
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

Efficient Task Scheduling in Cloud Computing using
Multi-objective Hybrid Ant Colony Optimization

Algorithm for Energy Efficiency
Fatima Umar Zambuk1, Abdulsalam Ya’u Gital2, Mohammed Jiya3
Nahuru Ado Sabon Gari4, Badamasi Ja’afaru5, Aliyu Muhammad6

Department of Mathematical Sciences, Abubakar Tafawa Balewa University, ATBU, Bauchi, Nigeria1, 2, 3, 4, 5

Department of Computer Science, Federal Polytechnic Bauchi, FedPoly, Bauchi, Nigeria6

Abstract—The efficiency of Internet services is determined by
the Cloud computing process. Various challenges in computing
are being faced, such as security, the efficient allocation of
resources, which in turn results in the waste of resources.
Researchers have explored a number of approaches over the past
decade to overcome these challenges. The main objective of this
research is to explore the task scheduling of cloud computing
using multi-objective hybrid Ant Colony Optimization (ACO)
with Bacterial Foraging (ACOBF) behavior. ACOBF technique
maximized resource utilization (Service Provider Profit) and also
reduced Makespan and user wait times Job request. ACOBF
classifies the user job request in three classes based on the
sensitivity of the protocol associated with each request, Schedule
Job request in each class based on job request deadline and
create a Virtual Machine (VM) cluster to minimize energy
consumption. Based on comprehensive experimentation, the
simulated results show that the performance of ACOBF
outperforms the benchmarked techniques in terms of
convergence, diversity of solutions and stability.

Keywords—Ant colony; scheduling; hybrid; foraging; cloud
computing

I. INTRODUCTION
Cloud computing proliferation has become a major issue

with the omnipresent evolution of big data in its range, speed,
and volume through the Internet. Autonomous computing,
grid computing, distributed computing, and utility computing
consist of cloud computing [1]. Cloud computing offers high
performance storage facilities and highly flexible on-demand
computing. With the massive increase in energy usage is the
major issue faced in cloud data centers.

In order to enhance the overall efficiency of cloud
computing, task planning is an essential step. The
conventional centralized framework for managing and
tracking cloud resources has been widely used in enterprise
environments. As such, due to the heterogeneous and large-
scale data, supervision and checking systems in multiple data
centers have faced serious challenges [2]. The first paper to
address the planning problem of the heterogeneous system for
energy consumption by means of multi-objective hybrid ACO
and bacteria foraging algorithm in the IaaS cloud is this study.

Researchers have recently concentrated more on
addressing the issue of task scheduling in a distributed
environment. Task scheduling is considered a critical problem

in the world of cloud computing by considering different
variables such as power consumption, fault tolerance, the
overall cost of performing the tasks of all users, completion
time and use of resources. Task scheduling has been shown to
be a full NP problem [3], which make it impossible to achieve
solutions easily. The issue of finding the best balance between
the tenacity time and the energy required by a precedence-
constrained corresponding application is a bi-objective
optimization problem. This issue can be solved by a set of
Pareto points [4]. Pareto strategies are those for which only
one goal can be strengthened with the deterioration of at least
one other goal. Thus, the solution to a bi-objective problem is
a (possibly infinite) set of Pareto points instead of a particular
solution to the problem.

Internet forms a connection of large group of servers in
cloud data centers. Thus, task schedulers are needed in the
cloud data centers for the organization of task executions. A
good task scheduler must efficiently utilize cloud data center
resources for task execution. A scheduler should be able to use
less resources and time to execute tasks. The scheduling
algorithm's efficiency problems include makespan and energy
consumption. In fact, using fewer resources ensures that it
uses less energy. The minimization of makespan and energy
consumption is one of the major problems for building large-
scale clouds.

Different studies have been carried out in [5] to exploit the
diversity of makespan and energy usage in cloud computing.
These studies are that in [4] scheduling techniques and
algorithms for particular tasks have been developed and
implemented, fault-tolerant tasks with real-time deadlines and
energy-efficient tasks with dependence. At the design time,
the optimization goals set statically constructed monolithic
virtual machines (VMs) cluster for task scheduling that lacks
flexibility and adaptability in changing resource provisioning,
classification of workloads and environmental cloud
execution. As the study failed to address convergence,
diversity and stability, resulting in too much wasting of
resources, there is certainty about the inherent issue of
resource availability and task scheduling. The majority of the
techniques and algorithms for task planning and resource
provisioning often apply to some widespread functional
method that uses a comparable deterministic task execution
system for various optimization goals.

