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Abstract—Attack by spreading malware is a dangerous attack 
form that is very difficult to detect and prevent. Attack 
techniques that spread malware through users and then escalate 
privileges in the system are increasingly used by attackers. The 
three main methods and techniques for tracking and detecting 
malware that is being currently studied and applied include 
signature-based, behavior-based, and hybrid techniques. In 
particular, the behavior-based technique with the support of 
machine learning algorithms has given high efficiency. On the 
other hand, in reality, attackers often find various ways and 
techniques to hide behaviors of the malware based on the 
Portable Executable File Format (PE File) of the malware. This 
makes it difficult for surveillance systems to detect malware. 
From the above reasons, in this paper, we propose a malware 
detection method based on the PE File analysis technique using 
machine learning and deep learning algorithms. Our main 
contribution in this paper is proposing some features that 
represent abnormal behaviors of malware based on PE File and 
the efficiency of some machine learning algorithms in the 
classification process. 
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I. INTRODUCTION 
Malware is software that is purposefully designed to cause 

damage to a personal computer, server, or computer network 
system [1, 2]. The purpose of malware is to execute illegal acts 
such as unauthorized access, stealing user information, 
spreading spam email, and even performing blackmail, attack 
and damage to computer system, etc. for personal gain, 
economic gain, political or simply they can be created as just 
some malicious joke. The study [3, 4] listed some common 
types of malware including Virus, Worm, Trojan Horse, 
Malicious Mobile Code, Tracking Cookie, Attacker Tool, 
Phishing, Virus Hoax. According to the statistics [5], the 
malware distribution situation in 2020 increased by 75% 
compared to 2019. This is completely reasonable because 
hackers used to focus on attacking information systems but 
today they usually primarily chose to attack the user. Therefore, 
malware increases rapidly not only in the number of attacks but 
also in their danger level. Studies [6, 7, 8] listed a number of 
approaches to malware detection including signature-based 
detection and behavior-based detection. The signature-based 
detection method is the static analysis which analyzes the 
source code without executing the file [9]. Some techniques 
used in the static analysis include: 

• Checking file format: the metadata of files can provide 
useful information. For example, Windows PE files can 
provide information such as execution time, import and 
export functions. 

• String extraction: involves checking the output of the 
software (status message or error message) and 
inferring about the behavior of the malware. 

• Trace: Before performing analysis, it is necessary to 
calculate the hash value of the file in order to verify 
whether the file has been modified or not. Commonly 
used hashing algorithms are Message-Digest algorithm 
5, Secure Hash Algorithm 256-bit. Also can search for 
information in source code such as username, file name, 
registry string. 

• Scan with anti-virus software: if the file being analyzed 
is a known malware, most anti-virus software will be 
able to detect it. This is often used to verify the results 
of the analysis. 

• Disassembly: involves reversing the machine code into 
assembly language and thus knowing the logic and the 
purpose of the software. This is the most commonly 
used and reliable method in static analysis. 

This detection method is only suitable for common types of 
malware with permanent signatures stored in the database. 
Modern malware usually attacks and exists for a short period 
of time. 

The behavior-based detection method is based on dynamic 
analysis. This method will evaluate an object based on its 
behavior. When an object attempts to perform abnormal or 
unauthorized behavior, it denotes that the object is malicious or 
suspicious. A number of behaviors are considered dangerous 
such as disabling security controls, installing rootkits, autostart, 
modifying host files, establishing suspicious connections, etc. 
Each behavior may not be dangerous but when combined 
together can increase the suspicions of the subject. There is a 
predefined threshold. If any files exceed this threshold, it will 
be warned as malware [10, 11, 12, 13]. This method is used to 
detect malware that has capable of changing signature 
(polymorphism) or new types of malware (zero-day). However, 
some types of malware have the ability to detect the virtual 
environment, it will not execute malicious behavior in the 
sandbox environment [13]. Moreover, in fact, with the 
increasing amount of malware, this method is not really 
effective against new types of malware. 
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To fix the above disadvantages, in this paper, we propose a 
malware detection method based on the PE file analysis 
technique using machine learning and deep learning algorithms. 

In particular, in this paper, we will analyze and extract 
abnormal behaviors in PE files to seek signs of malware and 
then use machine learning and deep learning algorithms to 
analyze and conclude about the existence of malware. The 
difference between our proposed approach and other traditional 
studies is we do not seek to extract malware behavior based on 
data that is collected in a virtualized environment. Instead, we 
analyze each different component in the PE file in detail in 
order to build behavior profiles of malware. With this approach, 
we could instantly collect behaviors and functions of malware 
designed and installed before by attackers. 

