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Abstract—The increasing video content over the internet 

motivated the exploration of novel approaches in the video 

compression domain. Though neural network based 

architectures have already emerge as de-facto in the field of 

image compression and analytics, their application in video 

compression also result in promising outputs. Adaptive and 

efficient compression techniques are required for video 

transmission over varying bandwidth. Several deep learning 

based techniques and enhancements were proposed and 

experimented but they didn’t exhibit full optimal behavior and 

are not end to end trained and optimized. In the zest of a pure 

and end to end trainable compression technique, a deep learning 

based video compression architecture has been proposed 

comprises of frame autoencoder, flow autoencoder and motion 

extension network for the reconstruction of predicted frames. 

The video compression network has been designed incrementally 

and trained with random emission steps strategy. The proposed 

work results in significant improvement in visual perception 

quality measured in SSIM and PSNR when compared to some 

state-of-art techniques but in trade-off with frame reconstruction 

time sheet. 
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I. INTRODUCTION 

The growing video content over the internet motivated the 
researchers to look for more proficient and efficient video 
compression techniques. The traditional in-use video 
compression techniques are manually designed and optimized. 
In recent years, deep learning based techniques are applied in 
various domain-specific applications including image and 
video compression too. The application of deep learning in 
image compression resulted in satisfactory results [1-5]. These 
methods focused on producing the quantization based binary 
representation of the images exploring various techniques like 
transmission of a subset of the encoded representation, learning 
variable quantization, training multiple models etc. The 
enhanced implementation of recurrent approach considerably 
improved the performance of the compression architectures. 

The expanded architectures developed for image 
compression extended for videos also. But the task of video 
compression emerged as challenging due to the inclusion of 
motion information. The training of neural networks emerged 
with motion information emerged as very challenging. 

Recently, some developments have been made by the 
researchers to encode the video information in a trade-off with 
the complexity [6,7]. Though, some architecture resulted in 
superior performance in comparison to the traditional codecs, 
but with increased complexity and computation. This led to the 
exploration of learning based more efficient and less complex 
video compression methods. 

The proposed method comprises of autoencoder style 
architecture. The architecture consists of frame 
compression/decompression, flow vector compression 
/decompression network, and finally a motion extension/frame 
reconstruction network. The frame and flow 
compression/decompression networks are composed of 
encoder and decoder networks. The encoder and decoder 
networks comprise of recurrent ConvGRU based frames with 
varying degrees of compression quality. The architecture has 
been designed and implemented incrementally. The 
performance analysis and ablation study reveals the significant 
improvement in compression quality when measured both in 
SSIM and PSNR with increased efficiency measured in time 
taken to generate a single frame, mentioned as TPF. 

The work related to the proposed architecture has been 
described in Section 2. The detailed description of the 
architecture has been described in Section 3. The experimental 
details and results are presented in its subsequent section i.e. 
3B. Section 4 presents the performance analysis of the 
proposed architecture with its comparative analysis. The whole 
work has been concluded in Section 5. 

II. RELATED WORK 

The superfluous video content is taking a huge share of 
internet traffic [8]. The technological advancements have 
brought very high quality video formats and streaming of such 
formats over the web has brought new challenges to the 
compression standards. Although the in-use traditional 
techniques are performing well but doesn’t give optimal results 
with the emerging new formats. Moreover, as the bandwidth is 
limited and varying, adaptive and highly efficient techniques 
are required to transmit the quality video content with minimal 
interruption. Discrete Cosine Transforms are mainly used in 
the block designed traditional techniques [9,10]. As these 
blocks based traditional techniques are developed 
incrementally, they cannot be end to end optimized. 
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The main focus of compression techniques is to remove 
redundancies and represent the frames in minimum number of 
bits. The reconstruction error got increased with the increment 
in compression rate. Initially designed video compression 
standards are the extended versions of image compression 
standards. In such techniques like motion JPEG, individual 
frames of the video are compressed to achieve whole 
compression. The exciting results in the field of deep learning 
based image compression attained the researchers’ attention 
and found some of the autoencoder techniques more potent and 
proficient than traditional schemes [11-15]. Decreasing rate 
distortion error is the primary goal of these compression 
schemes. The use of RNNs in some image compression 
architectures also improved the performance [16]. RNN based 
architectures are more suitable for varying compression rate. 
Adaptive compression techniques are required to transmit the 
quality and uninterruptable video content over the varying 
bandwidth. Some variable image size compatible video 
compression architectures comprising of CNNs were proposed 
to remove spatial redundancies [11,14,17]. Entropy encoding 
has been used in such techniques to achieve improved 
compression. In addition to CNN and RNN based 
architectures, several different quantization and probability 
driven adaptive arithmetic coding based schemes were 
proposed and evaluated [18,19]. Such deep learning based 
explored techniques resulted in improved performance 
compared to the standard codecs. 

