
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

Detecting Malware based on Analyzing Abnormal
behaviors of PE File

Lai Van Duong1, Cho Do Xuan2
Information Assurance Department

FPT University, Hanoi
Vietnam

Abstract—Attack by spreading malware is a dangerous attack
form that is very difficult to detect and prevent. Attack
techniques that spread malware through users and then escalate
privileges in the system are increasingly used by attackers. The
three main methods and techniques for tracking and detecting
malware that is being currently studied and applied include
signature-based, behavior-based, and hybrid techniques. In
particular, the behavior-based technique with the support of
machine learning algorithms has given high efficiency. On the
other hand, in reality, attackers often find various ways and
techniques to hide behaviors of the malware based on the
Portable Executable File Format (PE File) of the malware. This
makes it difficult for surveillance systems to detect malware.
From the above reasons, in this paper, we propose a malware
detection method based on the PE File analysis technique using
machine learning and deep learning algorithms. Our main
contribution in this paper is proposing some features that
represent abnormal behaviors of malware based on PE File and
the efficiency of some machine learning algorithms in the
classification process.

Keywords—Malware; portable executable file format; detection
malware; abnormal behaviors; machine learning; deep learning

I. INTRODUCTION
Malware is software that is purposefully designed to cause

damage to a personal computer, server, or computer network
system [1, 2]. The purpose of malware is to execute illegal acts
such as unauthorized access, stealing user information,
spreading spam email, and even performing blackmail, attack
and damage to computer system, etc. for personal gain,
economic gain, political or simply they can be created as just
some malicious joke. The study [3, 4] listed some common
types of malware including Virus, Worm, Trojan Horse,
Malicious Mobile Code, Tracking Cookie, Attacker Tool,
Phishing, Virus Hoax. According to the statistics [5], the
malware distribution situation in 2020 increased by 75%
compared to 2019. This is completely reasonable because
hackers used to focus on attacking information systems but
today they usually primarily chose to attack the user. Therefore,
malware increases rapidly not only in the number of attacks but
also in their danger level. Studies [6, 7, 8] listed a number of
approaches to malware detection including signature-based
detection and behavior-based detection. The signature-based
detection method is the static analysis which analyzes the
source code without executing the file [9]. Some techniques
used in the static analysis include:

• Checking file format: the metadata of files can provide
useful information. For example, Windows PE files can
provide information such as execution time, import and
export functions.

• String extraction: involves checking the output of the
software (status message or error message) and
inferring about the behavior of the malware.

• Trace: Before performing analysis, it is necessary to
calculate the hash value of the file in order to verify
whether the file has been modified or not. Commonly
used hashing algorithms are Message-Digest algorithm
5, Secure Hash Algorithm 256-bit. Also can search for
information in source code such as username, file name,
registry string.

• Scan with anti-virus software: if the file being analyzed
is a known malware, most anti-virus software will be
able to detect it. This is often used to verify the results
of the analysis.

• Disassembly: involves reversing the machine code into
assembly language and thus knowing the logic and the
purpose of the software. This is the most commonly
used and reliable method in static analysis.

This detection method is only suitable for common types of
malware with permanent signatures stored in the database.
Modern malware usually attacks and exists for a short period
of time.

The behavior-based detection method is based on dynamic
analysis. This method will evaluate an object based on its
behavior. When an object attempts to perform abnormal or
unauthorized behavior, it denotes that the object is malicious or
suspicious. A number of behaviors are considered dangerous
such as disabling security controls, installing rootkits, autostart,
modifying host files, establishing suspicious connections, etc.
Each behavior may not be dangerous but when combined
together can increase the suspicions of the subject. There is a
predefined threshold. If any files exceed this threshold, it will
be warned as malware [10, 11, 12, 13]. This method is used to
detect malware that has capable of changing signature
(polymorphism) or new types of malware (zero-day). However,
some types of malware have the ability to detect the virtual
environment, it will not execute malicious behavior in the
sandbox environment [13]. Moreover, in fact, with the
increasing amount of malware, this method is not really
effective against new types of malware.