450 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

However, incorporating new scheduling skills needs to be
performed one at a time for the algorithm of scheduling,
which is not only monotonous but also stochastic. As such, the
aim of this study was to explore task scheduling using multi-
objective hybrid Ant Colony Optimization (ACO) with
Bacteria Foraging (BF) behavior in cloud computing. The
ACOBF technique maximized the usage of services (profit
from service providers) and also reduced Makespan and Job
Request user waiting time. Based on the sensitivity of the
protocol associated with each application, ACOBF will
categorize user job requests into three classes, schedule job
requests in each class based on the deadline for job requests,
and create a VM cluster to minimize the amount of energy
consumption.

The rest of this paper is structured as follows; Section 2
addresses the relevant reviews of other authors' literature on
resource management and task scheduling, while Section 3
discusses the methodological processes. Then Section 4
considers implementation, results and discussions while
section exposes conclusion and future works for upcoming
researchers.

II. REVIEW OF RELATED LITERATURE
The most fruitful ACO research in cloud computing

nowadays is improving the quality of solution and
convergence speed for energy efficiency. Researchers have
attempted to explore these problems by metaheuristic
hybridization or preprocessing of the input population, transfer
operator adjustment, etc. [6]. In [2], combining two
population-based meta-heuristics with identical characteristics
will possibly strengthen the solution as one's strength would
easily overpower the other's weakness. The authors have
argued that by hybridizing ACO with another population-
based metaheuristic for efficient exploration and exploitation
by the search strategy, there is a greater chance of obtaining
better solution outcomes. This section addresses many similar
work analyses performed on various ACO approaches to
resource provisioning by other researchers.

The ACO was adopted in [6] for resources allocation in
cloud. The authors’ objective function is to minimize
makespan. The research looked into the relative weakness and
strength of the search process by experimentation where
assignment of VM’s is based on a simple, short-term memory
using constraint satisfaction rule for incoming batch jobs. VM
migration from one PM to another was modeled using the
Graph theorem such that PMs are represented with vertex
(node) and edge defines the transition [7, 8] . The rule did not
resolve the convergence problem arising from the existence of
transition loops, plurality of solutions, and as such stability;
too much energy was consumed in the datacenter. The authors
in [9, 10] also researched Makespan minimization, where the
authors attempted to balance cloud load for IaaS. The
Heuristic Dependent Load Balancing Algorithm (HBLBA)
proposed by the authors strategized tasks to configure servers
for assigning VMs to process tasks in datacenters based on the
incoming number of tasks and their sizes. Other minimization
of makespan by ACO technique studied can be seen in [10-
12].

A updated ACO algorithm [13] was proposed to obtain a
Pareto solution package. An approximate non-deterministic
tree-search method based on the ACO was inculcated by the
researchers. This leads to simplifying the calculation of
probability and also updating the pheromone law, which
allows the learning capacity of ants to increase. In [14], a
multi-objective ACO (MO-ACO) algorithm was proposed
with the objective function considered to be load balancing,
cost and minimization of makepan. The law did not discuss
the dependence between convergence tasks, but instead used a
limited number of tasks in their experiment, resulting in
resource and energy wastage. In the primary step, current
setbacks in ACO that include poor convergence accuracy,
easy falling into optimal local solution and slow solving speed
were found. The authors resolved the initial pheromone
deficiency through the rapid search capability of the ACO
with a spanning tree to increase the ACO's convergence speed.
Solution diversity and consistency in convergence have not
been discussed as a result of the lack of energy. Other
metaheuristic population focused on an attempt to fix energy
waste was seen in [15] where the authors used the general
concept of ACO and the Clonal Selection Algorithm for task
scheduling. The technique used for pattern recognition was
based on the independence of the populations of memory cells
and antigens. Two population-based techniques that failed to
address convergence in their exploration and exploitation may
lead to a search phase that ended in a local optima solution.
Too much electricity was also lost.

