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Abstract—A malware is a computer program which causes 
harm to software. Cybercriminals use malware to gain access to 
sensitive information that will be exchanged via software infected 
by it. The important task of protecting a computer system from a 
malware attack is to identify whether given software is a 
malware. Tech giants like Microsoft are engaged in developing 
anti-malware products. Microsoft's anti-malware products are 
installed on over 160M computers worldwide and examine over 
700M computers monthly. This generates huge amount of data 
points that can be analyzed as potential malware. Microsoft has 
launched a challenge on coding competition platform 
Kaggle.com, to predict the probability of a computer system, 
installed with windows operating system getting affected by a 
malware, given features of the windows machine. The dataset 
provided by Microsoft consists of 10,868 instances with 81 
features, classified into nine classes. These features correspond to 
files of type asm (data with assembly language code) as well as 
binary format. In this work, we build a multi class classification 
model to classify which class a malware belongs to. We use K-
Nearest Neighbors, Logistic Regression, Random Forest 
Algorithm and XgBoost in a multi class environment. As some of 
the features are categorical, we use hot encoding to make them 
suitable to the classifiers. The prediction performance is 
evaluated using log loss. We analyze the accuracy using only asm 
features, binary features and finally both. xGBoost provide a 
better log-loss value of 0.078 when only asm features are 
considered, a value of 0.048 when only binary features are used 
and a final log loss of 0.03 when all features are used, over other 
classifiers. 
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I. INTRODUCTION 
There are several kinds of malware that can infect a 

computer system. The number of malwares exceeds 800M in 
2019 [1]. Detecting a given file as malware is one of the 
interesting research problems. Malware detection is 
challenging because the cybercriminals continuously change 
the way of attacking the computer systems, resulting in change 
in the features of malware software. There is a long-lasting 
confrontation between cyber security experts and malware 
creators. Machine learning algorithms can be efficiently used 
to identify whether a given file is malware or not. These 
algorithms require features/attributes of malwares. Malware 
files exist either in the form of byte files or assembly language 
files. Features can be successfully extracted from these files. 

Microsoft is one of the major companies that develop anti-
malware products. Microsoft has launched a challenge to 
detect malwares on Kaggle.com [2]. Microsoft has provided 
nearly half a tera byte of data consisting of malware files. The 

dataset given in [2] consists of 10,868 instances with 81 
features, classified into nine classes. 

Several works are available in the literature on malware 
classification. Ahmadi et al and Drew et al work on textual 
feature extraction from the challenge dataset [3,4]. The dataset 
is of huge size and it is difficult to work on a computer with 
moderate configuration. Hu et al. address scalability of the 
dataset [5]. Scofield et al. utilize an entity resolution strategy 
that merges syntactically dissimilar features [6]. Deep learning 
techniques are used in [7] and [8] to classify malwares based 
on the textual features. Narayanan et al. use the classifications 
like SVM, k-Nearest Neighbours and Artificial Neural 
Networks in their work [9]. More recent works can be found 
in [10]. 

In this work, we apply various multi class classification 
algorithms to predict the class of a given malware. The 
organization of this paper is as follows: Section 2 describes 
the research problem, dataset details, feature extraction and 
evaluation measures. Section 3 explains proposed approach to 
solve the problem. Section 4 details the experimental setup. 
Results are given in Section 5 along with some discussion. 
Conclusions are given at the end. 

II. PROBLEM DESCRIPTION 

A. Problem Statement 
Microsoft has classified malware into 9 classes. Microsoft 

malware classification is the problem of determining in which 
class of malware, a given file belongs to. This is a multi-class 
classification problem. To problem can be elaborated as 
follows: Given a file, the problem is to estimate the 
probability of the file belonging to each type of nine classes of 
malware. In multi-class classification problems, the algorithm 
predicts the class with maximum probability as the target 
class. But this kind of approach is not probable for malware 
classification because, estimation of the probabilities that 
belong to each class is valuable. For example, the probability 
of a file belonging to class 3 is 0.5 and class 4 is 0.4. If the 
problem is modelled such that the file belongs to class 3 
considering the maximum probability, we will lose the 
information of the file may also be affected by class 4 with 
slight margin. Therefore, our approach computes probability 
of a given malware belonging to each of the 9 classes. The 
structure of the solution followed in this work is given in 
Fig. 1. 

B. Dataset Description 
The dataset available at Microsoft malware classification 

challenge webpage [1] has been used in this work. The 
organizers of this challenge have provided the training and test 

509 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 12, No. 3, 2021 

datasets separately. There are two kinds of files in this dataset. 
(1): .asm file and (2): .bytes file. Total train dataset consists of 
200GB of data, out of which 50GB is .bytes files and 150GB 
is .asm files. There is a total of 10,868 .bytes files and 10,868 
asm files, comprising 21,736 files in total, with nine possible 
class labels denoting 9 types of malwares. The number of files 
in each kind of class is given in Table I. 

