
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

Performance Analysis of Deep Neural Network based
on Transfer Learning for Pet Classification

Bhavesh Jaiswal1, Nagendra Gajjar2
Department of Electronics and Communication Engineering

Institute of Technology, Nirma University, SG Highway
Ahmedabad, Gujarat, India

Abstract—Deep learning frameworks have progressed beyond
human recognition capabilities and, now it’s the perfect
opportunity to optimize them for implementation on the
embedded platforms. The present deep learning architectures
support learning capabilities, but they lack flexibility for
applying learned knowledge on the tasks in other unfamiliar
domains. This work tries to fill this gap with the deep neural
network-based solution for object detection in unrelated domains
with a focus on the reduced footprint of the developed model.
Knowledge distillation provides efficient and effective teacher-
student learning for a variety of different visual recognition
tasks. A lightweight student network can be easily trained under
the guidance of the high-capacity teacher networks. The teacher-
student architecture implementation on binary classes shows a
20% improvement in accuracy within the same training
iterations using the transfer learning approach. The scalability of
the student model is tested with binary, ternary and multiclass
and their performance is compared on basis of inference speed.
The results show that the inference speed does not depend on the
number of classes. For similar recognition accuracy, the
inference speed of about 50 frames per second or 20ms per
image. Thus, this approach can be generalized as per the
application requirement with minimal changes, provided the
dataset format compatibility.

Keywords—Machine learning; knowledge distillation; transfer
learning; domain adaptation

I. INTRODUCTION
Deep neural networks are thriving, due to vast data

availability, newer complex models, and heterogeneous
compute capacity. The data accumulation ease and its open-
source availability are opening new doors for the research
community. So new models are popping up almost every day
on how to solve real-world problems using that data. Now
crunching the data is also getting cheaper day by day, and one
does not require a personal high-end custom configured system
for this job. It is offloaded to cloud-based solutions provided
by Amazon, Google, and Microsoft. Traditional machine
learning & data mining algorithms make predictions using
statistical models and trained on labelled or unlabelled training
datasets. As the labelled data may be too few in practical
applications; so to build a good classifier; semi-supervised
classification done by using a large amount of unlabelled data
and a small amount of labelled data [1], [2], [3]. In [4], the
problem of how to deal with the noisy-class label is explored.
Similarly, in [5], cost-sensitive learning is considered. In [6], it
is shown that having a minimum depth to the network is vital

for the model performance. All these approaches assumed that
the distributions of the labelled and unlabelled data were the
same.

For implementation on edge-based devices, the model size
could be cut down by the compression techniques at various
levels in the model, data, and computation. The classic Alexnet
[7] was trained on the Imagenet dataset and performed 2.27
billion operations with 238MB of memory usage for storing the
model data itself. In the compressed model, Squeezenet [8]
performs 2.17 billion of operation but with a smaller footprint
of 4.8MB, while Darknet [9], an open source for the Yolo [10],
does less than 1 billion operations with 28MB of the footprint.
Note that this comparison is assuming a baseline accuracy of
80 per cent in recognizing the labelled visuals. It does not
include the run time memory requirements while performing
the computation, which is not directly proportional to the
number of operations performed as neural networks are non-
linear models. Also, compression-decompression takes more
computation power. Mobilenet [11] tries to address this
problem to an extent. Though the model size is reduced from
the storage perspective but while performing the inference on a
lightweight platform, they may fail to give the real-time
response due to resource constraints. To make them predict
with a high confidence value [12] the sematic segmentation
approach from [13], [14] is used by [15], [16], [17].

The practical implementation of the deep neural network in
real-life scenarios is quite the opposite of the earlier
description. IoT based heterogeneous devices have resource
constraints that limit their use on them. They mostly offload
this to the cloud, but that solution is not always feasible due to
the latency involved. This work explores the knowledge
distillation approach in deep neural networks for IoT edge
devices for real-time applications. The contribution of this
work is to train a smaller model for a lightweight target
platform with a negligible loss of accuracy. The proposed
lightweight model can be easily customized to the different
domains and can be easily ported to IoT based edge devices.
Section 2 details why deep learning on heterogeneous edge
devices is difficult to implement. In Section 3, the state of the
art approaches for model reduction is presented. Section 4
delves into the knowledge distillation approach and how it can
be used on the edge-based device followed by experimental
setup and performance analysis of the implementation.