464 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

To fix the above disadvantages, in this paper, we propose a
malware detection method based on the PE file analysis
technique using machine learning and deep learning algorithms.

In particular, in this paper, we will analyze and extract
abnormal behaviors in PE files to seek signs of malware and
then use machine learning and deep learning algorithms to
analyze and conclude about the existence of malware. The
difference between our proposed approach and other traditional
studies is we do not seek to extract malware behavior based on
data that is collected in a virtualized environment. Instead, we
analyze each different component in the PE file in detail in
order to build behavior profiles of malware. With this approach,
we could instantly collect behaviors and functions of malware
designed and installed before by attackers.

Details of abnormal behaviors are defined in Section 3A of
the paper. The classification algorithms selected for use are
presented in Section 3C.

II. RELATED WORKS
Dragos Gavrilut [10] proposed a malware detection system

based on the improved Perceptron algorithm. With different
algorithms, accuracy fluctuates in the range of 69.90% to
96.18%. However, the algorithm with the highest accuracy also
has the most false positive results. The most balanced
algorithm has a low false positives and accuracy as 93.01%.

Singhal and Raul discussed a detection method based on an
improved Random Forest (RF) algorithm combined with
Information Gain for presenting more optimal feature [11]. The
dataset used by the author includes only the executable file so
the feature selection is simpler. The detection rate is 97% and
the false positives rate is 0.03%.

Baldangombo et al introduced a feature selection method
based on the PE header, DLL libraries, and Application
Programming Interface (API) functions [12]. Algorithms used
include Naïve Bayes, Decision Tree J48, and Support Vector
Machines (SVM). The algorithm with the best results is J48
with an accuracy rate of up to 99%.

Alazab [13] proposed a method to use the API to represent
malware features. The SVM algorithm gave the best results
with the accuracy as 97.6% and the rate of false positives as
0.025%.

The results given by the above studies are not the same,
because there has not been a unified method for feature
detection and representation. The accuracy of each case also
depends on the types of malware used to sample and the actual
running process.

III. MALWARE DETECTION METHOD BASED ON PE FILE
ANALYSIS

A. Proposed Model
From Fig. 1, in order to detect malware based on analyzing

abnormal behaviors of PE files, we will conduct 2 main tasks:

• Extracting behaviors of PE files. In this process, the
system finds ways to analyze the PE files to calculate
and extract the values of behaviors in PE files. To
accomplish this goal, we will pre-define the behaviors

that need to be assessed as the basis for the system to
check and extract. Details of these behaviors are
presented in section 3.2 of the paper.

• Evaluating behavior profiles of PE files. This process
evaluates and concludes about malware behaviors based
on the behavior profiles of PE files that have been
collected. To accomplish this goal, we propose to use
machine learning and deep learning algorithms.

B. Selecting and Extracting Features
PE File [14] is a Win32-specific file format. All executable

files on Win32 such as *.EXE, *.DLL (Dynamic Link Library
() (32 bits), *.COM, *.NET, *.CPL, etc. are PE format, except
for VxDs and *.DLL (16 bits) files. Even NT's kernel mode
driver uses the PE file format. PE file is divided into two
sections: Header and Section. In which, the Header is used to
store file format values including information required for the
process of loading files to memory. This structure consists of 3
parts defined in windows.inc: Signature is one DWORD
starting in PE Header and containing PE signatures: 50h, 45h,
00h, 00; FILE_HEADER includes the next 20 bytes of the PE
Header, this section contains information about the physical
layout diagram and file features; OPTIONAL_HEADER
include the next 224 bytes after FILE_HEADER. The Section
Table is a component after the PE Header. It includes an array
of IMAGE_SECTION_HEADER structures, each element
contains information about a section in the PE file. In which,
there are some important fields: VirtualSize is the actual size of
the data on the section in bytes, this value may be smaller than
the size on the disk (SizeOfRawData); VirtualAddress is the
RVA of the section which is the value to map when the section
is loaded into memory; SizeOfRawData is the size of the data
section on the disk; PointerToRawData is the offset from the
beginning of the file to the data section; Characteristic is the
section properties including execution or data initialization.