Fig. 2 shows the distribution of instances among nine 
classes of malware in the given dataset. It is understood from 
Fig. 2 that the problem is highly imbalanced with 27% of 
instances belonging to class 3 and 0.4% of instances in class 5. 
Classes 4, 5 and 7 occur very infrequently whereas, classes 1, 
2 and 3 are the malwares that occur frequently. 

Box plot on asm file size is given in Fig. 3. This indicates 
that class 2 and 5 have some similarity. But from class 
distribution plot in Fig. 2 implies that class 2 is frequently 
occurring, and class 5 is the least occurring class. This 
signifies that file size is useful in predicting class labels. 

Predicted 
Probability 0.5 0 0 0 0.1 0.4 0 0 0 

Class Label 1 2 3 4 5 6 7 8 9 

Fig. 1. Structure of Solution. 

TABLE I. DATASET DESCRIPTION 

Class ID Family name #files Type 

1 Ramnit 1541 Worm 

2 Lollipop 2478 Adware 

3 Kelihos_ver3 2942 Backdoor 

4 Vundo 475 Trojan 

5 Simda 42 Backdoor 

6 Tracur 751 TrojanDownloader 

7 Kelihos_ver1 398 Backdoor 

8 Obfuscator.ACY 1228 Any kind of obfuscated 
malware 

9 Gatak 1013 Backdoor 

A sample data points in both files are given in Table II. 

TABLE II. SAMPLE DATA POINT 

Sample data point in .asm file 

1 .text:00401000 assume es:nothing, ss:nothing, ds:_data, fs:nothing, 
gs:nothing 

2 .text:00401000 56 push esi 

3 .text:00401001 8D 44 24 08 lea eax, [esp+8] 

Sample data point in .bytes file 

1 00401000 00 00 80 40 40 28 00 1C 02 42 00 C4 00 20 04 20 

2 00401010 00 00 20 09 2A 02 00 00 00 00 8E 10 41 0A 21 01 

3 00401020 40 00 02 01 00 90 21 00 32 40 00 1C 01 40 C8 18 

 
Fig. 2. Class Distribution of Instances. 

 
Fig. 3. Box Plot of Byte Files Sizes. 

C. Feature Extraction 
1) Features related to byte files: As byte files are 

represented using hexadecimal values, there are 256 distinct 
values. To pose this as text processing problem, we encode all 
these 256 values as unigram bag of words. The t-SNE diagram 
with different perplexities is shown in Fig. 4 and 5. This 
indicates that some classes are well separated from others. 
Features extracted from byte files: file_size, unigram_bag_ 
of_words of size 256. 
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Fig. 4. t-SNE Diagram with Perplexity 50. 

 
Fig. 5. t-SNE Diagram with Perplexity 30. 

2) Features related to asm files: There are 10,868 files of 
asm of size around 150 GB. The initial observation of asm 
files says that there are Address, Segments, Opcodes, 
Registers, function calls and API related words in asm files. 
We have extracted 52 features from all the asm files. These 
features consist of file_size, bag of words related to 13 
prefixes, 26 opcodes, 3 keywords and 9 registers. As the file 
size is huge, we use multi-threading with 5 threads to extract 
these features. 

D. Evaluation Measures 
1) Multi-class log-loss [17, 18]: Log loss is the common 

evaluation measure used for multi class classification 
problems. Multi class log loss is defined as follows: 

−
1
𝑛
��𝑦𝑖𝑗log (𝑝𝑖𝑗)

𝑐

𝑗=1

𝑛

𝑖=1

 

where, n is the number of instances, 

c is the number of classes, 

yij =1 if instance i belongs to class j and 

pij is the predicted probability estimate of instance i belonging 
to class j. 

A pure classifier yields a log loss of 0. The log loss value 
increases as the probability estimate by the chosen algorithm 
goes wrong. The aim of machine learning algorithm is to 
minimize the log loss value. 

2) Confusion matrix: A confusion matrix for a n-class 
problem will be an n X n matrix, where columns correspond to 
the predicted class labels and the rows corresponds to the 
actual [19, 20, 21]. The main diagonal gives the correct 
predictions. That is, the cases where the actual values and the 
model predictions are the same. In malware classification 
problem, the matrix is of size 9 X 9. Each cell [i,j] represents 
number of points of class i are predicted to belong to class j. 
The ideal value of confusion matrix C can be 

C[i,j]  = 0 if i≠j 

   = Number of instances of class i(or j) if i=j 

3) Precision: Precision is the fraction of correctly 
predicted instances out of total predictions for a given class 
[20, 21]. Precision is good if cost of wrong belongingness 
prediction to a class. 