80 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

II. DEEP LEARNING ON EDGE DEVICES
Convolution Neural Networks models have evolved to

surpass the human capabilities in image classification task but
when it comes to their deployment on the edge devices, there
use is limited due to various resource constraints as described
below:

A. Limited Data
The large dataset is not available in all circumstances for

the training of the network and even it is available it may be
quite expensive in terms of time and feasibility. Data privacy is
another factor which forces to work with lesser data locally on
the device itself.

B. Limited Model Footprint
Models which thrusted the growth of DNN with their

accuracy limits surpassing humans are quite bulky in terms of
memory requirements for storage. This memory could be either
for storage of the model or for the storage of the millions of the
weights calculated during the runtime. For practical
implementation, the memory footprint of the application
should be small enough to fit into any embedded device.

C. Limited Computation
Even with lesser data and smaller models the solution does

not work out. Because of the millions of intermediate weights
computation, it involves during the model run, it may require a
desktop/server capability to finish the task in real time. The
computational latency is not tolerable in the practical
application involving the heterogeneous edge device. Now as
the heterogeneous edge devices has limited capabilities, one
need to devise the ways to eliminate or reduce these limitation
causes. The next section describes this in detail.

III. DEEP NEURAL NETWORK REDUCTION
Though DNNs have the tremendous diversity of structures,

still the core computation of a network is the variations of
matrix-multiplications or more precisely multiply-and-
accumulate (MAC) operations. The factors which effect the
MAC operations are batch size, image dimensions, filter type,
no. of channels, kernel size and activation size. These
combined for every neuron to neuron connections make the
millions of hyper-parameters of the DNN.

To reduce these transformation functions parameterized by
learnable weights, researchers worldwide have developed their
own various model compression techniques, but only some of
the well-researched approaches are covered here for brief
overview.

A. Pruning
The hyper parameter space of the DNN is reduced by

trimming the network physically or pruning the network itself
in various ways.

The unimportant weight connections can be pruned if they
are below a predefined threshold or if they are redundant.
About 50% of the weights can be pruned without fine-tuning
and with fine-tuning, more than 80% of the weights can be
pruned [18]. The pruning of the weights can be driven by
energy distribution for the network [19]. In Energy Inference

Engine [20], the sparse weights after pruning can also be
compressed to reduce memory access bandwidth. Huffman
coding is used to reduce storage and bandwidth requirements
for weights by 20-30% [21].

Another approach to trim the individual neurons is that if
they are redundant [22]. As these are basic element of the
network so the associated connections of the neuron will also
be obliterated. In the literature many ways are researched to do
this type of pruning, even some of the neuron layers which do
not contribute much in the network updation can also be
removed [23].

Convolutional filters are applied to the data and according
to their importance, they can be eliminated from the network.
The filter’s importance can be known by their influence on the
weight calculation or L1/L2 norm [24]. Other methods are also
researched in the literature which is not the scope of this work.

B. Quantization
The network architecture can be improved in many ways

e.g. by reducing the quantity of weights and number of
operations. The large convolution operation can be replaced
with a number of smaller convolution operators having fewer
weights in total, keeping the effective receptive field same i.e.
large filters can be emulated with several of the smaller size
filters in cascade e.g. convolution of size n by n can be made
by combining 1 by n convolution with N by 1 convolution
[21]. SqueezeNet [25] uses this approach to achieve an overall
reduction in number of weights up to 50x compared to
AlexNet, while keeping the accuracy in similar range.

Weights of fully connected layers can be quantized using
Regularization technique [26], [27]. Clustering by ‘k-means’
[28] achieved more than 20x compression with negligible loss
of accuracy. Hashed Nets [29] use a low-cost hash function to
group weights into hash buckets to share parameters.

C. Knowledge Distillation
Knowledge distillation (KD) was introduced by [30] as:

• Train a large model that performs and generalizes very
well. This is called the teacher model.

• Take all the data you have and compute the predictions
of the teacher model. The total dataset with these
predictions is called the knowledge, and the predictions
themselves are often referred to as soft targets. This is
the knowledge distillation step.