Details of abnormal behaviors are defined in Section 3A of 
the paper. The classification algorithms selected for use are 
presented in Section 3C. 

II. RELATED WORKS 
Dragos Gavrilut [10] proposed a malware detection system 

based on the improved Perceptron algorithm. With different 
algorithms, accuracy fluctuates in the range of 69.90% to 
96.18%. However, the algorithm with the highest accuracy also 
has the most false positive results. The most balanced 
algorithm has a low false positives and accuracy as 93.01%. 

Singhal and Raul discussed a detection method based on an 
improved Random Forest (RF) algorithm combined with 
Information Gain for presenting more optimal feature [11]. The 
dataset used by the author includes only the executable file so 
the feature selection is simpler. The detection rate is 97% and 
the false positives rate is 0.03%. 

Baldangombo et al introduced a feature selection method 
based on the PE header, DLL libraries, and Application 
Programming Interface (API) functions [12]. Algorithms used 
include Naïve Bayes, Decision Tree J48, and Support Vector 
Machines (SVM). The algorithm with the best results is J48 
with an accuracy rate of up to 99%. 

Alazab [13] proposed a method to use the API to represent 
malware features. The SVM algorithm gave the best results 
with the accuracy as 97.6% and the rate of false positives as 
0.025%. 

The results given by the above studies are not the same, 
because there has not been a unified method for feature 
detection and representation. The accuracy of each case also 
depends on the types of malware used to sample and the actual 
running process. 

III. MALWARE DETECTION METHOD BASED ON PE FILE 
ANALYSIS 

A. Proposed Model 
From Fig. 1, in order to detect malware based on analyzing 

abnormal behaviors of PE files, we will conduct 2 main tasks: 

• Extracting behaviors of PE files. In this process, the 
system finds ways to analyze the PE files to calculate 
and extract the values of behaviors in PE files. To 
accomplish this goal, we will pre-define the behaviors 

that need to be assessed as the basis for the system to 
check and extract. Details of these behaviors are 
presented in section 3.2 of the paper. 

• Evaluating behavior profiles of PE files. This process 
evaluates and concludes about malware behaviors based 
on the behavior profiles of PE files that have been 
collected. To accomplish this goal, we propose to use 
machine learning and deep learning algorithms. 

B. Selecting and Extracting Features 
PE File [14] is a Win32-specific file format. All executable 

files on Win32 such as *.EXE, *.DLL (Dynamic Link Library 
() (32 bits), *.COM, *.NET, *.CPL, etc. are PE format, except 
for VxDs and *.DLL (16 bits) files. Even NT's kernel mode 
driver uses the PE file format. PE file is divided into two 
sections: Header and Section. In which, the Header is used to 
store file format values including information required for the 
process of loading files to memory. This structure consists of 3 
parts defined in windows.inc: Signature is one DWORD 
starting in PE Header and containing PE signatures: 50h, 45h, 
00h, 00; FILE_HEADER includes the next 20 bytes of the PE 
Header, this section contains information about the physical 
layout diagram and file features; OPTIONAL_HEADER 
include the next 224 bytes after FILE_HEADER. The Section 
Table is a component after the PE Header. It includes an array 
of IMAGE_SECTION_HEADER structures, each element 
contains information about a section in the PE file. In which, 
there are some important fields: VirtualSize is the actual size of 
the data on the section in bytes, this value may be smaller than 
the size on the disk (SizeOfRawData); VirtualAddress is the 
RVA of the section which is the value to map when the section 
is loaded into memory; SizeOfRawData is the size of the data 
section on the disk; PointerToRawData is the offset from the 
beginning of the file to the data section; Characteristic is the 
section properties including execution or data initialization. 

From the brief overview of the PE file format, we can see 
that the PE header is quite complex with many variables and 
fields. Malware designers often use the PE header to conceal 
the malware version from the malware detection software. In 
this paper, we will examine and extract some features that 
represent malware behaviors in the PE header using the LEIF 
library. Table I below lists malware behaviors that are 
extracted based on different components in the PE header. 