[16] investigated the scheduling problem on the set of
batch processing machines, which were arranged in a parallel
with different processing capabilities. The jobs were aligned
with different sizes, processing and releasing time. A bio-
objective ACO is used to reduced makespan and total energy
consumption. Also, [17] designed to examine the effect of the
association of ACO in solving the problems of job scheduling.
This book focused to introduce hybrid ACO as a solution to
that effect, which was evaluated based on parameters;
makespan time, delay (tardiness) and workload. In the same
vein, [18] proposed a multi-objective hybrid ACO for real
world two stage blocking permutation, flow shop scheduling
problem in order to tackle the total energy cost as well as
makespan based on the current market situation. The author in
[19] proposed Ant Mating Optimization (AMO) to reduce
total energy consumption and makespan for Fog Computing
platform. The algorithm determines trade-off between system
makespan and the consumed energy required established by
the end user. This techniques out performs Particle Swarm
Optimization (PSO), Bee Life Algorithm (BLA) and Genetic
Algorithm (GA) in term of the parameters under examination.
In another development [20] preemptive scheduling in a single
machine is proposed to minimize total completion time,
energy cost under the electricity period. ACO – DR, dominant
ranking procedure.

III. METHODOLOGY
By means of methods for searching, handling and

ingesting food, natural selection aims to eradicate animals
with poor foraging strategies. It favors the spread of the genes
of those organisms with successful foraging strategies,
because reproductive success is more likely to occur [16]. Bad

451 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

foraging techniques are either re-structured to succeed or
eliminated after many years. Since the foraging activity of the
animal/organism seeks to maximize energy intake per unit of
time spent on foraging. Constraints considered to be cognitive
and sensing capacities combined with environmental
parameters (e.g. predator threats, prey density, search area
physical characteristics) are optimized due to natural
evolution. This basic concept has been extended to complex
optimization problems. The problem quest room for
optimization could be based on the social foraging system in
which parameter groups work to solve difficult engineering
issues [21].

In order to achieve the optimum local and worldwide
solutions, the ACO’s discovery and operating methods to
forage algorithms for bacteria are used. The effectiveness of
the proposed ACOBF multi-objective solution will be verified
explicitly in terms of the function of multiplicity and
excellence of solutions, convergence and constancy. The
cloud service provider tracks the entry of customer demands
for task processing and the use of PMs in the data center
details (CSP). To have this user request scenario, the Direct
Acyclic Graph (DAG) is followed. In this scenario, the
relation between the task unit, the functionality and the work
unit are captured.

The CPU-limited job which spends most of its time in
calculating multiple RAM size processing parts will be the
basic characteristics of the tasks is considered. Although I/O-
bound tasks depend on only peripheral devices linked to
computers. As such, it might be important to have a computer
with a wide buffer capacity and enough network bandwidth.
The adding of inputs and outputs to reserve the available
resource in a pm is an essential feature of the task unit.
Dependence can exist between the units of the mission. Fig. 1
depicts DAG, where each node is a task unit with its task
form, the addressed line demonstrates the relationship of
dependency between the tasks and add weight that links the
edges to the flow size of two tasks. By using the following
five times, the diagram can be seen:

G = (TD, TS, D, Mi, Mout) (1)

TD is the user request collection consisting of task units (1/n).

TS are the assignment type for each only task unit (1/m); T1,
T2, …Tm ; Tm is the determined amount of assignment in a
task unit.

D is task dependency that represents the dependencies
between the task units in TD.

Mi is the Input data representing the size of task unit.

Mout is the Output data representing the size of task unit.

A. Assumptions
A remote location server or PC or a physical machine that

forms the data center can be a heterogeneous resource pool

and services. There may be different configurations of the
same tools with the similar mission but yet the results differ.
The total heterogeneity features can be generalized by
changing PM capacity and network bandwidth. By building a
direct relationship between the available memory size and the
Processor power, the capacity of the PM gives the minimum
time taken to execute the data present in a task. The rate and
price of data transmission between two physical devices are
facilitated by network bandwidth. Instead of distinguishing
between the types of activities, it deals only with data flow. M
represents the resource information, consisting of six-tuples.

M = (PM, CP, R, CE, Nbw, Ecom) (2)

PM is the set of physical machines inside a data center.

