or meta learning
methods) to find out what the important features are for the
prediction task and how to optimize the hyperparameters of the
learning algorithms for successful learning over large
databases, which cannot be pruned or cleaned by a human data
scientist.

We will be using the H2O AutoML framework for our
proposed implementation. It is capable of doing Categorical
Ensembling in a live production environment. This allows it to
effectively combine multiple trained pipelines and use the
combined data of previous user runs of Smart Forensic (SF)
Analysis as shown in Fig. 2, where new data is appended to
trained models of previous runs.

Fig. 2. Experiment Pipeline Steps.

This is where good implementations of AutoML pipelines
will help us in satisfying the basic requirements for our SF
framework. In addition, open-source libraries that implement
AutoML techniques are available, focusing on the particular
data transformations, models, and hyperparameters used in the
search space and the types of algorithms used to traverse or
optimise the possibilities of the search space, with the most
popular being variants of Bayesian Optimization [8]. However
by using H2O we also get access to state-of-the-art techniques
like pruned decision trees, Gradient Boosting and even tuned
Deep Learning Algorithms and advanced encoding and feature
preprocessing methods.

There are hyperparameters in any machine learning system,
and the most basic task in AutoML is to set these hyper-
parameters to optimise performance automatically.

It has capabilities to:-

• Reduce the human effort needed for machine learning
to be implemented. In the sense of AutoML, this is
especially important.

• Improve the efficiency of machine learning algorithms
(by adapting them to the problem at hand); this has led
to new state-of-the-art performances in many studies
for significant machine learning benchmarks.

• Improving the reproducibility of scientific experiments
and their justice. Clearly, automated HPO is more
reproducible than manual search. It makes reasonable
comparisons simpler since different approaches can
only be equally compared if they all obtain the same
degree of tuning at hand for the problem.

Fig. 3 shows the description of processes through the lens
of our SF Acquisition pipeline.

414 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

Fig. 3. SF Acquisition Pipeline.

These algorithms are also robust for transfer learning
implementations and combining dataframes for better
modelling and richer feature space definition derived from the
merged datasets. Fig. 4 shows the overview of the server
architecture used for our work.

Fig. 4. Client Server Architecture.

C. Implementation Specification
We posit that an H2O based implementation would be

extremely effective for SF Analysis and SF Acquisition and by
an effective user interface as per the UX pertaining to different
use case and ethno-social differences. A SF application based
on our ontology and framework description seems promising
for the tasks of distributed data mining and forensic analysis
for agencies and Investigator across all levels of hierarchy upto
policy makers and field agents. As the autoML computation
pipeline also supports TensorFlow which also enables
distributed computing applications [9]. However, this is not
supported “out of the box” and requires additional engineering
to implement robustly.

H2O's REST API allows all H2O capabilities to be
accessed via JSON over HTTP from an external programme or
script. H2O's web interface (Flow UI), R binding (H2O-R), and
Python binding are used for the rest of the API (H2O-Python).

We will use its REST API via its driverless.ai cloud
implementation to construct our pipeline via the “codeless”
interface provided by the proprietary driverless.ai web interface
through a 2 hour evaluatory trial that can be accessed here
https://www.h2o.ai/try-driverless-ai/.

D. Experiment Overview
We built a LightGBM Model using Driverless AI to predict

RAPE given 32 original features from the input dataset
“01_District_wise_crimes_committed_IPC_2001_2012.csv”.
This regression experiment was completed in 41 minutes and
13 seconds (0:41:13), using 1 of the 32 original features, and 2
of the 2 engineered features.

E. Data Overview
The dataset is obtained from www.data.gov.in, a

government website; the data being provided by the National
Crime Records Bureau (NCRB).

9017 rows and 13 columns of 1.3 MiB file size are included
in the crime datasets we used for our experiment.

F. Experiment Pipeline
For this experiment, Driverless AI performed the following

steps (shown in Fig. 5) to find the optimal final model:

Fig. 5. Experiment Pipeline Steps.