From the brief overview of the PE file format, we can see
that the PE header is quite complex with many variables and
fields. Malware designers often use the PE header to conceal
the malware version from the malware detection software. In
this paper, we will examine and extract some features that
represent malware behaviors in the PE header using the LEIF
library. Table I below lists malware behaviors that are
extracted based on different components in the PE header.

Fig. 1. Malware Detection Model based on Analyzing Abnormal behaviors

in PE Files.

465 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

TABLE I. LIST OF MALWARE BEHAVIOR FEATURES IN PE HEADER

No. Group Name Description Data type

1

Properties*

pe.has_configuration Contains the address and size of the load configuration Integer

2 pe.has_debug The address and size of the debug start point Integer

3 pe.has_exceptions Exception handling functions Integer

4 pe.has_exports Export special characters Integer

5 pe.has_imports Import special characters Integer

6 pe.has_nx The area of memory to use by storing processor instructions Integer

7 pe.has_relocations The address and size of the base relocation table Integer

8 pe.has_resources Indexed resources Integer

9 pe.has_rich_header Structure after MZ DOS header Integer

10 pe.has_signature Digital signatures Integer

11 pe.has_tls A special storage layer that Windows supports Integer

12

PE entry point * First 64 bits of Entry point This function is in IMAGE_OPTIONAL_HEADER and contains the
address of the base image Real

.

.

.
75
76

ASCII 256 characters in ASCII
code table Character set and character encoding based on the Latin alphabet Real

.

.

.
331
332

Liblabries
150 most commonly used
libraries
(Group B)

Dynamic Link Libraries Real

.

.

.

481

482 Pe.virtual_size Ratio of the size of the PE file on the disk and on the RAM Real

483

PE Section

CNT_CODE Total SECTION_CHARACTERISTICS.CNT_CODE divided by the
total sections Real

484 MEM_EXECUTE Total SECTION_CHARACTERISTICS.MEM_EXECUTE divided
by the total sections Real

485 Entropy Total entropy in sections Real

486 Virtual_size The ratio of the actual size of each section to the size on disk and total
sections Real

C. Malware Classification Algorithm
In this paper, we will use a number of deep learning and

machine learning algorithms to classify files into normal or
malicious. Accordingly, we choose to use the RF and SVM
algorithms. Regarding deep learning algorithms, we use 3 main
algorithms: Multi Layers Perceptron (MLP), Convolutional
Neural Network (CNN), Long Short Term Memory (LSTM).
The documents [15, 16, 17, 18] described in detail the
mathematical basis and operating principle of these algorithms.
Regarding MLP, CNN, LSTM algorithms, the documents [19,
20, 21, 22] presented about how they work and their
applicability. In this paper, we will proceed to apply algorithms
in the task of detecting malware. Based on the experimental
results, we will have a basis to evaluate the effectiveness of
each algorithm in the task of detecting malware.

IV. EXPERIMENTS AND EVALUATION

A. Experimental Dataset
In this paper, we use the datasets about malware and

normal files provided at [19]. Specifically, the dataset includes
49,128 records consisting of 24,528 malware files and 24,602
normal files. The malware and normal files are selected and
extracted into the fields and components listed in Table I.

B. Experimental Scenarios
1) For the experimental dataset: Based on the

experimental dataset that was collected and described as in
Section 4A, we will mix and randomly divide in which 80% of
the number of records in the dataset will be used in the
training process and the remaining 20% of the data set will be
used in the test process.

466 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

2) For the classification algorithm: We will use five
different algorithms to conduct experiments on the dataset
presented above. To evaluate the effectiveness of each
algorithm, we will conduct experiments on each algorithm
with the change in their parameters. Our purpose is to evaluate
and find the most efficient algorithm as well as the most
optimal parameters in that algorithm. Specifically, we proceed
to refine the parameters of the algorithm as follows:

• For the Random Forest algorithm, we will conduct
experiments and evaluate algorithms based on the
change number of decision trees respectively as 20, 30,
50, 70, 100.