CP is the computing power of the PM. Here, (ESij) denotes
the implementation time of job of unit type i on a PM PMj.
denotes the average power of PMj as ESavg;j ,

Computing the nasty of essentials in column of matrix ESj
produces ESavg;j value

ESij = PM1...PMj TD1..TS11..TS1j TDiTSi1..TSij

R is the available RAM (memory) size of each PM.

CE is the processing energy that gives the rate of a task
unit's execution consumption. Here it is possible to denote the
energy consumed by a PMj to run I task unit form per unit
time per unit data as CEij.

Nbw denotes the bandwidth between PMs and is known as
Nbw;ij, the data transmission rate between PMi and PMj.

Ecom denotes the energy consumption rate for the
communication. Therefore, Ecom;ij is the energy consumed
during transmission of data from PMi to PMj per unit time
per unit data.

B. Problem Formulation and Solution Domain
By highlighting the different models for the solution

domain, the formulated problem is presented in this section.
For optimizing resource scheduling in cloud computing, the
two most important objectives considered are the
minimization of makepan and energy consumption. The
contradictory essence of these two priorities is created by
heterogeneity and parallelism. The former states that reducing
makespan at the cost of robust inter-PM data transmission
directly affects the energy use of the data center and later
explains that the quickest resource in existence is not
necessarily the cheapest.

C. Modeling the Makespan
Makespan is the length taken from the moment when a

user submits his request to the last task unit's completion time.
The processing time of both waiting periods is necessary. By
decomposing user requests into task units, the processing time
is measured based on user request and then apply topological
sorting to ensure that each task unit can only rely on those
with lower priority indexes.

452 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

Fig. 1. DAG of Tasks and Task.

Task unit TDi's completion time is nearly the same as the
overall processing time. For each TDi task unit, the CT(i)
completion time is determined by adding the execution time of
the current task unit and the time it takes to bring all the
necessary data to the current PMP. Consider, for example, the
DAG depicted in Fig. 1; The completion time of the TD8 task
unit can be determined as the time when all input data for the
TD8 task unit arrives (by adding the completion time of task
unit TD8 and the processing time of TD5, TD6 , and TD7).

CT(i)=Tc+Tex (3)

Where Tc is the time taken for all task arrival to current task
given as

T(𝑐) = 𝑀𝑎𝑥 + ∑𝑖=1
𝑗=1 �𝐷𝑖,𝑗 ∗ 𝐶𝑇(𝑗) + 𝐷𝑖𝑗∗𝑀𝐴𝑋𝑜𝑢𝑡

𝑁𝐵𝑤,𝑝,𝑞
 � (4)

P and q are execution start time and execution end time
respectively.

Tex is the current taks execution time;

Tex=ES(g,h)Mi,j (5)

g and h are current task time and starting time respectively.

The waiting period is the sum of all processing times,
because the degree of multi-threading is not too high when
more task units are allocated or some PMs are overloaded.
The significant attribute for task scheduling after deep analysis
of the operation is the balance of load among the PMs in the
data center. As such, proper information about the load
distribution between the data center PMs is very important to
obtain. Even if this information were measurable, the resource
provider or cloud broker would not make it publicly
accessible. Therefore, finding a solution to this issue is very
vital. To this end, it assumed that the ratio on the load
distribution at each PM average computing power and load
distribution as follows:

𝐿𝑜𝑎𝑑 𝐵𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔

(𝐿𝐵) = ∑𝑖=𝑛
𝑖=1 (𝐴(𝑖) − 𝐵(𝑖)P

2) (6)

N here is the number of PMs in the data center

𝐴(𝑖) =
∑𝑖=𝑚𝑖=1 𝑀𝑖,𝑗|𝑥(𝑗)=1

∑𝑗=𝑚𝑗=1 𝑀𝑖,𝑗
 (7)

𝐵(𝑖) =
𝑅𝑖/𝐸𝐶𝑎𝑣𝑒𝑟𝑎𝑔𝑒,𝑖

∑𝑖=𝑛𝑖=1 𝑅𝑖/𝐸𝐶𝑎𝑣𝑒𝑟𝑎𝑔𝑒,𝑖
 (8)

Some PMs that remain busy for a long time are made to
push other tasks into the waiting queue, which adversely
increases the system's makeup as it poses a risk with a
deviation from the ideal ratio. Therefore, it is assumed that the

optimal ratio was taken into account for the initial load
distribution. To this end, the prioritized load balancing for the
task distribution, as the risk parameter has an indirect effect on
the system's makespan. The new mathematical model for
makespan will be given as:

𝐶𝑇𝑓 = 𝐶𝑇(𝑛) ∗ 𝑒𝜃 (9)

𝜃 is the load balancing aspect increases as data traffic
increases. The influence of various load distributions is also
increased by Makespan. It is doubtful that the load balancing
effect on the makespan reflecting the idleness of data traffic.