The steps in this pipeline are described in more detail
below:

1) Ingest data: detected column types
2) Feature preprocessing: turned raw features into

numeric
3) Model and feature tuning: This stage combines random

tuning of hyperparameters with selection and generation of
characteristics. Features are modified in each iteration using
variable significance as a probabilistic from the previous
iteration before determining what new features to build. The
best performing model and features are then passed to the
feature evolution stage.

• Identified the optimal parameters for constant, decision
tree, lightgbm and xgboost methods by training models
with different variables.

• The best parameters will be those who produce the
least root mean square error (RMSE) on the internal
validation data.

• To evaluate features and prediction models, 105
models were trained and scored.

4) Feature evolution: To find the best set of model
parameters and feature transformations to be used in the final
model, this stage uses a genetic algorithm.

• Found the best representation of the data for the final
model training by creating and evaluating 2 features
over 34 iterations.

415 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

• Trained and Scored 116 models to further evaluate
engineered features.

5) Final model: created the best model from the feature
engineering iterations.

• No stacked ensemble is done because a time column
was provided.

6) Create scoring pipeline: created and exported the
Python scoring pipeline

Driverless AI trained models throughout the experiment in
an effort to determine the best parameters, model dataset, and
optimal final model. The processes are shown in Table I.

TABLE I. DRIVERLESS AI EXPERIMENT STAGES

Driverless AI Stage Timing (seconds) Number of Models

Data Preparation 20.81 0

Model and Feature Tuning 799.57 105

Feature Evolution 1,322.19 116

Final Pipeline Training 142.09 1

G. Experiment Settings
Table II shows the settings selected for our experiment. The

Defined Parameters represents the high-level parameters.

TABLE II. PARAMETERS AND SELECTED VALUES

Parameter Value

num prediction periods 1

num gap periods 0

accuracy 7

time 5

gpus enable True

is image False

seed False

is timeseries True

is classification False

interpretability interpretability

H. Supported Algorithms
We specify here the ML algorithms used as candidate

models for our AutoML SF Framework which includes the
following algorithms.

1) LightGBM: LightGBM is a Microsoft-developed
gradient boosting framework that uses tree-based learning
algorithms. It was specifically designed for lower memory
consumption and greater performance and faster training
speed. Analogous to XGBoost, it is among the highest quality
implementations for gradient boosting. It also is used within
Driverless AI for the fitting of Random Forest, DART
(experimental algorithm), and Decision Tree approaches.

2) XGBoost: XGBoost is a supervised learning model that
enacts a method to make accurate models called boosting.

Boosting alludes to the ensemble teaching technique of
sequentially constructing many models, with each latest model
attempting to rectify the inadequacies in the previous version
[10]. In tree boosting, a decision tree is each new model that is
added to the ensemble. XGBoost offers parallel tree boosting
(identified as GBDT, GBM) that quickly and accurately
accomplishes many challenges of data science. XGBoost is
one of today's best gradient boosting machine (GBM)
frameworks for several issues. Driverless AI implements the
DART (experimental algorithm) methods of XGBoost GBM
and XGBoost.

3) Decision Tree (DT): A DT is a binary (single) tree
model dividing the population of training data into leaf nodes
(sub-groups) with consistent conclusions. No column or row
sampling is undertaken, and hyper-parameters [12] monitor
the depth of the tree and the growth method (depth-wise or
loss-guided).

4) Constant model: The algorithm Constant Model
predicts same constant value for any input data. By optimising
the given scorer, the constant value is computed. For example,
for MSE/RMSE, the constant is the target column's (weighted)
mean. It is the (weighted) median for MAE. For other scorers,
such as MAPE or custom scorers, an optimization process
finds the constant. For classification issues, the constant
probabilities are the priors identified. A constant model is
considered as a baseline reference model. A warning will be
issued if it ends up being used in the final pipeline, because it
shows vulnerability in the dataset or target (e.g. in attempting
to predict a stochastic possibility).