 
Fig. 1. Malware Detection Model based on Analyzing Abnormal behaviors 

in PE Files. 
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TABLE I. LIST OF MALWARE BEHAVIOR FEATURES IN PE HEADER 

No. Group Name Description Data type 

1 

Properties* 

pe.has_configuration Contains the address and size of the load configuration Integer 

2 pe.has_debug The address and size of the debug start point Integer 

3 pe.has_exceptions Exception handling functions Integer 

4 pe.has_exports Export special characters Integer 

5 pe.has_imports Import special characters Integer 

6 pe.has_nx The area of memory to use by storing processor instructions Integer 

7 pe.has_relocations The address and size of the base relocation table Integer 

8 pe.has_resources Indexed resources Integer 

9 pe.has_rich_header Structure after MZ DOS header Integer 

10 pe.has_signature Digital signatures Integer 

11 pe.has_tls A special storage layer that Windows supports Integer 

12 

PE entry point * First 64 bits of Entry point This function is in IMAGE_OPTIONAL_HEADER and contains the 
address of the base image Real 

. 

. 

. 
75 
76 

ASCII 256 characters in ASCII 
code table Character set and character encoding based on the Latin alphabet Real 

. 

. 

. 
331 
332 

Liblabries 
150 most commonly used 
libraries 
(Group B) 

Dynamic Link Libraries Real 

. 

. 

. 

481 

482  Pe.virtual_size Ratio of the size of the PE file on the disk and on the RAM Real 

483 

PE Section 

CNT_CODE Total SECTION_CHARACTERISTICS.CNT_CODE divided by the 
total sections Real 

484 MEM_EXECUTE Total SECTION_CHARACTERISTICS.MEM_EXECUTE divided 
by the total sections Real 

485 Entropy Total entropy in sections Real 

486 Virtual_size The ratio of the actual size of each section to the size on disk and total 
sections Real 

C. Malware Classification Algorithm 
In this paper, we will use a number of deep learning and 

machine learning algorithms to classify files into normal or 
malicious. Accordingly, we choose to use the RF and SVM 
algorithms. Regarding deep learning algorithms, we use 3 main 
algorithms: Multi Layers Perceptron (MLP), Convolutional 
Neural Network (CNN), Long Short Term Memory (LSTM). 
The documents [15, 16, 17, 18] described in detail the 
mathematical basis and operating principle of these algorithms. 
Regarding MLP, CNN, LSTM algorithms, the documents [19, 
20, 21, 22] presented about how they work and their 
applicability. In this paper, we will proceed to apply algorithms 
in the task of detecting malware. Based on the experimental 
results, we will have a basis to evaluate the effectiveness of 
each algorithm in the task of detecting malware. 

IV. EXPERIMENTS AND EVALUATION 

A. Experimental Dataset 
In this paper, we use the datasets about malware and 

normal files provided at [19]. Specifically, the dataset includes 
49,128 records consisting of 24,528 malware files and 24,602 
normal files. The malware and normal files are selected and 
extracted into the fields and components listed in Table I. 

B. Experimental Scenarios 
1) For the experimental dataset: Based on the 

experimental dataset that was collected and described as in 
Section 4A, we will mix and randomly divide in which 80% of 
the number of records in the dataset will be used in the 
training process and the remaining 20% of the data set will be 
used in the test process. 
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2) For the classification algorithm: We will use five 
different algorithms to conduct experiments on the dataset 
presented above. To evaluate the effectiveness of each 
algorithm, we will conduct experiments on each algorithm 
with the change in their parameters. Our purpose is to evaluate 
and find the most efficient algorithm as well as the most 
optimal parameters in that algorithm. Specifically, we proceed 
to refine the parameters of the algorithm as follows: 

• For the Random Forest algorithm, we will conduct 
experiments and evaluate algorithms based on the 
change number of decision trees respectively as 20, 30, 
50, 70, 100. 

• For the SVM algorithm, we select the Kernel parameter 
as RBF, linear, sigmoid, polynomial. 

• For the MLP algorithm, we will change Activation 
function = ("identity", "relu", "logistic", “tanh”) and 
Solver = ("lbfgs", "adam"). 

• For the CNN algorithm, firstly, we convert the entire 
dataset to images with a certain size. With CNN model, 
we have the following model: Input image -> 
Convolution2D -> Pooling Layer -> Fully Connected 
layer -> Output. The input is 49128 images with a size 
of 27 * 18 (3 dimensions). Then we use alternately 3 
Convolution2D layers to extract the features of the 
image, and 3 Pooling Layers (MaxPooling) to reduce 
the size of the input and still retain image characteristics. 
After going through many Convolution and Pooling 
Layers, the model has also learned the characteristics of 
the image and the Fully Connected Layer will combine 
the features of the image into the output of the model. 