The exciting compression quality achieved in the field of 
image compression using deep learning based approaches lead 
to exploration of their video compatible extended versions. As 
videos includes more redundant information, it is imperative to 
have rigorous approach in the expanded formats. The widely 
used traditional codecs like H.264 or H.265 are block designed 
[20]. Their recent used versions are evolved with time by 
extensive engineering efforts. Their incremental block based 
design does not support end to end optimization. Rather, each 
block can be optimized or extended individually. Their 
predictive coding is based on the continual prediction of P or B 
frames from I frames extracting the required information. 
Initially, extensions to the existing codecs were proposed based 
on deep learning based schemes. 

Later, researchers’ explored pure deep learning based end 
to end optimizable approaches using different architectures and 
strategies. Some of the video compression architectures based 
on image interpolation were designed [21-23]. Several flow 
based techniques were presented for the prediction of the 
frames and spatial varying data will be learned by the 
Convolutional kernel. For the slow and small video frames, 
image extrapolation has performed well in frame prediction 
[24-26]. The efforts put forth in the design of deep learning 
based architectures of DVC in [7] and adversarial video 
compressions in [28] are well appreciated. A number of 
efficient deep learning based architectures have been 
developed over the years but each having its own trade off. 
Some of them suffer from the performance trade off either with 
complexity or computation.. In addition to the compression 

sphere, researches have also been extended to the extraction of 
information from compressed formats without decompressing 
[27]. Our research is also motivated from the same idea of 
designing of such compression architecture whose compressed 
format can also be parsed efficiently for analytics purpose. 

III. PROPOSED WORK 

The proposed architecture is a neural network based 
scheme for video compression. A frame auto-encoder based 
compression network has been designed using CNN and 
ConvGRU units. The input frames are taken consecutively by 
the encoder network and presents the encoded form to the 
corresponding decoder. The reconstructed frames are generated 
by the decoder from the encoded format. The encoder and 
decoder networks of the frame autoencoder are trained 
together. A Flow Autoencoder is also incorporated to compute 
the optical flow. Optical Flow is used for the motion 
information lies between consecutive frames of a video. The 
Motion Extension Network is used to reconstruct the next 
frames using optical flow and decoded frame from frame 
autoencoder. The proposed system is modelled in Tensorflow. 

A. Network Architecture 

The frame autoencoder is the vital part of compression 
architecture. It comprises of the encoder and decoder networks 
comprising of CNN and ConvGRU units. The encoder encodes 
the frames with varying degrees of compression quality. The 
binary format has been quantized before passing to the 
decoder. The decoder regenerates the frame from the encoded 
format according to the degree of compression. Farneback 
based Flow computation has been used for the motion 
estimation and prediction among the consecutive frames. Flow 
autoencoder has been incorporated to compress the computed 
flow value. Motion extension network reconstructs the frames 
based on the current frame from the frame autoencoder, the 
previous frame and decoded flow value as illustrated in Fig. 2. 
The overview of the proposed architecture has been presented 
in Fig. 1. 

Flow Vector estimation, compression and decompression is 
done using the traditional Farneback flow estimation method. 
The flow vectors between every two frames are estimated. The 
estimated flow vectors are then compressed using a standard 
CNN based encoder network with Generalized Divisive 
Normalization (GDN) layers as the nonlinearity (Fig. 3). A 
CNN based decoder network with Inverse GDN as the 
nonlinearity is used to decompress the flow vectors. 

The structural distortion among the input and output frames 
has been minimized by following loss function: 

F(xt, x’t ) = λ1 SSIM(xt, x’t ) + λ2 MSE(xt, x’t) 

where xt and x’t represents the input and output videos 
frames respectively. λ1 is the multiplier and SSIM represents 
the Structural Similarity Index Metric Loss. λ2 is also the 
multiplier and MSE denotes the mean square error amid the 
video input and the output frames. 
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Fig. 1. The Compression Network Architecture. 

 

Fig. 2. Motion Extension Network. 

 

Fig. 3. Flow Autoencoder. 
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B. Experiment 

Dataset: A dataset comprising of 20s long 571 small videos 
out of total 826 videos from Youtube UGC has been used to 
train the network, remaining clips has been for testing and 
validation. Videos of varying quality have been chosen i.e. 
480p, 360p and 720p. The frame size has been chosen as 
64x64, so video clips of all quality firstly rescaled to the 
chosen format, and then training is performed. Videos frames 
are taken randomly during training but while testing the clips 
are chosen from the starting. The model has been trained with 
randomized emission step training strategy with emission steps 
varying from 1 to 10. Addition of each emission step improves 
the output but have an effect on the compression efficiency. 