D. Modeling the Energy Consumption
The overall energy consumed in the data center is the

amount of energy consumed by the individual PMs
participating in the customer's service requests. CPU uses
more energy than other components involved in the task
scheduling process (Singh and Chana, 2016). The usage of
energy is measured by the CPU using resources (voltages and
frequencies). This means that as long as the working state of
the CPU remains stable, energy consumption remains
unchanged. The total energy consumed during computing and
communication is measured as follows:

Tc=Ec+Ece (10)

𝐸𝑐 = ∑𝑖=𝑛
𝑖=1 𝐶𝐸𝑔,ℎ𝐸𝑐𝑜𝑚(𝑔,ℎ)𝑀𝑖,𝑗 (11)

g=TDi and h=x(i) (12)

𝐸𝑐𝑒 = ∑𝑖=𝑛
𝑖=1 ∑𝑖−1

𝑗=1
𝐷𝑗,𝑖𝑀0,𝑗

𝑁𝑏𝑤(𝑝,𝑞)
∗ 𝐸𝑐𝑜𝑚(𝑝,𝑞) (13)

P=x(j), q=x(i) (14)

It has been observed from this analysis the trade-off in
minimizing makespan and energy. So, the multi-objective
optimization problem for minimizing these conflicting
parameters at topological sorting can be given in eq. 15, 16
and 17.

Minimization of Makespan

(CTf) = Min (CT(n)*𝑒𝜃∗𝐿𝐵) (15)

Minimization of Energy (Tc) = Min (Tc) (16)

Fitness function Ω = α(CT(n)*𝑒𝜃∗𝐿𝐵) + β(Tc) (17)

Where α and β are weights to prioritize components of the
fitness function such that 0 ≤ α ≤1 and 0 ≤ β ≤ 1.

IV. MULTI OBJECTIVE APPROACH
The ACO algorithm has excellent global search capability

and, as such, a mediocre local search capability suffers from
the curse of dimensionality [4]. BF has very high local search
capabilities and low global search capability (Lin et al, 2013).
It is assumed that a combination of the two algorithms will
result in an outstanding solution with the best local and global
search capabilities through a selective combination of some
desirable functions, resulting in faster convergence time.
ACOBF would have all the combined ACO and BF algorithm
properties. Theoretically, BF that was hybridized with other
algorithms other than ACO was tested to be successful, based

453 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

on the extensive literature reviewed. In all these literatures,
also observed that the combinations retained general validity
and optimized characteristics that can be used in many other
contexts. The hybridized BF inherits both BF exclusion and
swarming characteristics.

The aim here is to adjust BF features that do not help
ACO's global search capabilities and implement BF's local
search features. Swarming and elimination are the essential
features of the method for searching for globalization that
have to be substituted in the procedure while maintaining the
functions of chemo taxis and reproduction in the local search.
The parameter to be optimized is the bacteria’s position
(coordinate). In conclusion, the solution to task planning
dilemma is a bacterium. Several bacteria for the algorithm
input are created. To obtain minimum makespan and energy,
the bacteria are also assessed against the objective function.

In a desirable range, the parameters are discretized, where
and distinct set value represents a point in the space
coordinates. Also, the separate values are defined by a point
on the space coordinate. All bacteria are tested in the proposed
ACOBF according to a solution consistency measure at the
end of the iteration.

The primary objective is to minimize the use of makespan
and energy consumption:

S: population number of bacteria,

C(i): random path taken during tumble,

Nc: steps of chemotaxis,

Ns: swimming length,

Nre: steps of reproduction, Ned: events of elimination and
dispersal;

Ped: likelihood of elimination and dispersal,

p: search space dimension.