• For the LSTM algorithm, we will change Activation 
function = ("tanh", "relu", "softsign", "selu"). 

C. Methods of Evaluating a System 
• Accuracy: is the ratio between the number of correctly 

predicted points and the total number of points in the 
test dataset. It is calculated by the following formula: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

• Recall: is the ratio of the number of true positive points 
among actually positive points. It is calculated by the 
formula: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

• Precision: is the ratio of the number of true positive 
points among those classified as positive. It is 
calculated by the formula: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

• F1 Score: is harmonic mean of precision and recall 
(assuming that these two quantities are nonzero). 

Where: 

• True Positive (TP): Both the actual and predicted values 
are positive. 

• True Negative (TN): Both the actual and predicted 
values are negative. 

• False Positive (FP): The actual value is negative but the 
prediction is positive. 

• False Negative (FN): The actual value is positive but 
the prediction is negative. 

D. Experimental Results 
1) Experimental results with random forest: From the 

experimental results in Table II, we found that the accuracy of 
the Random Forest algorithm increases gradually when the 
number of decision trees increases. The algorithm gives the 
best classification results with all metrics when the number of 
decision trees is 100. The best results in classification are 
Accuracy, Precision, Recall, F1-score as 97.62; 99.10; 96,123; 
97.59 at the number of decision trees as 100. Besides, the 
result classification of the algorithm for normal files is 
relatively high from 98.82% to 99.10% while the result 
classification for malware reaches only from 95.19% to 
96.123%. This result is relatively good because the 
experimental dataset is balanced in the number of malware 
and normal files. Fig. 2 shows the results when testing the 
malware detection model using the Random Forest algorithm 
with the number of decision trees as 100. 

From Fig. 2, can see that the algorithm incorrectly 
predicted 211 malwares and 42 normal files. This result is 
acceptable when the dataset has a large number of malwares 
and normal files. 

2) Experimental results with SVM: Table III shows the 
results of malware detection using SVM algorithm. 

The experimental results in Table III show that with the 
486 features of PE file and using the SVM algorithm, we 
obtained the results with accuracy as 95.77%. Obviously, the 
default kernel of the algorithm as RBF (C = 100.0) gave the 
highest accuracy compared to the remaining kernels. For the 
Sigmoid kernel, the result is quite low (only approximately 
50%). With this result, the SVM algorithm is not really suitable 
for this PF file-based malware detection dataset. Fig. 3 below 
shows the evaluation results of the process of testing the model 
with the SVM algorithm with parameter as RBF (C = 100.0). 

TABLE II. EXPERIMENTAL RESULTS WITH RANDOM FOREST ALGORITHM 

N_estimator Accuracy Precision Recall F1_score 

20 97.02 98.82 95.19 96.97 

30 97.07 98.78 95.33 97.02 

50 97.16 98.95 95.35 97.12 

70 97.25 98.89 95.59 97.21 

100 97.62 99.10 96.123 97.59 
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Fig. 2. Confusion Matrix when using Random Forest. 

TABLE III. EXPERIMENTAL RESULTS OF DETECTING MALWARE USING 
SVM ALGORITHM 

Kernel C Accuracy F1_Score Recall Precision 

RBF 

1 93.40 93.40 93.40 93.46 

10 95.47 95.47 95.48 95.51 

100 95.77 95.78 95.78 95.78 

Linear 1 87.06 87.06 87.07 87.14 

Polynomial 
1 92.45 92.45 92.45 92.45 

10 95.13 95.12 95.13 95.15 

Sigmoid 
1 49.56 49.56 49.56 49.56 

10 49.31 49.31 49.31 49.31 

 
Fig. 3. Confusion Matrix when using SVM with kernel RBF/C=100.0. 

From Fig. 3, we can see that the results with the test dataset 
are as follows: the algorithm correctly predicted 4,507 malware, 
incorrectly predicted 230 normal files into malware and 
predicted missing 419 malware. 

Based on the experimental results in Table III, we noticed 
that the Random Forest algorithm is more efficient than the 
SVM algorithm. 

3) Experimental results with MLP: Table IV shows 
experimental results of detecting malware using the MLP 
algorithm in some cases with custom activation and solver. 

From the experimental results in Table IV, we noticed that 
the more layers and complex the architecture, the higher the 
classification result of MLP model is. However, the case given 
the best classification result of MLP model had the number of 
Hidden Layer as 256, activation as "tanh" and solver as "adam". 

With this result, the MLP model has improved the efficiency in 
the malware classification process compared to the SVM and 
Random Forest algorithms. However, this model is not as 
efficient as the Random Forest algorithm in normal file 
classification. 