Implementation Details: For the implementation purpose, a 
single T4, K80 or P100 GPU has been used to train the 
network on the Google Colaboratory platform. ℷ1 is taken as 
one and ℷ2 be 10. The frames have been kept to the size of 64 x 
64. 10e-4 be the learning rate with Adam Optimizer. During 
the training of frame encoder with 100 epochs; at 50th, 70th 
and 90th epoch; the learning rate has been divided by ten. But 
for the whole model training, only 70 epochs have been used 
after stacking the framer encoder first and learning rate has 
been altered at 35th and 55th epoch by dividing ten. 

Evaluation: SSIM i.e. Structural Similarity Index and 
PSNR i.e. Peak Signal to Noise Ratio has been used to measure 
the visual quality of the reconstructed frames. The temporal 
distortion encountered among the frames has been evaluated by 
Flow EPE i.e. End Point Error. Moreover, the reconstruction 
time of individual frames has been measured by the TPF i.e. 
Time per Frame parameter. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

The proposed architecture has been evaluated in terms of 
perception quality, residual error and efficiency. The 
experimental results of the network have been obtained for four 
performance parameters i.e. SSIM, PSNR, EPE and TPF. 
SSIM, Structural Similarity Index is a good measure of visual 
perception. Higher the SSIM value, good is the quality of 
image/video frames. PSNR presents Peak Signal to Noise 
Ratio. It represents the image quality in term of mean square 
error. Lower the value of PSNR better will be the image. Flow-
EPE, Flow- End Point Error is used to measure the quality of 
video frames reconstructed in terms of residual error between 
consecutive frames of a video. The efficiency of the 
architecture is observed in terms of time required to generate a 
frame. The Green cell represents Highest achieved value and 
Red cell represents lowest achieved value. 

A. Performance Analysis 

The performance of the proposed architecture is measured 
in terms of both visual perception and efficiency. The 
experimental values obtained for the performance parameters 
namely SSIM, PSNR, Flow EPE and Time per frame are given 
in the Tables I to IV respectively. Moreover, the corresponding 
change in the parameters’ values with increment of each 
additional emission step has shown in Fig. 4 to 7. The proposed 
network has been designed incrementally. Firstly, the results 
were obtained with simple frame autoencoder trained with 
randomized training strategy. Secondly, Motion Extension 

Network has been incorporated with Frame Autoencoder 
named as MotionNet Randomized. The values of all four 
parameters are obtained for each emission step. The graphical 
representation shows a significant rise in SSIM, PSNR and 
TPF with each additional emission step in all three randomized 
architectures. Incorporation of Optical flow and Motion 
Extension Network results in improved visual quality. The 
same can be observed by 0.044 rises in SSIM with 3.3 
increments in PSNR value. 

TABLE I. SSIM VALUES OBTAINED PER EMISSION STEP 

SSIM Baseline 
ConvGRU 

Randomized 

MotionNet 

Randomized 

Flow-MotionNet 

Randomized 

1.  0.67 0.652 0.706 0.709 

2.  0.67 0.768 0.813 0.819 

3.  0.67 0.823 0.866 0.874 

4.  0.67 0.864 0.902 0.91 

5.  0.67 0.883 0.924 0.932 

6.  0.67 0.893 0.938 0.948 

7.  0.67 0.916 0.948 0.957 

8.  0.67 0.917 0.951 0.961 

9.  0.67 0.92 0.953 0.963 

10.  0.67 0.919 0.954 0.963 

TABLE II. PSNR VALUES OBTAINED PER EMISSION STEP 

PSNR Baseline 
ConvGRU 

Randomized 

MotionNet 

Randomized 

Flow-MotionNet 

Randomized 

1.  18.9 18.3 20 20 

2.  18.9 21.1 22.2 22.5 

3.  18.9 22.4 23.5 24.1 

4.  18.9 23.7 24.8 25.5 

5.  18.9 24.3 25.8 26.7 

6.  18.9 24.6 26.6 27.8 

7.  18.9 25.8 27.2 28.4 

8.  18.9 25.7 27.6 28.9 

9.  18.9 26 27.8 29.1 

10.  18.9 25.9 27.8 29.2 

TABLE III. FLOW EPE VALUES OBTAINED PER EMISSION STEP 

Flow 

EPE 
Baseline 

ConvGRU 

Randomized 
MotionNet 

Randomized 
Flow-MotionNet 

Randomized 

1.  1.154 1.251 0.826 0.822 

2.  1.154 0.613 0.477 0.577 

3.  1.154 0.555 0.383 0.368 

4.  1.154 0.409 0.35 0.276 

5.  1.154 0.311 0.273 0.226 

6.  1.154 0.319 0.248 0.253 

7.  1.154 0.273 0.173 0.189 

8.  1.154 0.221 0.199 0.17 

9.  1.154 0.201 0.175 0.148 

10.  1.154 0.173 0.189 0.17 
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TABLE IV. TIME PER FRAME VALUES OBTAINED PER EMISSION STEP 