4) Recall: Recall is the capture of correct predictions 
among total instances belonging to the class [20, 21]. Recall is 
good if cost of identifying an instance which is a member of 
the class. If a patient who is cancerous is not predicted, it is a 
huge loss to the patient. 

The proposed approach is explained in the next section.  

III. PROPOSED APPROACH 
Various machine learning algorithms are used in a multi 

class environment in this work. The proposed approach is 
shown in Fig. 6. The algorithms used in this work are briefly 
explained. 

A. Random Model 
In random model, we compute the probabilities of each 

class in the solution shown in Table I purely in random and 
normalise the sum to be 1. A random model gives us the worst 
possible log loss value of any algorithm. Any model 
performing worse than random model can be immediately 
rejected. 

B. k-Nearest Neighbours (k-NN) Classifier [11] 
k-NN algorithm is a lazy learning algorithm. It doesn’t 

train the model in advance. The algorithm computes distance 
of test instance from k nearest instances in the training data. 
The class to which majority of k nearest neighbours belongs to 
is taken as the class of the test instance. Determining right k is 
a challenge in this algorithm. Hyper parameter tuning helps us 
in finding right k. 
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Fig. 6. Proposed Approach. 

C. Logistic Regression [12] 
Logistic regression is basically defined for binary 

classification problem. We use multinomial logistic regression 
[13], which is a variant of logistic regression for multi class 
problem. This algorithm predicts the probability of test 
instance belonging to a class in multi class environment. 

D. Random Forest [14] 
Random forest is an ensemble of decision trees trained 

with bagging. Random forest algorithm constructs n number 
of decision trees using train data. The class lable will be 
determined by majority voting of all these constructed 
decision trees. The decision tree algorithm can naturally 
handle multi class case too. 

E. XGBoost [15] 
XGBoost is an optimized distributed gradient boosting 

library. It utilises Gradient Boosting framework. XGBoost 
provides a parallel tree boosting method, which is very fast 
and accurate in many cases. XGBoost is a kind of ensemble. 
Ensemble learning constructs of a group of predictors that use 
multiple models and aggregates the performance of each tree. 
In Boosting technique, the errors made by previous models are 

tried to be corrected by succeeding models by adding some 
weights to the models. 

 
Characteristics of XGBoost: 

• XGBoost is used in regression as well as classification 
problems. 

• Supports parallel processing. 

• Can be able to manage memory very efficiently for 
large datasets exceeding RAM. 

• Supports different kinds of regularizations which helps 
in reducing overfitting. 

• Provides auto pruning of tree. 

• Efficiently handles missing values. 

• Has inbuilt Cross-Validation. 

• Takes care of outliers to some extent. 

All the classification algorithms chosen are sensitive to 
parameters. The experimental setup and parameter setting is 
discussed in the next section. 
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IV. EXPERIMENTAL SETUP 
This section describes the parameter selection of machine 

learning algorithms used for experimentation. Some classifiers 
we intend to use are sensitive to parameters. We perform 
hyper parameter tuning to fix the best parameter. The hyper 
parameter tuning is shown in Fig. 7 to 10. 

k-NN classifier is sensitive to the value of k [16]. To find 
best k, we have tested the model with different values of k 
from 1 to 15. The model gives best log loss for k=1, as shown 
in Fig. 7. Therefore, we use k=1 in our experimentation. 

For Random Forest classifier, we have tested with number 
of trees varying from 10 to 3000 (Fig. 9). With 1000 trees we 
could achieve best log loss and low misclassification error. 
Therefore, we use 1000 trees in random forest. We use 
XGBoost classifier with 500 trees, 500 estimators with a 
maximum depth of 5 and learning rate 0.05. 

Any machine learning algorithm needs training and testing 
to determine the performance of the classifier. We split the 
dataset randomly into three parts train, cross validation and 
test with 64%, 16%, 20% of data respectively. We use 80% of 
data for training and 20% for testing. 

 
Fig. 7. Hyper Parameter Tuning for k-NN. 

 
Fig. 8. Hyper Parameter Tuning for Logistic Regression. 

 
Fig. 9. Hyper Parameter Tuning for Random Forest. 

 
Fig. 10. Hyper Parameter Tuning for XGBoost. 

V. RESULTS AND DISCUSSION 
We experiment with the features extracted from byte files, 

asm files individually and by combining them all. The 
following sections present the results. 

A. Results on Byte Files 
The log loss values on cross validation as well as test data 

are tabulated in Table III. Random forest classifier achieves 
low log loss value on cross validation data, whereas XGBoost 
is the winner on test data as well as misclassified errors. 