Algorithm 1. Algorithm positioning bacterium

1. P = {}, Nc = {}, S = {}
2. For I = 1 : N do
3. P = Protocol of Req;
4. For j = I : X do
5. Scan Ped in Order;
6. If Nre = = P
7. Insert Nc Into Set Ns;
8. Countj = Countj + 1;
9. Break;
10. End if;
11. End For;
12. If Nre! = NULL;
13. Continue;
14. End if;
15. For k = 1 : Y do
16. Scan Nc in Order;
17. If Nc(k) = = P
18. Insert Ned Into Set Nre;
19. Countk = Countk + 1;

20. Break
21. End if;
22. End For;
23. If C (e)! = NIULL;
24. Continue;
25. End if;
26. Insert Ped into C;
27. End For;

Algorithm 2. ACOBF Based Task Scheduling Algorithm

Begin
Reproduction
Select: Sort the bacteria on the basis of Nc accumulated
during the chemeostasis steps
Crossover: perform crossover with leastfit bacteria in the
colony
Mutation: Perform mutation in the position of the bacteria
based on the ACO fraging behavior
Dispersal and Elimination
With probability Ped disperse and eliminate each bacterium
Termination
End the program and output best performing bacterium
position
End

V. IMPLEMENTATION

A. Experimental Setup
The simulation environment used for the experiment

comprises of an Intel(R) Core i5 CPU (2.53 GHz Processor),
Hard Drive of 500GB, Memory of 8.0GB Windows 8 OS,
JDK8.1, Eclipse IDE and CloudSim version 3.0. The
implementation process adopts and extends classes in
CloudSim; DataCenterBroker, VM, Cloudlet (includes new
parameters that defines the protocols associated with job
request) and Host.

B. Results and Discussion
1000 User Work Requests have been split into five groups

of 200 Simulation Process Request tasks. For processing, each
class is submitted to the system. To obtain the Makespan and
the energy consumed, the average values of the five
experimental results are computed. BF and Genetic
Algorithms [22] were used in benchmarking to demonstrate
the performance of ACOBF. In the same parameter
configuration as ACOBF, both BF [23] and GA were also
simulated. To measure the makespan and energy consumption
of the Cloud task units, the environment with non-uniform and
uniform parameters as a low PM heterogeneity was set. The
efficacy of the algorithms is determined by the responds of
different heterogeneous tasks and resources utilized:

Makespan time, as shown in Fig. 2 to 6, was recorded in
seconds (due to cloudsim relative time unit) from the y-axis
with the total number of tasks on the x-axis. This illustrates
the difference with low system heterogeneity for non-uniform
and uniform parameters. From the statistics, it is noted that
ACOBF has the least makespan for non-uniform and uniform
parameters as it is able to execute user job requests more

454 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

quickly. This has been done because of the ability of the
algorithm to prioritize tasks that do not need to be postponed.

A task range of 10-200 has been used for the simulation of
low PM heterogeneity. Fig. 7 to 11 demonstrates the impact
on the energy consumption of the four heuristics in the case of
low PM heterogeneity with non-uniform and uniform
parameters. Unlike GA and BF, the statistics show that
ACOBF achieves minimum energy consumption, resulting in
the highest energy consumption in all task range situations.

Fig. 2. Makespan Time for 20-50 Tasks.

Fig. 3. Makespan Time for 60-90 Tasks.

Fig. 4. Makespan Time for 100-130 Tasks.

Fig. 5. Makespan Time for 140-170 Tasks.

Fig. 6. Makespan Time for 170-200 Tasks.

Fig. 7. Energy Consumed by Processing 20-50 Tasks.

Fig. 8. Energy Consumed by Processing 60-90 Tasks.

Fig. 9. Energy Consumed by Processing 100-130.

Fig. 10. Energy Consumed by Processing 140-170 Tasks.