5) Follow The Regularized Leader (FTRL): A DataTable
implementation [13] of the FTRL-Proximal online learning
algorithm suggested in [16] is Follow the Regularized Leader
(FTRL). For parallelization, such an implementation utilises a
hashing trick and a Hogwild approach [15]. For categorical
targets, FTRL facilitates binomial and multinomial
classification, along with regression for continuous targets.

6) RuleFit: Through first adapting a tree model and then
fitting a Lasso (L1-regularized) GLM model, the RuleFit [14]
algorithm creates an optimum set of decision rules to create a
linear model composed of the most crucial tree leaves (rules).

V. RESULTS
We will now display the quantitative metrics of our

implemetation’s performance on the prediction and analysis
tasks. Further in the discussion we will elucidate briefly on the
performance of the implementation on its quantitative metrics
and further comment on its capabilities and viability with
respect to qualitative concerns of DFI and how our formulation
fares in those regards.

A. Model Tuning
Driverless AI automatically split the data into training and

validation data, ordering the data by YEAR. The experiment
predicted 131536000 seconds ahead with no gap between
training and forecasting.

416 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

Table III shows the score and training time of the constant,
decision tree, lightgbm and xgboost models evaluated by AI.
Following table also shows the top 10 parameter tuning models
evaluated, ordered based on a combination of least score and
lowest training time.

TABLE III. SCORES AND TRAINING TIME OF ALGORITHMS

job order booster nfeatures scores training
times

17 lightgbm 127 10.021 11.7719

10 lightgbm 39 10.0522 10.5283

1 lightgbm 38 38.2283 12.4251

3 lightgbm 33 39.3688 7.5582

19 lightgbm 116 45.1921 11.2392

21 lightgbm 98 51.531 8.3811

15 gbtree 66 58.8309 15.0382

13 lightgbm 70 60.9843 7.9107

4 gbtree 33 82.8789 6.5336

16 decision tree 77 90.2014 5.2849

More detailed information on the parameters evaluated for
each algorithm is shown in the following tables, (Table IV
Constant tuning, Table V Decision Tree tuning, Table VI
LightGBM tuning and Table VII gbtree tuning).

B. Feature Evolution
During the Model and Feature Tuning Stage, we evaluate

the effects of different types of algorithms, algorithm
parameters, and features. The goal of the Model and Feature
Tuning Stage is to determine the best algorithm and parameters
to use during the Feature Evolution Stage.

In the Feature Evolution Stage, Driverless AI trained
lightgbm models (116) where each model evaluated a different
set of features. The Feature Evolution Stage uses a genetic
algorithm to search the large feature engineering space. The
graph in Fig. 6 shows the effect the Model and Feature Tuning
Stage and Feature Evolution Stage had on the performance.