• For the SVM algorithm, we select the Kernel parameter
as RBF, linear, sigmoid, polynomial.

• For the MLP algorithm, we will change Activation
function = ("identity", "relu", "logistic", “tanh”) and
Solver = ("lbfgs", "adam").

• For the CNN algorithm, firstly, we convert the entire
dataset to images with a certain size. With CNN model,
we have the following model: Input image ->
Convolution2D -> Pooling Layer -> Fully Connected
layer -> Output. The input is 49128 images with a size
of 27 * 18 (3 dimensions). Then we use alternately 3
Convolution2D layers to extract the features of the
image, and 3 Pooling Layers (MaxPooling) to reduce
the size of the input and still retain image characteristics.
After going through many Convolution and Pooling
Layers, the model has also learned the characteristics of
the image and the Fully Connected Layer will combine
the features of the image into the output of the model.

• For the LSTM algorithm, we will change Activation
function = ("tanh", "relu", "softsign", "selu").

C. Methods of Evaluating a System
• Accuracy: is the ratio between the number of correctly

predicted points and the total number of points in the
test dataset. It is calculated by the following formula:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

• Recall: is the ratio of the number of true positive points
among actually positive points. It is calculated by the
formula:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

• Precision: is the ratio of the number of true positive
points among those classified as positive. It is
calculated by the formula:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

• F1 Score: is harmonic mean of precision and recall
(assuming that these two quantities are nonzero).

Where:

• True Positive (TP): Both the actual and predicted values
are positive.

• True Negative (TN): Both the actual and predicted
values are negative.

• False Positive (FP): The actual value is negative but the
prediction is positive.

• False Negative (FN): The actual value is positive but
the prediction is negative.

D. Experimental Results
1) Experimental results with random forest: From the

experimental results in Table II, we found that the accuracy of
the Random Forest algorithm increases gradually when the
number of decision trees increases. The algorithm gives the
best classification results with all metrics when the number of
decision trees is 100. The best results in classification are
Accuracy, Precision, Recall, F1-score as 97.62; 99.10; 96,123;
97.59 at the number of decision trees as 100. Besides, the
result classification of the algorithm for normal files is
relatively high from 98.82% to 99.10% while the result
classification for malware reaches only from 95.19% to
96.123%. This result is relatively good because the
experimental dataset is balanced in the number of malware
and normal files. Fig. 2 shows the results when testing the
malware detection model using the Random Forest algorithm
with the number of decision trees as 100.

From Fig. 2, can see that the algorithm incorrectly
predicted 211 malwares and 42 normal files. This result is
acceptable when the dataset has a large number of malwares
and normal files.

2) Experimental results with SVM: Table III shows the
results of malware detection using SVM algorithm.

The experimental results in Table III show that with the
486 features of PE file and using the SVM algorithm, we
obtained the results with accuracy as 95.77%. Obviously, the
default kernel of the algorithm as RBF (C = 100.0) gave the
highest accuracy compared to the remaining kernels. For the
Sigmoid kernel, the result is quite low (only approximately
50%). With this result, the SVM algorithm is not really suitable
for this PF file-based malware detection dataset. Fig. 3 below
shows the evaluation results of the process of testing the model
with the SVM algorithm with parameter as RBF (C = 100.0).

TABLE II. EXPERIMENTAL RESULTS WITH RANDOM FOREST ALGORITHM

N_estimator Accuracy Precision Recall F1_score

20 97.02 98.82 95.19 96.97

30 97.07 98.78 95.33 97.02

50 97.16 98.95 95.35 97.12

70 97.25 98.89 95.59 97.21

100 97.62 99.10 96.123 97.59

467 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

Fig. 2. Confusion Matrix when using Random Forest.