• Use the previously obtained knowledge to train the
smaller network, called the student model.

Fig. 1 summarizes this pictorially.

Fig. 1. Example of a Transfer Learning Model.

81 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

IV. TEACHER-STUDENT LEARNING
Knowledge distillation starts with training a larger model,

the teacher ‘T’. As it is trained on a heavier platform (GPU), it
achieves high performance. Then a lightweight model known
as student ‘S’ is deployed to learn from ‘T’. Now, ‘S’ is
supposed to give comparable performance as ‘T’ but with less
memory and more speed.

To improve knowledge transfer from teacher to student
various types of methods are researched. Assuming a trained
‘T’ has already eliminated some label errors contained in the
ground truth data, the authors in [29] treated the hard label
predicted by ‘T’ as the underlying knowledge. While in [30],
the soft label produced by ‘T’, i.e., the classification
probabilities, are focused to provide more information to
transfer. In general, knowledge is transferred from the ‘T’ to
‘S’ by minimizing a loss function in which the target is the
distribution of class probabilities predicted by ‘T’. This
probability distribution has the correct class at a very high
probability (close to ‘1’) with all other class probabilities very
close to ‘0’. As such, it does not provide much information
beyond the ground truth labels already provided in the dataset.
For this, Hinton [30], introduced the concept of "softmax
temperature". As it grows, the probability distribution
generated by the softmax function becomes softer, providing
more information as to which classes ‘T’ found more like the
predicted class. This is the “dark knowledge” embedded in the
‘T’ and transferred to ‘S’ in the distillation process. The
distillation related work can be categorized as below:

• Feature Map: The feature map across channel
dimension can be averaged to obtain spatial attention
map [31]. The inner product of two feature maps can be
used for the inter-layer flow [32]. The author in [33]
improved this idea with singular value decomposition
(SVD). A recent work [34] demonstrated the
effectiveness of mimicking feature map directly in
distillation.

• Transfer strategy: FitNets [35] selected a hidden layer
from ‘T’ and ‘S’ to be hint layer and guided layer
respectively. ‘S’ can get a better initialization through
pre-training the guided layer with the hint layer as
supervision. Net2net [36] proposed a function-
preserving transformation, which makes it possible to
directly reuse it from ‘T’ to initialize the
hyperparameters of ‘S’.

• Hybrid strategy: Adversarial learning is used with
distillation by using a comparator to check the outputs
of ‘S’ and ‘T’ are close enough or not [37]. The author
in [38] exploited reinforcement learning to search the
best network structure of ‘S’ under the influence of ‘T’.
In [39] and [40] progressive or lifelong learning is
referred to make knowledge transfer step by step.

Looking to this a novel approach to developing deep
learning models for various domains is proposed. As every
student in a class distribution may not have a similar capability
or generally it a Gaussian curve. To flatten the curve on the
higher side of learning capability, the model tries to imbibe the
relative knowledge which can be used on the lightweight
students to perform the object detection task with comparable
performance. The aim is, to provide a generic solution to the
problem with the assumption that the model can only be
transferred successfully using the smaller dataset avoiding the
limitations of the domain transfer.

V. EXPERIMENTAL EVALUATION AND DISCUSSION
A popular framework Caffe [41] is chosen for the binary

image classification task. The Redux Dogs vs. Cats
competition dataset [42] is used for training and testing
purpose on NVIDIA GTX 770 with 1536 GPU cores [43]. The
training data consists of 12500 images of each for Cats and
Dogs. For testing phase 12500 images random images from the
dataset are chosen.

The model calculates the probability of a pet and assigns a
numeric value between 0 and 1 for the predicted class.
Currently the implementation involves binary classification;
cat and dog, but it can be extended easily to include other types
of pets. For that the model will give the probability values for
each class and the highest value is the closest. The accuracy of
the implemented training models depends on the model
training parameters and varies with change in hyper parameters
that itself is a separate research area. The log-loss formula can
be used to represent the accuracy of any model:

() () ()
1

1 ˆ ˆlog 1 log 1
n

i i i i
i

Logloss y y y y
n =

= − + − − ∑
 (1)

Where, n represents the number of images in the test set. y
the prediction probability for the dog and y^ equals to ‘1’ if the
current image is identified as a dog or equals to ‘0’ if a current
image is predicted as cat. The log-loss probability is calculated
for each run and note that a smaller value of log loss is desired.