TABLE IV. CONSTANT TUNING

job order booster nfeatures scores training times

23 constant 1 215.4763 2.1245

TABLE V. DECISION TREE TUNING

tree
method

grow
policy

max
depth

max
leaves nfeatures scores training

times

gpu_
hist

depth
wise 8.0 128.0 77 90.202 5.285

gpu_
hist

loss
guide 6.0 128.0 58 90.205 4.977

gpu_
hist

loss
guide 8.0 64.0 74 90.208 5.282

gpu_
hist

loss
guide 10.0 128.0 91 90.268 5.299

gpu_
hist

loss
guide 4.0 32.0 35 90.319 4.706

TABLE VI. LIGHTGBM TUNING

tree
method

grow
policy

max
depth

max
leaves

n
features scores training

times

gpu_
hist depthwise 6.0 0.0 127 10.021 11.772

gpu_
hist depthwise 6.0 0.0 39 10.053 10.529

gpu_
hist lossguide 0.0 1024.0 38 38.228 12.426

gpu_
hist depthwise 10.0 0.0 33 39.369 7.5582

gpu_
hist depthwise 10.0 0.0 116 45.192 11.239

gpu_
hist loss guide 0.0 1024.0 98 51.531 8.3811

gpu_
hist loss guide 0.0 1024.0 70 60.985 7.9107

gpu_
hist depthwise 6.0 0.0 35 10.587 10.116

gpu_
hist depthwise 10.0 0.0 38 10.645 12.5988

gpu_
hist depthwise 6.0 0.0 35 11.566 9.3648

TABLE VII. GBTREE TUNING

tree
method

grow
policy

max
depth

max
leaves nfeatures scores training

times

gpu_
hist loss guide 0.0 1024.0 66 58.83 15.04

gpu_
hist

depth
wise 10.0 0.0 33 82.88 6.534

gpu_
hist loss guide 0.0 1024.0 111 112.49 5.176

gpu_
hist

depth
wise 6.0 0.0 35 26.821 23.9731

Fig. 6. Feature Evolution Graph.

C. Feature Transformations
Table VIII, ordered by value, the top features used in the

final model are shown. The characteristics in the table are
limited to the top 50 and are restricted to those with relative
significance equal to or greater to 0.003. The function is an
original column if no transformer has been applied.

417 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

TABLE VIII. TOP FEATURES USED IN FINAL MODEL

no. Feature Description Transformer Relative
Importance

1

29_InteractionAdd:
CUSTODIAL
RAPE: OTHER
RAPE

[CUSTODIAL
RAPE] +
[OTHER
RAPE]

Interaction 1.0

2 22_OTHER RAPE OTHER RAPE
(Original) None 0.9322

3

29_InteractionSub:
CUSTODIAL
RAPE: OTHER
RAPE

[CUSTODIAL
RAPE] -
[OTHER
RAPE]

Interaction 0.5503

Fig. 7 shows the bar graph of Features and Relative Feature
Importance.

Fig. 7. Features and Relative Importance.

D. Final Model
Final pipeline of LightGBMModel with ensemble level is

equal to 0 Transforming 30 initial characteristics. In each of 1
model, 3 characteristics each suit on time-based hold-out.
Fig. 8 shows the Final Model Pipeline Feature.

Fig. 8. Feature to Pipeline.

Details:

• The fitted features of the final model are the best
features found during the feature engineering
iterations.

• The target transformer indicates the type of
transformation applied to the target column.

Table IX describes final model transformation details.
Model Index: 0 has a weight of 1 in the final ensemble.

TABLE IX. FINAL MODEL TRANSFORMATION DETAILS

Model
Index Type Model

Weight
Fitted
features

Target
Transformer

0 LightGBMModel 1 3 log

TABLE X. PERFORMANCE OF FINAL MODEL

Scorer Better
score is

Final ensemble scores
on validation
(internal or external
holdout(s)) data

Final ensemble
standard deviation on
validation (internal or
external holdout(s))
data

RMSE lower 6.478455 2.335938

Performance of the final model is shown in Table X. The
scorer we used here is RMSE.

Fig. 9 shows the graph of performance for Actual vs
predicted.

Fig. 9. Performance (Actual vs Predicted).

E. Alternative Models
During the experiment, we trained 27 alternative models

using Driverless AI. The following Table XI shows the
algorithms were evaluated during our experiment.

An array of algorithms, including but not limited to the
Constant, Decision Tree, Light GBM, gbtree, XGBoost GLM,
XGBoost GBM, XGBoost Dart, RuleFit, Tensorflow, and
FTRL models, can be tested by Driverless AI. Table XII below
illustrates why, if any, such algorithms for the final model were
not chosen.

TABLE XI. DETAILS ABOUT ALGORITHMS EVALUATED IN EXPERIMENT

algorithm package version documentation

constant custom
package 1.9.0 reference model that predicts a constant

aimed at minimizing the given scorer

decision
tree light gbm 2.2.4

LightGBM, Light Gradient Boosting
Machine. Contributors:
https://github.com/microsoft/LightGB
M/graphs/contributors.

lightgbm light gbm 2.2.4
LightGBM, Light Gradient Boosting
Machine.Contributors:
https://github.com/microsoft/LightGB
M/graphs/contributors.