From Table IV, we can see that the precision and recall of 
k-NN for class 5 is low compared to other classes. We guess 
that this is because of very few number of instances in class 5 
(Fig. 1). From precision matrix, it is understood that there is a 
confusion between class 1 and class 5. 

B. Results on Features Extracted from asm Files 
The log loss values computed using features extracted 

from asm files are tabulated in Table V. XGBoost obtain 
better log loss on test data. But precision and recall for class 5 
is improved using asm file features as shown in Table VI. 

513 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 12, No. 3, 2021 

TABLE III. LOG LOSS RESULTS USING ONLY BYTE FILES 

Algorithm 
Log loss #misclassified points 

cross validation test data  

Random model 2.4561 2.4850 88.5000 

k-NN  0.2253 0.2415 4.5078 

Logistic Regression 0.5499 0.5283 12.3275 

Random Forest 0.0879 0.0858 2.0239 

XGBoost 0.0928 0.0782 1.2419 

TABLE IV. PRECISION AND RECALL USING ONLY BYTE FILES 

Classifier↓ Class → 1 2 3 4 5 6 7 8 9 

KNN 
Precision  0.88 0.97 1.00 0.97 0.75 0.89 0.94 0.96 0.91 

Recall 0.96 0.93 1.00 0.96 0.75 0.92 0.91 0.93 0.92 

Logistic Regression 
Precision  0.76 0.96 0.99 0.78 0.00 0.78 0.96 0.70 0.86 

Recall 0.78 0.89 0.99 0.97 0.00 0.68 0.95 0.88 0.70 

Random Forest 
Precision  0.94 0.99 0.99 0.95 1.00 0.95 1.00 0.95 0.98 

Recall 0.98 0.99 1.00 0.96 0.87 0.95 0.95 0.93 0.97 

XGBoost 
Precision  0.95 0.99 1.00 0.95 1.00 0.97 1.00 0.99 0.99 

Recall 0.99 0.99 1.00 0.98 0.75 0.98 0.96 0.95 0.98 

TABLE V. LOG LOSS RESULTS USING ONLY ASM FILES 

Algorithm 
Log loss 

#misclassified points 
cross validation test data 

Random model 2.4561 2.4850 88.5000 

k-NN  0.0958 0.0894 2.0239 

Logistic Regression 0.4244 0.4156 9.6136 

Random Forest 0.0496 0.0571 1.1499 

XGBoost 0.0560 0.0491 0.8739 

TABLE VI. PRECISION AND RECALL USING ONLY ASM FILES 

Classifier↓ Class → 1 2 3 4 5 6 7 8 9 

KNN 
Precision  0.96 1.00 0.99 0.96 0.70 0.98 0.95 0.95 0.97 

Recall 0.97 0.99 0.99 0.91 0.87 0.95 0.97 0.94 1.00 

Logistic Regression 
Precision  0.89 0.97 0.84 0.97 0.00 0.93 0.47 0.89 0.95 

Recall 0.91 0.99 0.99 0.71 0.00 0.88 0.10 0.83 0.95 

Random Forest 
Precision  0.97 1.00 0.99 0.98 1.00 0.99 0.96 0.97 0.98 

Recall 0.99 1.00 0.99 0.95 0.87 0.96 0.98 0.96 0.99 

XGBoost 
Precision  0.97 1.00 0.99 0.98 1.00 1.00 0.96 0.98 0.98 

Recall 0.99 1.00 0.99 0.95 0.87 0.97 0.98 0.98 0.99 
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C. Results on Both Byte and asm Files 
Random forest ensemble and XGBoost clearly obtain 

better accuracy in both cases of asm as well as byte files. We 
have used both features in these two models and present 
results in Table VII. When 257 features related to byte files as 
well as 53 features extracted from asm files are used for 
training, log loss result of XGBoost is improved for both cross 
validation as well as testing data from 0.048 to 0.031. 

TABLE VII. LOG LOSS RESULTS USING ASM AND BYTE FILES 

Algorithm 
Log loss 

cross validation test data 

Random Forest 0.0355 0.0401 

XGBoost 0.0315 0.0323 

VI. CONCLUSION 
In this paper, we detect the type of malware that a given 

file belongs to. We use unigram model to construct bag of 
words from byte files as well as asm files. Random forest and 
XGBoost classifiers achieve a better log loss value of 0.031 
over other classifiers used in this work. Usage of only byte 
files failed to detect some class of malware especially class 5, 
where the number of files are few, but the other information 
pertaining to asm files could succeed in detecting malwares 
belonging to all class. In future, we would like to apply 
advanced text retrieval features on byte files to improve the 
log-loss. 
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