First, the complex teacher model is trained using labeled
data and then same is tested with the unlabeled data to classify
the pet either cat or dog. Fig. 2(a) shows the learning curve of
the teacher model achieving 75% validation accuracy in 1500
iterations which occurred in about 2 and ½ hours. Further, the
weights from the teacher model are used to pass to the student
model as per knowledge distillation criteria, i.e., the student
model is initialized with the pre-trained data/weights from the
teacher model. Fig. 2(b) shows the training/learning curve of
the student model achieving a 95% validation accuracy in
about 1000 iterations which occurred in less than 2 hours.

In Table I, while doing transfer learning, the accuracy has
jumped from 75% to 95% that too in lesser run time. The log
loss value also comes down close to unity, the ideal log loss
value for this problem.

82 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

Fig. 2. Learning Curve for (a) Teacher Model; (b) Student Model.

Fig. 3. Learning Curve for the GPU with Previous (a) Teacher Model; (b) Student Model.

TABLE I. PERFORMANCE COMPARISON FOR TWO MODELS

Parameters Teacher
(Training run)

Student
(Transfer learning)

Accuracy (%) 75 95

Iteration 1500 1000

Time Taken (minutes) 155 110

Log Loss 8.9 1.1

To validate the transfer learning results further multiple
runs are conducted on the higher capacity single GPU
(NVIDIA GTX 1080Ti with 3584 cores) [44] configuration
and with dual GPU configuration. The results are shown in
Fig. 3 and summarized in Table II. It shows the comparison
matrix from all the test runs on various GPU platforms. In
model 1, using the GPU with significantly greater number of
cores reduces the number of iterations to achieve the similar
results and it converges faster. On the other hand, with model
2, the results are similar both in terms of accuracy and number
of iterations irrespective of the platform availability. It
indicates that transfer learning-based approach comes out as a
clear winner for limited resource environment.

Next, the task is performed for binary, ternary, and
multiclass identification and their performance is compared on
basis of inference speed. The results show in Table III that the
inference speed does not depend on the number of classes. The

multiple domains are also considered to prove that for similar
recognition accuracy the inference speed achieved is about 50
frames per second or 20ms per image.

TABLE II. RESULTS FROM VARIOUS GPU CORES

Platform
NVIDIA
GPU core
count

Model-1 (Training) Model-2 (Transfer Learning)

Accuracy
(%)

Number of
Iterations

Accuracy
(%)

Number of
Iterations

1536 75 1500 95 1000

3584 75/90 1000/4000 96 1000

3584 x 2 75/90 1000/4000 96 <1000

TABLE III. PERFORMANCE COMPARISON FOR MULTICLASS DETECTION

Classification Object Labelled Inference Speed

Binary Cat and Dog 1.5fps
0.663s/image

Ternary1 Date, fig and hazelnut 2.95 fps
0.339s/image

Ternary2 Platelets, RBC, and
WBC

142 fps
0.007s/image

Multi-class
(5-classes)

Docks, Boats, Lifts,
Jetskis, and Cars

48 fps
0.020s/image

83 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

VI. CONCLUSION
It can be safely concluded that using transfer learning

approach a student model converges faster than the original
complex teacher model. This directly translates to the saving in
resource for each run of the learning which is exactly what is
required for the implementation of CNN on heterogeneous
embedded platform with lesser resources as now the lesser
powerful embedded GPU (compared to discrete ones) can
achieve similar accuracy. The results will make deployment
and inferencing of DNN in heterogeneous devices easier and
devices friendly. General-purpose experimentation platforms
like raspberry-pi can be also used for the same. For the future
work Nvidia latest platform like Jetson-TK [45] can be
considered for real time implementation of this approach.

GPU acceleration and model compression are orthogonal to
each other. How much a model can be compressed and
accelerated subject to given resource constraints (storage,
computational power, and energy) and user-specified
performance goals (accuracy, latency) is open research
question. The development of the generalized model
compression and acceleration framework would add another
value to it. More research in this area can lead to trade-off
between model compression and acceleration dynamically.