gbtree xgboost 1.1.0
XGBoost: eXtreme Gradient Boosting
library.Contributors:
https://github.com/dmlc/xgboost/blob/
master/CONTRIBUTORS.md

418 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

TABLE XII. DETAILS ABOUT ALGORITHM SELECTION IN FINAL MODEL

algorithm selection

gblinear algorithm not evaluated due to experiment configuration

rulefit algorithm not evaluated due to experiment configuration

tensorflow algorithm not evaluated due to experiment configuration

ftrl algorithm not evaluated due to experiment configuration

dart algorithm not evaluated due to experiment configuration

gbtree Due to low performance during the model tuning process,
not selected

decision tree Due to low performance during the model tuning process,
not selected

lightgbm selected for final model

F. Deployment
For our experiment, Python Scoring Pipelines are available

for productionizing the final model pipeline for a given row of
data or table of data.

Python Scoring Pipeline pack provides an assembled model
and samples of the Python 3.6 code base to generate models
designed with H2O Driverless AI. Below is the Python Scoring
Pipeline:

• admin/h2oai_experiment_21c8e18c-059c-11eb-833e-
0242ac110002/scoring_pipeline/scorer.zip.

In this package, the files allow us to transform and score
new data in a few different ways:

• We can import a scoring module from Python 3.6, then
use the module to convert and score on updated data.

• We can use the TCP/HTTP scoring service included
with this package for other applications and scripts to
call the scoring pipeline module via remote procedure
calls (RPC).

VI. DISCUSSION
We have provided the quantitative measurements as a

comparison between the algorithms as they offer multiple
varied expressions of our SF Framework and the real world
value of the three implementations but they cannot be assessed
by raw performance alone [17]. However, the general
improvements provided by an AutoML engine can be assessed
from the quantitative results provided. There is significant
improvement in training time and prediction accuracy because
of the appropriate algorithm selection and hyper-parameter
optimization capabilities of the AutoML engine. This also
validates our assumption that H2O autoML can be a well-
rounded candidate for a simple and generalized metalearner for
DFI by using our SFI Framework Ontology.

The report generated by SF framework also provided the
performance metrics we have referenced in this paper. This
generated report demonstrates the SF Report Generation aspect
of a well-rounded SF Framework. One of the main scaling
problems of our traditional legal is justice and bureaucratic
sluggishness. The major factor of this bottleneck is the inability
of human agents involved in such institutions to process the
data effectively and manually create paperwork. If we augment

the SF Reporting with scripts and templates to interface with
existing legal protocols we will be able to greatly improve
efficiency and efficacy of forensic agencies, with minimal
feature re-tooling. Such elegant yet exhaustive SF Acquisition
and SF Reporting implementation provides an easy way to
bridge the gap and aid the traditional institutions to translate
and transition into more appropriate mechanisms and
institutions for our current needs for law enforcement and
judicial systems.

Hence, we see how well our H2O implementation fares in
our proof of concept in a well-rounded qualitative assessment
of its capabilities in our three pronged ontology of SF
Framework. We have provided the quantitative measurements
as a comparison between the algorithms as they offer multiple
varied expressions of our SF Framework and the real world
value of the three implementations but they cannot be assessed
by raw performance alone. We posit that H2O autoML
provides us the most well rounded candidate for a simple and
generalized metalearning for DFI by using our SFI Framework
Ontology. Such smart report generation capabilities of the DFI
framework is crucial in avoiding opaque and dangerous black
boxes and can help illustrate the workings and reasoning
behind the models learning biases. This is extremely important
for real world applications in judicial or criminal and forensic
use.