TABLE IV. LIST OF MALWARE BEHAVIOR FEATURES IN PE HEADER 
EXPERIMENTAL RESULTS OF DETECTING MALWARE USING MLP ALGORITHM 

Activa-
tion Layer Accuracy F1 

Score Recall Precision 

relu 

256 97.13 97.13 97.52 96.73 

128-256 97.03 97.03 97.04 96.98 

128-128-256 96.97 96.97 97.71 96.24 

128-256-512-
512 97.09 97.08 97.7 96.46 

tanh 

256 97.16 97.14 97.99 96.11 

128-256 96.79 96.78 97.33 96.24 

128-128-256 96.99 96.98 97,75 96.22 

128-256-512-
512 97.05 97.03 97.77 96.31 

logistic 

256 96.96 96.95 97.41 96.44 

128-256 96.41 96.42 96.65 96.18 

128-128-256 96.4 96.4 96.43 96.39 

128-256-512-
512 96.58 96.59 96.57 96.61 

identify 

256 89.11 88.94 90.57 87.37 

128-256 89.23 89.07 90.65 87.55 

128-128-256 89.07 88.44 90.23 87.7 

128-256-512-
512 89.61 89.51 90.62 88.43 

4) Experimental results with LSTM: Table V shows some 
experimental results of detecting malware using LSTM model 
with different activation functions including "tanh", "relu", 
"logistic", and "identity". Corresponding to the activation 
functions, we have the different number of hidden layers. 

From Table V, it can be seen that when using the model 
trained with the activation function as "relu" (default) and the 
number of hidden layers as 1 (1024), we had the best results 
with accuracy as 98.73%, precision as 98.81%, recall as 
99.55% and f1 score as 99.18%. These results are quite high. 
However, with the malware detection problem, if precision is 
98.81%, with 49128 files (dataset used in the experiments), the 
model will detect incorrectly 584 files. Leaking 584 files is 
considered quite bad because there may be malware files in 
these files which leads to affecting the work as well as personal 
data of users and businesses. Considering recall, with recall as 
99.55%, the rate of mistakenly detecting malware files to 
normal files is at an acceptable level (0.45%). Assuming have 
1000 malware files, the model can only detect 995 files, the 
remaining 5 files are classified as normal files. When the 
number of files need to be detected increases, the rate is pretty 
bad. As is well known, f1 score is the harmonic mean of recall 
and precision. However, the loss ratio of the f1 score is still 
approximately 0.82%. This is acceptable in terms of training 
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ratio but it would be bad when the data need to be detected is 
very large. Overall, hidden layers with the “relu” activation 
function give better results (accuracy, f1 score, recall, and 
precision) than ones with the other activation function. 
Therefore, for the problem of detecting malware using the 
LSTM algorithm, to optimize it, we will use the "relu" 
activation function and the corresponding hidden layers. 

TABLE V. EXPERIMENTAL RESULTS OF DETECTING MALWARE USING 
LSTM 

Activa-
tion Layer Accuracy F1 

Score Recall Precision 

tanh 

1024 98.17 98.53 98.38 98.68 

32-32-32-32 97.39 97.39 97.41 97.38 

32-64-64-128 97.46 97.46 97.47 97.46 
128-128-256-
512 97.76 97.76 97.78 97.76 

128-512-512-
512 97.56 97.57 97.61 97.57 

relu 

1024 98.73 99.18 98.81 99.55 

32-32-32-32 97.7 97.71 97.03 97 

32-64-64-128 96.94 96.93 96.97 96.93 
128-128-256-
512 97.79 97.79 97.8 97.89 

128-512-512-
512 97.89 97.88 97.9 97.89 

softsign 

1024 98.37 98.74 98.72 98.77 

32-32-32-32 97.49 97.48 97.5 97.48 

32-64-64-128 97.3 97.29 97.36 97.29 
128-128-256-
512 97.91 97.91 97.93 97.9 

128-512-512-
512 97.96 97.57 97.96 97.96 

selu 

1024 98.23 98.63 98.39 98.86 

32-32-32-32 97.19 97.17 97.22 97.17 

32-64-64-128 97.36 97.59 97.31 97.88 
128-128-256-
512 97.52 97.77 97.28 98.28 

128-512-512-
512 97.69 97.69 97.7 97.69 

5) Experimental results with CNN: Table VI shows some 
experimental results of detecting malware using CNN model 
with different activation functions including "Image", "No 
image", "1D". 