TABLE III. EXPERIMENTAL RESULTS OF DETECTING MALWARE USING
SVM ALGORITHM

Kernel C Accuracy F1_Score Recall Precision

RBF

1 93.40 93.40 93.40 93.46

10 95.47 95.47 95.48 95.51

100 95.77 95.78 95.78 95.78

Linear 1 87.06 87.06 87.07 87.14

Polynomial
1 92.45 92.45 92.45 92.45

10 95.13 95.12 95.13 95.15

Sigmoid
1 49.56 49.56 49.56 49.56

10 49.31 49.31 49.31 49.31

Fig. 3. Confusion Matrix when using SVM with kernel RBF/C=100.0.

From Fig. 3, we can see that the results with the test dataset
are as follows: the algorithm correctly predicted 4,507 malware,
incorrectly predicted 230 normal files into malware and
predicted missing 419 malware.

Based on the experimental results in Table III, we noticed
that the Random Forest algorithm is more efficient than the
SVM algorithm.

3) Experimental results with MLP: Table IV shows
experimental results of detecting malware using the MLP
algorithm in some cases with custom activation and solver.

From the experimental results in Table IV, we noticed that
the more layers and complex the architecture, the higher the
classification result of MLP model is. However, the case given
the best classification result of MLP model had the number of
Hidden Layer as 256, activation as "tanh" and solver as "adam".

With this result, the MLP model has improved the efficiency in
the malware classification process compared to the SVM and
Random Forest algorithms. However, this model is not as
efficient as the Random Forest algorithm in normal file
classification.

TABLE IV. LIST OF MALWARE BEHAVIOR FEATURES IN PE HEADER
EXPERIMENTAL RESULTS OF DETECTING MALWARE USING MLP ALGORITHM

Activa-
tion Layer Accuracy F1

Score Recall Precision

relu

256 97.13 97.13 97.52 96.73

128-256 97.03 97.03 97.04 96.98

128-128-256 96.97 96.97 97.71 96.24

128-256-512-
512 97.09 97.08 97.7 96.46

tanh

256 97.16 97.14 97.99 96.11

128-256 96.79 96.78 97.33 96.24

128-128-256 96.99 96.98 97,75 96.22

128-256-512-
512 97.05 97.03 97.77 96.31

logistic

256 96.96 96.95 97.41 96.44

128-256 96.41 96.42 96.65 96.18

128-128-256 96.4 96.4 96.43 96.39

128-256-512-
512 96.58 96.59 96.57 96.61

identify

256 89.11 88.94 90.57 87.37

128-256 89.23 89.07 90.65 87.55

128-128-256 89.07 88.44 90.23 87.7

128-256-512-
512 89.61 89.51 90.62 88.43

4) Experimental results with LSTM: Table V shows some
experimental results of detecting malware using LSTM model
with different activation functions including "tanh", "relu",
"logistic", and "identity". Corresponding to the activation
functions, we have the different number of hidden layers.

From Table V, it can be seen that when using the model
trained with the activation function as "relu" (default) and the
number of hidden layers as 1 (1024), we had the best results
with accuracy as 98.73%, precision as 98.81%, recall as
99.55% and f1 score as 99.18%. These results are quite high.
However, with the malware detection problem, if precision is
98.81%, with 49128 files (dataset used in the experiments), the
model will detect incorrectly 584 files. Leaking 584 files is
considered quite bad because there may be malware files in
these files which leads to affecting the work as well as personal
data of users and businesses. Considering recall, with recall as
99.55%, the rate of mistakenly detecting malware files to
normal files is at an acceptable level (0.45%). Assuming have
1000 malware files, the model can only detect 995 files, the
remaining 5 files are classified as normal files. When the
number of files need to be detected increases, the rate is pretty
bad. As is well known, f1 score is the harmonic mean of recall
and precision. However, the loss ratio of the f1 score is still
approximately 0.82%. This is acceptable in terms of training

468 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

ratio but it would be bad when the data need to be detected is
very large. Overall, hidden layers with the “relu” activation
function give better results (accuracy, f1 score, recall, and
precision) than ones with the other activation function.
Therefore, for the problem of detecting malware using the
LSTM algorithm, to optimize it, we will use the "relu"
activation function and the corresponding hidden layers.