VII. CONCLUSION
The topic of DFI is increasingly complex, and is

blossoming to be a field that usually requires a huge abundance
of complex data to be parsed and acquired from the scene of
forensic interest. DFI practices include evaluating the digital
evidence about the committed crime to be used as legal proof
in the court of law. In this cycle, AI can be seen as an ideal
way to deal with and take care of the issues that exist in the
computerized criminology field. Different AI calculations and
strategies can be valuable during the time spent separating and
breaking down computerized proof. Automates Machine
Learning Frameworks will improve this cycle by managing a
lot of information in a brief timeframe range. It is clear that
these improvements will be capable of providing solutions for
taking vast volumes of forensic data and representing the data
to make practical and highly intelligent investigative actions
and prosecution decisions with a high degree of precision and
good outcome consistency. In the forensic analysis phases,
investigators are encouraged to use these methods as they give
them the opportunity to counter various forms of crimes far
beyond what is actually capable of doing so.. Well defined and
minimum viable collaborative ontologies of Digital Forensic
Investigations, provide avenues for advancements in the field
of Machine Learning and Artificial Intelligence a way to be
incorporated with ease into traditional Criminal and Forensic
Agencies.

REFERENCES
[1] A. Guarino, "Digital forensics as a big data challenge," in ISSE 2013

securing electronic business processes: Springer, 2013, pp. 197-203.
[2] Iqbal, Salman & Alharbi, Soltan. (2019). Advancing Automation in

Digital Forensic Investigations Using Machine Learning Forensic
10.5772/intechopen.90233. I. S. Jacobs and C. P. Bean, “Fine particles,
thin films and exchange anisotropy,” in Magnetism, vol. III, G. T. Rado
and H. Suhl, Eds. New York: Academic, 1963, pp. 271–350.

419 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

[3] Maimon, Oded & Rokach, Lior. (2010). Data Mining and Knowledge
Discovery Handbook, 2nd edition.

[4] TensorFlow (2016): Large-Scale Machine Learning on Heterogeneous
Distributed Systems.

[5] Stalidis, Panagiotis & Semertzidis, Theodoros & Daras, Petros. (2018).
Examining Deep Learning Architectures for Crime Classification and
Prediction.

[6] Practical Machine Learning with H2O by Darrencook, Released
December 2016, Publisher(s): O'Reilly Media, Inc. ISBN:
9781491964606.

[7] Rughani, Dr. Parag. (2017). Artificial Intelligence Based Digital
Forensics Framework. International Journal of Advanced Research in
Computer Science. 8. 10-14.10.26483/ijarcs.v8i8.4571.

[8] Z. Li et al., "A Blockchain and AutoML Approach for Open and
Automated Customer Service," in IEEE Transactions on Industrial
Informatics, vol. 15, no. 6, pp. 3642-3651, June 2019,
doi:10.1109/TII.2019.2900987.

[9] J. P. Ono, S. Castelo, R. Lopez, E. Bertini, J. Freire and C. Silva,
"PipelineProfiler: A Visual Analytics Tool for the Exploration of
AutoML Pipelines," in IEEE Transactions on Visualization and
Computer Graphics, vol. 27, no. 2, pp. 390-400, Feb. 2021, doi:
10.1109/TVCG.2020.3030361.

[10] Z. Wen, J. Shi, B. He, J. Chen, K. Ramamohanarao and Q. Li,
"Exploiting GPUs for Efficient Gradient Boosting Decision Tree

Training," in IEEE Transactions on Parallel and Distributed Systems,
vol.30, no. 12, pp. 2706-2717, 1 Dec. 2019, doi:
10.1109/TPDS.2019.2920131.

[11] Yuki, Jesia & Sakib, Md. Mahfil & Zamal, Zaisha & Habibullah, Khan
& Das, Amit. (2019). Predicting Crime Using Time and Location Data.
124-128. 10.1145/3348445.3348483.

[12] J. R. J. M. l. Quinlan, "Induction of decision trees," vol. 1, no. 1, pp. 81-
106, 1986.

[13] DataTable for Python, Z. https:github.com/h2oai/datatable.
[14] J. Friedman, B. Popescu. “Predictive Learning via Rule Ensembles”.