TPF Baseline 
ConvGRU 

Randomized 

MotionNet 

Randomized 

Flow-MotionNet 

Randomized 

1.  0.015 0.0182 0.0208 0.0243 

2.  0.015 0.0186 0.0214 0.0248 

3.  0.015 0.0191 0.0218 0.0254 

4.  0.015 0.0195 0.0224 0.0258 

5.  0.015 0.0201 0.023 0.0263 

6.  0.015 0.0205 0.0234 0.0268 

7.  0.015 0.0211 0.0239 0.0274 

8.  0.015 0.0216 0.0245 0.0279 

9.  0.015 0.0221 0.025 0.0285 

10.  0.015 0.0226 0.0255 0.029 

 

Fig. 4. SSIM Values per Emission. 

 

Fig. 5. PSNR Values per Emission. 

 

Fig. 6. Flow EPE Values per Emission. 

 

Fig. 7. TPF Values per Emission. 

The error in consecutive frames of the video has been 
measured by Flow-EPE. In general, the EPE values are 
decreasing with each additional emission step but some 
fluctuations have been observed in some emission steps like 
the smallest value of EPE has been obtained after 9th emission 
step instead of 10th step. But in comparison to the simple 
frame autoencoder, a slight reduction of 0.003 EPE value has 
been observed if compared for last emission step. The 
efficiency of the network has been observed in terms of time 
required for the network to regenerate a single frame. As the 
proposed network comprises of optical flow and Motion 
Extension Network, the increase in computation resulted in 
slight increase in TPF value, so increased value of TPF has 
been observed for the proposed network. The analysis of the 
outcomes reveals that the proposed architecture shows a 
significant improvement in visual quality but with slight cost of 
regeneration time. This architecture can be further enhanced by 
plugging other optimized networks like optical flow, entropy 
coding etc. 

The performance of adaptive bit rate video compression has 
been analyzed with the average values of performance 
parameters obtained for all emission steps. The below Table V 
show the average values of the performance parameters. Here 
also, the proposed architecture shows a significant 
improvement in SSIM and PSNR values eventually leading to 
better video quality frames. But the average TPF value has 
been increased by 0.00628 units. The incorporation of optical 
flow and motion extension network, though contributed in 
improving the visual quality of frames but increased the 
computation of the network leading to enhanced time in frame 
regeneration. 

TABLE V. AVERAGE PERFORMANCE IN 10 EMISSION STEPS 

 Avg. SSIM Avg. PSNR Avg. EPE Avg. TPF 

Baseline 0.67 18.9 1.154 0.015 

ConvGRU 

Randomized 
0.8555 23.78 0.4326 0.02034 

MotionNet 

Randomized 
0.8955 25.33 0.3293 0.02317 

Flow-

MotionNet 

Randomized 

0.9036 26.22 0.3199 0.02662 
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B. Comparison with State-of-Art Architectures 

The outcomes of the proposed architecture have also been 
compared with the state-of-art conventional compression 
techniques like H.264 and H.265 and also with the deep 
learning based models proposed by authors of DVC [7] and 
Adversarial video compression [28]. 

For comparison, SSIM and PSNR metrics are used to 
relatively measure the perception quality. MS-SSIM correlates 
better with human perception of distortion. The proposed 
model outperformed in terms of MS-SSIM metrics. Table VI 
represents the MS-SSIM and PSNR values of the various 
architectures. The proposed model achieved good SSIM 
performance but with a drop in PSNR value. 

TABLE VI. MS-SSIM VALUES OF VARIOUS ARCHITECTURES 

Architecture MS-SSIM PSNR 

H.264 0.955 34 

H.265 0.96 36 

Adversarial video compression [28] 0.9476 28.46 

DVC [7] 0.955 35.5 

Flow-MotionNet (Proposed) 0.963 29.2 

V. CONCLUSION 

Deep Learning is becoming a milestone in the field of both 
compression and analytics. Some deep learning based 
enhancements and improvements surpass the traditional 
techniques in both qualitative and quantitative measurements. 
These positive outcomes motivated the exploration of pure 
deep learning based video compression strategies which can be 
end to end trained and optimized. This paper also presents a 
simple lightweight adaptive deep learning based architecture 
comprises of optical flow and motion extension network 
trained with randomized training strategy with ten varying 
emission steps. A ConvGRU unit has been used in each layer 
of both the encoder and decoder networks of frame 
autoencoder. Optical Flow has also been used for the motion 
depiction which eventually helps in frame regeneration with 
frame autoencoder decoded output in motion extension 
network. The performance analysis depicts a significant 
improvement in visual quality measured in terms of both SSIM 
and PSNR but in trade-off with frame regeneration time. The 
performance of the proposed architecture can be further 
improved by addition of other optimization strategies. 
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