TABLE V. EXPERIMENTAL RESULTS OF DETECTING MALWARE USING
LSTM

Activa-
tion Layer Accuracy F1

Score Recall Precision

tanh

1024 98.17 98.53 98.38 98.68

32-32-32-32 97.39 97.39 97.41 97.38

32-64-64-128 97.46 97.46 97.47 97.46
128-128-256-
512 97.76 97.76 97.78 97.76

128-512-512-
512 97.56 97.57 97.61 97.57

relu

1024 98.73 99.18 98.81 99.55

32-32-32-32 97.7 97.71 97.03 97

32-64-64-128 96.94 96.93 96.97 96.93
128-128-256-
512 97.79 97.79 97.8 97.89

128-512-512-
512 97.89 97.88 97.9 97.89

softsign

1024 98.37 98.74 98.72 98.77

32-32-32-32 97.49 97.48 97.5 97.48

32-64-64-128 97.3 97.29 97.36 97.29
128-128-256-
512 97.91 97.91 97.93 97.9

128-512-512-
512 97.96 97.57 97.96 97.96

selu

1024 98.23 98.63 98.39 98.86

32-32-32-32 97.19 97.17 97.22 97.17

32-64-64-128 97.36 97.59 97.31 97.88
128-128-256-
512 97.52 97.77 97.28 98.28

128-512-512-
512 97.69 97.69 97.7 97.69

5) Experimental results with CNN: Table VI shows some
experimental results of detecting malware using CNN model
with different activation functions including "Image", "No
image", "1D".

We noticed that when the input data is converted to images,
we had the best results and the difference between the layers is
very small (approximately 0.0001 - the results are rounded).
The accuracy and f1 score are very good (99.97%). We think
this is a very good classification model. With approximately
4% lower, 1D gave the second best results. With 1D, the best
model is the model had hidden layer (64-128-256). This model
is better because its f1 score is higher than the other two
models. As shown in the previous sections, the f1 score helps
to choose the best model since it is the harmonic mean of recall
and precision. To test the accuracy of CNN after training, we
put in a test set including 30,000 images consisting of malware

and normal files, the results are similar to the trained model.
The algorithm detects completely correct input data. Of course,
when the data set is larger, there will be errors in detection.
Fig. 4 below shows the evaluation results of the process of
testing the model with the CNN algorithm.

Based on the confusion matrix, it can be seen that the
model detected very well with the test dataset because there is
no file that the model detected incorrectly. The following is a
graph that shows the accuracy, loss, f1 score, recall, precision
of train and test data during 20 epochs. It can be seen that the
train and test ratio increased sharply in the 3rd epoch and
stayed the same until the end. Fig. 5 describes in detail the
results of this experiment.

E. General Evaluation
After conduct experiments with 5 different algorithms that

are SVM, Random Forest, CNN, MLP, LSTM, we have the
best results of each algorithm.

Comment: Based on the comparison table (Table VII) of
algorithms when analyzing the same file data, we can see that
CNN gave the results with the highest accuracy of 99.99%.
The algorithm detects completely correct input data.

TABLE VI. EXPERIMENTAL RESULTS OF DETECTING MALWARE USING
CNN

Train
method Model train Accuracy F1

Score Recall Precision

Image

256 99.97 99.97 99.94 1

16-32-32 99.97 99.97 99.94 1

32-32-64-64 99.97 99.97 99.94 1

64-64-128-
128-256 99.97 99.97 99.94 1

No image

32 91.4 91.42 91.4 91.4

32-64 93.81 93.83 93.81 93.81

64-128 93.86 93.88 93.86 93.86

1D

32-64 94.08 94.06 94.08 94.08

32-64-128 95.41 95.42 95.41 95.41

64-128-256 95.29 95.64 93.28 98.11

Fig. 4. Confusion Matrix when using CNN.

469 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

Fig. 5. Accuracy and Loss after 20 Epoch.