2005. http://statweb.stanford.edu/~jhf/ftp/RuleFit.pdf.
[15] Niu, Feng, et al. “Hogwild: A lock-free approach to parallelizing

stochastic gradient descent.” Advances in neural information processing
systems.2011.https://people.eecs.berkeley.edu/~brecht/papers/hogwildT
R.pdf

[16] McMahan, H. Brendan, et al. “Ad click prediction: a view from the
trenches.” Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2013.
https://research.google.com/pubs/archive/41159.pdf.

[17] Agarwal R., Kothari S. (2015) Review of Digital Forensic Investigation
Frameworks. In: Kim K. (eds) Information Science and Applications.
Lecture Notes in Electrical Engineering, vol 339. Springer, Berlin,
Heidelberg. https://doi.org/10.1007/978-3-662-46578-3_66.

420 | P a g e
www.ijacsa.thesai.org

http://statweb.stanford.edu/%7Ejhf/ftp/RuleFit.pdf
https://people.eecs.berkeley.edu/%7Ebrecht/papers/hogwildTR.pdf
https://people.eecs.berkeley.edu/%7Ebrecht/papers/hogwildTR.pdf
https://research.google.com/pubs/archive/41159.pdf

	I. Introduction
	II. Research Process Outline
	1) Outlining a divergent meta study of the current research in the field ranging in their application potential and efficacy. This is outlined in our survey and commentary on the mentioned relevant literature on the subject. This will inform us in our seco
	2) The assessments we made in the first phase will be used to propose architecture for our machine learning experimentations in this phase. We will describe the algorithms and review their capabilities amongst themselves. We will expand upon our methodolog
	3) From the results obtained by the techniques outlined in phase II, we conduct further review and analyses on the practicality of application and efficacy of the algorithms and also give further commentary on the contextual advantages and disadvantages of

	III. Literature Survey
	IV. Proposed Work
	A. Operational Ontology
	B. Automated Machine Learning (AutoML)
	C. Implementation Specification
	D. Experiment Overview
	E. Data Overview
	F. Experiment Pipeline
	1) Ingest data: detected column types
	2) Feature preprocessing: turned raw features into numeric
	3) Model and feature tuning: This stage combines random tuning of hyperparameters with selection and generation of characteristics. Features are modified in each iteration using variable significance as a probabilistic from the previous iteration before de�
	4) Feature evolution: To find the best set of model parameters and feature transformations to be used in the final model, this stage uses a genetic algorithm.
	5) Final model: created the best model from the feature engineering iterations.
	6) Create scoring pipeline: created and exported the Python scoring pipeline

	G. Experiment Settings
	H. Supported Algorithms
	1) LightGBM: LightGBM is a Microsoft-developed gradient boosting framework that uses tree-based learning algorithms. It was specifically designed for lower memory consumption and greater performance and faster training speed. Analogous to XGBoost, it is am�
	2) XGBoost: XGBoost is a supervised learning model that enacts a method to make accurate models called boosting. Boosting alludes to the ensemble teaching technique of sequentially constructing many models, with each latest model attempting to rectify the �
	3) Decision Tree (DT): A DT is a binary (single) tree model dividing the population of training data into leaf nodes (sub-groups) with consistent conclusions. No column or row sampling is undertaken, and hyper-parameters [12] monitor the depth of the tree �
	4) Constant model: The algorithm Constant Model predicts same constant value for any input data. By optimising the given scorer, the constant value is computed. For example, for MSE/RMSE, the constant is the target column's (weighted) mean. It is the (weig�
	5) Follow The Regularized Leader (FTRL): A DataTable implementation [13] of the FTRL-Proximal online learning algorithm suggested in [16] is Follow the Regularized Leader (FTRL). For parallelization, such an implementation utilises a hashing trick and a Ho�
	6) RuleFit: Through first adapting a tree model and then fitting a Lasso (L1-regularized) GLM model, the RuleFit [14] algorithm creates an optimum set of decision rules to create a linear model composed of the most crucial tree leaves (rules).

	V. Results
	A. Model Tuning
	B. Feature Evolution
	C. Feature Transformations
	D. Final Model
	E. Alternative Models
	F. Deployment

	VI. Discussion
	VII. Conclusion
	References