We noticed that when the input data is converted to images, 
we had the best results and the difference between the layers is 
very small (approximately 0.0001 - the results are rounded). 
The accuracy and f1 score are very good (99.97%). We think 
this is a very good classification model. With approximately 
4% lower, 1D gave the second best results. With 1D, the best 
model is the model had hidden layer (64-128-256). This model 
is better because its f1 score is higher than the other two 
models. As shown in the previous sections, the f1 score helps 
to choose the best model since it is the harmonic mean of recall 
and precision. To test the accuracy of CNN after training, we 
put in a test set including 30,000 images consisting of malware 

and normal files, the results are similar to the trained model. 
The algorithm detects completely correct input data. Of course, 
when the data set is larger, there will be errors in detection. 
Fig. 4 below shows the evaluation results of the process of 
testing the model with the CNN algorithm. 

Based on the confusion matrix, it can be seen that the 
model detected very well with the test dataset because there is 
no file that the model detected incorrectly. The following is a 
graph that shows the accuracy, loss, f1 score, recall, precision 
of train and test data during 20 epochs. It can be seen that the 
train and test ratio increased sharply in the 3rd epoch and 
stayed the same until the end. Fig. 5 describes in detail the 
results of this experiment. 

E. General Evaluation 
After conduct experiments with 5 different algorithms that 

are SVM, Random Forest, CNN, MLP, LSTM, we have the 
best results of each algorithm. 

Comment: Based on the comparison table (Table VII) of 
algorithms when analyzing the same file data, we can see that 
CNN gave the results with the highest accuracy of 99.99%. 
The algorithm detects completely correct input data. 

TABLE VI. EXPERIMENTAL RESULTS OF DETECTING MALWARE USING 
CNN 

Train 
method Model train Accuracy F1 

Score Recall Precision 

Image 

256 99.97 99.97 99.94 1 

16-32-32 99.97 99.97 99.94 1 

32-32-64-64 99.97 99.97 99.94 1 

64-64-128-
128-256 99.97 99.97 99.94 1 

No image 

32 91.4 91.42 91.4 91.4 

32-64 93.81 93.83 93.81 93.81 

64-128 93.86 93.88 93.86 93.86 

1D 

32-64 94.08 94.06 94.08 94.08 

32-64-128 95.41 95.42 95.41 95.41 

64-128-256 95.29 95.64 93.28 98.11 

 
Fig. 4. Confusion Matrix when using CNN. 
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Fig. 5. Accuracy and Loss after 20 Epoch. 

TABLE VII. COMPARING ALGORITHMS WHEN ANALYZING THE SAME PE 
FILE DATA 

Algorithm Accuracy F1 
Score Recall Precision 

CNN 99.97 99.97 99.94 1 

LSTM (activation 
="relu", layer=256) 98.46 98.94 98,72 99.15 

RF(N_estimator = 100) 97.62 99.1 97.59 96.12 

MLP (Layer=256, 
activation ="tanh", 
solver ="adam" ) 

97.16 97.14 97.99 96.11 

MVC (kernel = RBF, 
C=100) 95.78 95.78 95.78 95.78 

V. CONCLUSION 
In this paper, based on the PE File analysis technique, we 

proposed some features that represent abnormal behaviors of 
malware. The experimental results in section 4.3 have 
demonstrated that the features that are extracted from the PE 
File and selected and proposed by us gave good results, it 
correctly classified not only for normal files but also for 
malware. Besides, based on the experimental results of 
algorithms with different parameters, we have proven that the 
CNN algorithm gave better efficiency than the remaining 
algorithms in all aspects. Especially, in this dataset with a 
relatively high number of features (485 features), the CNN 
algorithm brought the best results. In the future, in order to 
improve the efficiency of the malware detection process based 
on PE File analysis, we need to improve two main issues: 
i) extracting additional features of malware based on PE File. 
We found that the PE File consists of many different 

components and has many important components that are 
exploited by malware developers to conceal information about 
malware behavior. Therefore, analyzing detailed and 
generalizing these features will significantly improve the 
efficiency of the malware detection process in the context of 
increasing malware in both quantity and form of distribution; 
ii) use other advanced machine learning algorithms. Obviously, 
classical machine learning algorithms have brought good 
efficiency to the classification process. However, due to the 
real situation about the rapid increase in the number of 
malware behaviors as well as the amount of experimental data, 
other advanced classification algorithms are required to ensure 
the effectiveness of the detection and monitoring process. 
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