TABLE VII. COMPARING ALGORITHMS WHEN ANALYZING THE SAME PE
FILE DATA

Algorithm Accuracy F1
Score Recall Precision

CNN 99.97 99.97 99.94 1

LSTM (activation
="relu", layer=256) 98.46 98.94 98,72 99.15

RF(N_estimator = 100) 97.62 99.1 97.59 96.12

MLP (Layer=256,
activation ="tanh",
solver ="adam")

97.16 97.14 97.99 96.11

MVC (kernel = RBF,
C=100) 95.78 95.78 95.78 95.78

V. CONCLUSION
In this paper, based on the PE File analysis technique, we

proposed some features that represent abnormal behaviors of
malware. The experimental results in section 4.3 have
demonstrated that the features that are extracted from the PE
File and selected and proposed by us gave good results, it
correctly classified not only for normal files but also for
malware. Besides, based on the experimental results of
algorithms with different parameters, we have proven that the
CNN algorithm gave better efficiency than the remaining
algorithms in all aspects. Especially, in this dataset with a
relatively high number of features (485 features), the CNN
algorithm brought the best results. In the future, in order to
improve the efficiency of the malware detection process based
on PE File analysis, we need to improve two main issues:
i) extracting additional features of malware based on PE File.
We found that the PE File consists of many different

components and has many important components that are
exploited by malware developers to conceal information about
malware behavior. Therefore, analyzing detailed and
generalizing these features will significantly improve the
efficiency of the malware detection process in the context of
increasing malware in both quantity and form of distribution;
ii) use other advanced machine learning algorithms. Obviously,
classical machine learning algorithms have brought good
efficiency to the classification process. However, due to the
real situation about the rapid increase in the number of
malware behaviors as well as the amount of experimental data,
other advanced classification algorithms are required to ensure
the effectiveness of the detection and monitoring process.

REFERENCES
[1] Daniel Gibert, Carles Mateu, Jordi Planes, “The rise of machine learning

for detection and classification of malware: Research developments,
trends and challenges,” Journal of Network and Computer Applications,
vol. 153, pp. 1-22, 2020.

[2] Ucci, Daniele & Aniello, Leonardo, “Survey on the Usage of Machine
Learning Techniques for Malware Analysis,” Computers & Security,
2017, 81. 10.1016/j.cose.2018.11.001.

[3] Sanjay Sharma, C. Rama Krishna, Sanjay K. Sahay, “Detection of
Advanced Malware by Machine Learning Techniques,” 2019,
arXiv:1903.02966.

[4] Alireza Souri, Rahil Hosseini, “A state‑of‑the‑art survey of malware
detection approaches using data mining techniques,” Human-centric
Computing and Information Sciences, vol. 8(1), pp. 1-22.

[5] Kaspersky-Lab, “Machine Learning Methods for Malware Detection,”
2020.

[6] R. Islam, R. Tian, L. M. Batten, S. Versteeg, “Classification of malware
based on integrated static and dynamic features,” Journal of Network
and Computer Applications, vol. 36 (2), pp. 646–656, 2013.

[7] C.-T. Lin, N.-J. Wang, H. Xiao, C. Eckert, “Feature selection and
extraction for malware classification,” Journal of Information Science
and Engineering, vol. 31 (3), pp. 965–992, 2015.

[8] A. Mohaisen, O. Alrawi, M. Mohaisen, “Amal: High-fidelity,
behaviorbased automated malware analysis and classification,”
Computers & Security, vol. 52, pp. 251–266, 2015.

[9] S. Palahan, D. Babi´c, S. Chaudhuri, D. Kifer, “Extraction of statistically
significant malware behaviors,” Computer Security Applications
Conference, ACM, pp. 69–78, 2013.

[10] Gavrilut, Dragos, Mihai Cimpoesu, Dan Anton, Liviu Ciortuz,
“Malware Detection Using Machine Learning,” The International
Multiconference on Computer Science and Information Technology,
2009.