ACKNOWLEDGMENTS
The first author would like to thank the faculty/staff of

Institute of Technology, Nirma University for the laboratory
work support.

REFERENCES
[1] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “CNN

Features off-the-shelf: An Astounding Baseline for Recognition,”
arXiv.org, 2014. https://arxiv.org/abs/1403.6382v3.

[2] J. Donahue, et.al., “DeCAF: A Deep Convolutional Activation Feature
for Generic Visual Recognition,” Proceedings of the 31st International
Conference on Machine Learning, vol. 32, pp. 647-655, 2014.

[3] M. D. Zeiler and R. Fergus, “Visualizing and Understanding
Convolutional Networks,” Computer Vision, ECCV 2014, pp. 818-833,
2014.

[4] X. Zhu, X. Wu, “Class Noise vs. Attribute Noise: A Quantitative
Study,” Artificial Intelligence Review 22, pp. 177-210, 2004.

[5] Qiang Yang, C. Ling, X. Chai, and Rong Pan, “Test-cost sensitive
classification on data with missing values,” IEEE Transactions on
Knowledge and Data Engineering, vol. 18, no. 5, pp. 626-638, 2006.

[6] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?” Advances in Neural Information
Processing Systems, vol. 27, 2014.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” Advances in Neural
Information Processing Systems, vol. 25, 2012.

[8] F. N. Iandola, et.al., “SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and <0.5MB model size,” arXiv.org, 2016.
https://arxiv.org/abs/1602.07360.

[9] J. Redmon, “Darknet: Open Source Neural Networks in C,” [online]
http://pjreddie.com/darknet/, 2013-2016.

[10] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look
Once: Unified, Real-Time Object Detection,” IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, doi:
10.1109/cvpr.2016.91.

[11] A. G. Howard, et.al., “MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications,” arXiv.org, 2017.
https://arxiv.org/abs/1704.04861.

[12] J. Long, E. Shelhamer, and T. Darrell, “Fully Convolutional Networks
for Semantic Segmentation,” CVPR 2015. arXiv.org
https://arxiv.org/pdf/1411.4038v2.pdf.

[13] A. Nguyen, J. Yosinski, and J. Clune, “Deep Neural Networks are Easily
Fooled: High Confidence Predictions for Unrecognizable Images,”
arXiv.org, 2015. https://arxiv.org/abs/1412.1897v4.

[14] L. C. Chen, et.al., “Semantic Image Segmentation with Deep
Convolutional Nets and Fully Connected CRFs,” arXiv.org, 2014.
https://arxiv.org/abs/1412.7062v4. ICLR2015.

[15] R. Girshick, “Fast R-CNN,” IEEE International Conference on
Computer Vision (ICCV), 2015.

[16] S. Ren, et.al., “Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137-1149, Jun.
2017.

[17] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,”
arXiv.org, ICCV, 2017. https://arxiv.org/abs/1703.06870v3.

[18] Han, S., Pool, J., Tran, J., Dally, W. Learning both weights and
connections for efficient neural network. Advances in neural
information processing systems, 28, pp. 1135-1143, 2015.

[19] Yang, T.-J., Chen, Y.-H, Sze, V. “Designing energy-efficient
convolutional neural networks using energy-aware pruning”, IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp.
6071-6079, 2017.

[20] Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M.A., Dally, W.
“EIE: efficient inference engine on compressed deep neural network”,
ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA), pp. 243-254, 2016.

[21] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z. “Rethinking
the inception architecture for computer vision”, IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2818-2826, 2016.

[22] Srinivas S., Babu R.V. “Data-free parameter pruning for deep neural
networks”, British Machine Vision Conference (BMVC), pp. 31.1-
31.12, 2015.

[23] Chen S., Zhao, Q. “Shallowing deep networks: layer-wise pruning based
on feature representations”, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 41, 12, 3048-3056, 2018.

[24] Li H., Kadav A., Durdanovic I., Samet H., Graf H.P. “Pruning filters for
efficient convnets”, 5th International Conference on Learning
Representations (ICLR), 2017.