0

500

1000

20
Tasks

30
Tasks

40
Tasks

50
Tasks

M
a
k
e
s
p
a
n

T
i
m
e

(
s
e
c
s
)

Number of tasks

GA

BF

ACOBF

0

500

1000

1500

60
Tasks

70
Tasks

80
Tasks

90
Tasks

M
a
k
e
s
p
a
n

t
i
m
e

(
s
e
c
s
)

Number of tasks

GA

BF

ACOBF

0

500

1000

1500

2000

100
Tasks

110
Tasks

120
Tasks

130
Tasks

M
a
k
e
s
p
a
n

t
i
m
e
(
s
e
c
s
)

Number of Tasks

GA

BF

ACOBF

0

1000

2000

3000

140
Tasks

150
Tasks

160
Tasks

170
TasksM

a
k
e
s
p
a
n

t
i
m
e

(
s
e
c
s
)

Number of Tasks

GA

BF

ACOBF

0
500
1000
1500
2000
2500
3000

170
Tasks

180
Tasks

190
Tasks

200
TasksM

a
k
e
s
p
a
n

t
i
m
e

i
n

s
e
c
s

Number of tasks

GA

BF

ACOBF

0

200

400

600

20 30 40 50

E
n
e
r
g
y

c
o
n
s
u
m
e
d

i
n

w
a
t
t
s

Tasks

Others

ACOBF

0

500

1000

60 70 80 90

E
n
e
r
g
y

c
o
n
s
u
m
e
d

i
n

w
a
t
t
s

Tasks

Others

ACOBF

0

500

1000

1500

100 110 120 130

E
n
e
r
g
y

c
o
n
s
u
m
e
d

i
n

w
a
t
t
s

Tasks

Others

ACOBF

0
200
400
600
800
1000
1200

140 150 160 170E
n
e
r
g
y

C
o
n
s
u
m
e
d

i
n

w
a
t
t
s

Tasks

Others

acobf

455 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

Fig. 11. Energy Consumed by Processing 170-200 Tasks.

This is a straightforward feasibility of the ACOBF
exhibition in addressing the user's time prerequisites. Tasks
that are sent to the Cloud are supposed to be independent of
each other, as mentioned before. The findings explain the
algorithms for GA and BF. When the Cloud receives a
comparable number of task units/tasks, makespan and energy
increases dramatically, whereas in the case of ACOBF,
makespan and energy either decreases or fluctuates. This is
due to the ability of the algorithm to preserve convergence that
was done by having the starting point close to the minimum.

VI. CONCLUSION AND FUTURE WORK
In the cloud computing environment, this article proposes

a generic task scheduling algorithm based on BF and ACO
algorithms. Task scheduling is modeled as a multi objective
optimization problem in order to deal with the trade-off
between makespan and energy consumption cost functions. A
simple and most effective optimization technique, referred to
as a hybrid ACOBF-based approach, was applied to obtain
Pareto optimal solutions for the task scheduling problem. On
the basis of the comprehensive simulations conducted, the
scalability and effectiveness of the proposed solution was seen
as it was benchmarked on two current and state-of-the-art
algorithms. Simulation results also show that the creation and
energy usage have been significantly optimized with the
proposed convergence strategy and task priority for the cost
function.

The weakness of ACOBF would be examined in future
studies and areas such as; accelerating the convergence rate
resulting in extra time for crossover and mutation, chemo-
taxis and reproduction would be addressed. The research also
looked at the relationship of dependency between tasks and
task sizes for input and output.

ACKNOWLEDGMENT
This study was supported by the Tertiary Education Trust

Fund (TETFund) Institutional Based Research (IBR) Fund,
through the Directorate of Research and Innovation of
Abubakar Tafawa Balewa University, Bauchi (2018).

REFERENCES
[1] Mezmaz, M., et al., A parallel bi-objective hybrid metaheuristic for

energy-aware scheduling for cloud computing systems. Journal of
Parallel and Distributed Computing, 2011. 71(11): p. 1497-1508.

[2] Aliyu, M., et al., An Efficient Ant Colony Optimization Algorithm for
Resource Provisioning in Cloud.

[3] Stocker, A.M. and A. Chenn, The role of adherens junctions in the
developing neocortex. Cell adhesion & migration, 2015. 9(3): p. 167-
174.

[4] Aliyu, M., et al., Efficient Metaheuristic Population-Based and
Deterministic Algorithm for Resource Provisioning Using Ant Colony
Optimization and Spanning Tree. International Journal of Cloud
Applications and Computing (IJCAC), 2020. 10(2): p. 1-21.

[5] Shuja, J., et al., Energy-efficient data centers. Computing, 2012. 94(12):
p. 973-994.