[11] Priyank Singhal, Nataasha Raul, “Malware Detection Module using
Machine Learning Algorithms to Assist in Centralized Security in
Enterprise Networks,” 2015.

[12] Baldangombo Usukhbayar, Nyamjav Jambaljav, Shi-Jinn Horng, “A
Static Malware Detection System Using Data Mining Methods”, Cornell
University, 2013.

[13] Alazab, Mamoun, Sitalakshmi Venkatraman, Paul Watters, Moutaz
Alazab, “Zero-day Malware Detection based on Supervised Learning
Algorithms of API call Signatures,” Proceedings of the 9-th Australasian
Data Mining Conference, pp. 171-181, 2011.

[14] Nakajima, Tatsuo & Ishikawa, Hiroo & Kinebuchi, Yuki & Sugaya,
Midori & Lei, Sun & Courbot, Alexandre & Zee, Andrej & Aalto,
Aleksi & Duk, Kwon, “An Operating System Architecture for Future
Information Appliances,” pp. 292-303, 2008, 10.1007/978-3-540-87785-
1_26.

[15] C. Corinna, V. Vladimir, “Support-vector networks,” Machine Learning,
vol. 20, pp. 273-297, 1995.

[16] S.S. Shai, B.D. Shai, “Understanding Machine Learning: From Theory
to Algorithms,” Cambridge University Press, 2014.

470 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

[17] JohnShawe-Taylor, ShiliangSun, “Kernel Methods and Support Vector
Machines,” Academic Press Library in Signal Processing, vol. 1, pp.
857-881, 2014.

[18] LEO BREIMAN, “Random Forests”, Machine Learning, vol. 45, Issue
1, pp. 5–32, 2001.

[19] Daniel Svozil, Vladimir Kvasnicka, Jiří Pospíchal, “Introduction to
multi-layer feed-forward neural networks,” Chemometrics and
Intelligent Laboratory Systems, vol. 39(1), pp. 43-62.

[20] Zewen Li, Wenjie Yang, Shouheng Peng, Fan Liu, “A Survey of
Convolutional Neural Networks: Analysis, Applications, and Prospects,”
2020, arXiv, arXiv:2004.02806.

[21] Keiron O’Shea, Ryan Nash, “An Introduction to Convolutional Neural
Networks,” 2015, arXiv, arXiv:1511.08458.

[22] Sepp Hochreiter, Jürgen Schmidhuber, “Long Short-Term Memory,”
Neural Computation, vol. 9(8), pp. 1735 – 1780, 1997.

471 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Related Works
	III. Malware Detection Method based on PE File Analysis
	A. Proposed Model
	B. Selecting and Extracting Features
	C. Malware Classification Algorithm

	IV. Experiments and Evaluation
	A. Experimental Dataset
	B. Experimental Scenarios
	1) For the experimental dataset: Based on the experimental dataset that was collected and described as in Section 4A, we will mix and randomly divide in which 80% of the number of records in the dataset will be used in the training process and the remainin�
	2) For the classification algorithm: We will use five different algorithms to conduct experiments on the dataset presented above. To evaluate the effectiveness of each algorithm, we will conduct experiments on each algorithm with the change in their parame�

	C. Methods of Evaluating a System
	D. Experimental Results
	1) Experimental results with random forest: From the experimental results in Table II, we found that the accuracy of the Random Forest algorithm increases gradually when the number of decision trees increases. The algorithm gives the best classification re�
	2) Experimental results with SVM: Table III shows the results of malware detection using SVM algorithm.
	3) Experimental results with MLP: Table IV shows experimental results of detecting malware using the MLP algorithm in some cases with custom activation and solver.
	4) Experimental results with LSTM: Table V shows some experimental results of detecting malware using LSTM model with different activation functions including "tanh", "relu", "logistic", and "identity". Corresponding to the activation functions, we have th�
	5) Experimental results with CNN: Table VI shows some experimental results of detecting malware using CNN model with different activation functions including "Image", "No image", "1D".

	E. General Evaluation

	V. Conclusion
	References