[25] Iandola, F.N., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J.,
Keutzer, K. “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <1 MB model size”, 5th International Conference on
Learning Representations (ICLR), 2017.

[26] Bucila, C., Caruana, R., Niculescu-Mizil, A. “Model compression”,
Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 535-541, 2006.

[27] Souli´e, G., Gripon, V., Robert, M. “Compression of deep neural
networks on the fly”, International Conference on Artificial Neural
Networks, Lecture Notes in Computer Science, 9887, pp. 153-160,
2016.

[28] Gong, Y., Liu, L., Yang, M., Bourdev, L. “Compressing deep
convolutional networks using vector quantization,” 2014.
https://arxiv.org/abs/1412.6115.

[29] Ba, J., Caruana, R. “Do deep nets really need to be deep?” Proceedings
of the 27th International Conference on Neural Information Processing
Systems (NIPS’2014), 2, pp. 2654-2662, 2014.

[30] Hinton, G., Vinyals, O., Dean, J. “Distilling the knowledge in a neural
network,” 2015. https://arxiv.org/abs/1503.02531.

[31] Zagoruyko, S., Komodakis, N. “Paying more attention to attention:
Improving the performance of convolutional neural networks via
attention transfer”, 5th International Conference on Learning
Representations (ICLR), 2017.

[32] Yim, J., Joo D., Bae, J., Kim, J. “A gift from knowledge distillation:
Fast optimization, network minimization and transfer learning”, IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp.
7130-7138, 2017.

84 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

[33] Lee, S. H., Kim, D. H., Song, B. C. “Self-supervised knowledge
distillation using singular value decomposition”, European Conference
on Computer Vision (ECCV), pp. 339-354, 2018.

[34] Gao, M., Shen, Y., Li, Q., Yan, J., Wan, L., Lin, D., Loy, C. C., Tang,
X. “An embarrassingly simple approach for knowledge distillation,”
2018, arXiv:1812.01819

[35] Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta, C., Bengio,
Y. “Fitnets: Hints for thin deep nets”, 3rd International Conference on
Learning Representations (ICLR), 2015.

[36] Chen, T., Goodfellow, I., Shlens J. “Net2net: Accelerating learning via
knowledge transfer”, 4th International Conference on Learning
Representations (ICLR) 2016.

[37] Belagiannis, V., Farshad, A., Galasso, F. “Adversarial network
compression”, European Conference on Computer Vision (ECCV), pp.
431-449, 2018.

[38] Ashok, A., Rhinehart, N., Beainy, F., Kitani, K. M. “N2n learning:
Network to network compression via policy gradient reinforcement
learning”, 6th International Conference on Learning Representations
(ICLR), 2018.

[39] Wang, H., Zhao, H., Li, X., Tan, X. “Progressive blockwise knowledge
distillation for neural network acceleration”, Proceedings of the 27th
International Joint Conference on Artificial Intelligence (IJCAI),
pp.2769-2775, 2018.

[40] Gao, Mengya, et al. “Residual knowledge distillation”, arXiv preprint
arXiv:2002.09168. 2020.

[41] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.,
Guadarrama, S. “Caffe: convolutional architecture for fast feature
embedding”, Proceedings of the 22nd ACM International Conference on
Multimedia, pp. 675-678, 2014.

[42] Kaggle’s Dogs Versus Cats Competition. or https://www.kaggle.
com/c/dogs-vs-cats-redux-kernels-edition/.

[43] NVIDIA GTX 770, https://www.nvidia.com/en-us/geforce/graphics-
cards/geforce-gtx-770/specifications/.

[44] NVIDIA GTX 1080Ti, https://www.nvidia.com/en-sg/geforce/
products/10series/geforce-gtx-1080-ti/..

[45] NVIDIA Jetson-TK1 developer kit, https://developer.nvidia.com/
embedded/jetson-tk1-developer-kit.

85 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Deep Learning on Edge Devices
	A. Limited Data
	B. Limited Model Footprint
	C. Limited Computation

	III. Deep Neural Network Reduction
	A. Pruning
	B. Quantization
	C. Knowledge Distillation

	IV. Teacher-student Learning
	V. Experimental Evaluation and Discussion
	VI. Conclusion
	References