[6] Tawfeek, M.A., et al. Cloud task scheduling based on ant colony
optimization. in 2013 8th international conference on computer
engineering & systems (ICCES). 2013. IEEE.

[7] Kumar, A.S. and M. Venkatesan, An Efficient Multiple Object Resource
Allocation Using Hybrid GA-ACO Algorithm. Australian Journal of
Basic and Applied Sciences Journal, 2015. 9(31): p. 53-59.

[8] Lee, C.-Y., Z.-J. Lee, and S.-F. Su. A new approach for solving 0/1
knapsack problem. in 2006 IEEE International Conference on Systems,
Man and Cybernetics. 2006. IEEE.

[9] Adhikari, M. and T. Amgoth, Heuristic-based load-balancing algorithm
for IaaS cloud. Future Generation Computer Systems, 2018. 81: p. 156-
165.

[10] Tiwari, A., P. Richhariya, and S. Patra, Ant Colony based Cloud VM
Allocation and Placement Approach for Resource Management in
Cloud. International Journal of Computer Applications, 2017. 158(4): p.
8-12.

[11] Guo, X. Ant Colony Optimization Computing Resource Allocation
Algorithm Based on Cloud Computing Environment. in International
Conference on Education, Management, Computer and Society. 2016.
Atlantis Press.

[12] Shabeera, T., et al., Optimizing VM allocation and data placement for
data-intensive applications in cloud using ACO metaheuristic algorithm.
Engineering Science and Technology, an International Journal, 2017.
20(2): p. 616-628.

[13] Chaharsooghi, S.K. and A.H.M. Kermani, An effective ant colony
optimization algorithm (ACO) for multi-objective resource allocation
problem (MORAP). Applied mathematics and computation, 2008.
200(1): p. 167-177.

[14] Guo, Q. Task scheduling based on ant colony optimization in cloud
environment. in AIP Conference Proceedings. 2017. AIP Publishing
LLC.

[15] Lin, J., et al., Hybrid ant colony algorithm clonal selection in the
application of the cloud's resource scheduling. arXiv preprint
arXiv:1411.2528, 2014.

[16] Jia, Z., et al., Ant colony optimization algorithm for scheduling jobs
with fuzzy processing time on parallel batch machines with different
capacities. Applied Soft Computing, 2019. 75: p. 548-561.

[17] Deepalakshmi, P. and K. Shankar, Role and Impacts of Ant Colony
Optimization in Job Shop Scheduling Problems: A Detailed Analysis.
Evolutionary Computation in Scheduling, 2020: p. 11-35.

[18] Zheng, X., et al., Energy-efficient scheduling for multi-objective two-
stage flow shop using a hybrid ant colony optimisation algorithm.
International Journal of Production Research, 2020. 58(13): p. 4103-
4120.

[19] Ghanavati, S., J.H. Abawajy, and D. Izadi, An Energy Aware Task
Scheduling Model Using Ant-Mating Optimization in Fog Computing
Environment. IEEE Transactions on Services Computing, 2020.

[20] Rubaiee, S. and M.B. Yildirim, An energy-aware multiobjective ant
colony algorithm to minimize total completion time and energy cost on a
single-machine preemptive scheduling. Computers & Industrial
Engineering, 2019. 127: p. 240-252.

[21] Kim, D.H. and J.H. Cho. Intelligent control of AVR system using GA-
BF. in International Conference on Knowledge-Based and Intelligent
Information and Engineering Systems. 2005. Springer.

[22] Salido, M.A., et al., A genetic algorithm for energy-efficiency in job-
shop scheduling. The International Journal of Advanced Manufacturing
Technology, 2016. 85(5-8): p. 1303-1314.

[23] Ullah, I., et al., An efficient energy management in office using bio-
inspired energy optimization algorithms. Processes, 2019. 7(3): p. 142.

0

200

400

600

800

1000

1200

1400

170 180 190 200

Others

ACOBF

456 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Review of Related Literature
	III. Methodology
	A. Assumptions
	B. Problem Formulation and Solution Domain
	C. Modeling the Makespan
	D. Modeling the Energy Consumption

	IV. Multi Objective Approach
	V. Implementation
	A. Experimental Setup
	B. Results and Discussion

	VI. Conclusion and Future Work

