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Abstract—Deep learning frameworks have progressed beyond 
human recognition capabilities and, now it’s the perfect 
opportunity to optimize them for implementation on the 
embedded platforms. The present deep learning architectures 
support learning capabilities, but they lack flexibility for 
applying learned knowledge on the tasks in other unfamiliar 
domains. This work tries to fill this gap with the deep neural 
network-based solution for object detection in unrelated domains 
with a focus on the reduced footprint of the developed model. 
Knowledge distillation provides efficient and effective teacher-
student learning for a variety of different visual recognition 
tasks. A lightweight student network can be easily trained under 
the guidance of the high-capacity teacher networks. The teacher-
student architecture implementation on binary classes shows a 
20% improvement in accuracy within the same training 
iterations using the transfer learning approach. The scalability of 
the student model is tested with binary, ternary and multiclass 
and their performance is compared on basis of inference speed. 
The results show that the inference speed does not depend on the 
number of classes. For similar recognition accuracy, the 
inference speed of about 50 frames per second or 20ms per 
image. Thus, this approach can be generalized as per the 
application requirement with minimal changes, provided the 
dataset format compatibility. 

Keywords—Machine learning; knowledge distillation; transfer 
learning; domain adaptation 

I. INTRODUCTION 
Deep neural networks are thriving, due to vast data 

availability, newer complex models, and heterogeneous 
compute capacity. The data accumulation ease and its open-
source availability are opening new doors for the research 
community. So new models are popping up almost every day 
on how to solve real-world problems using that data. Now 
crunching the data is also getting cheaper day by day, and one 
does not require a personal high-end custom configured system 
for this job. It is offloaded to cloud-based solutions provided 
by Amazon, Google, and Microsoft. Traditional machine 
learning & data mining algorithms make predictions using 
statistical models and trained on labelled or unlabelled training 
datasets. As the labelled data may be too few in practical 
applications; so to build a good classifier; semi-supervised 
classification done by using a large amount of unlabelled data 
and a small amount of labelled data [1], [2], [3].  In [4], the 
problem of how to deal with the noisy-class label is explored. 
Similarly, in [5], cost-sensitive learning is considered. In [6], it 
is shown that having a minimum depth to the network is vital 

for the model performance. All these approaches assumed that 
the distributions of the labelled and unlabelled data were the 
same. 

For implementation on edge-based devices, the model size 
could be cut down by the compression techniques at various 
levels in the model, data, and computation. The classic Alexnet 
[7] was trained on the Imagenet dataset and performed 2.27 
billion operations with 238MB of memory usage for storing the 
model data itself. In the compressed model, Squeezenet [8] 
performs 2.17 billion of operation but with a smaller footprint 
of 4.8MB, while Darknet [9], an open source for the Yolo [10], 
does less than 1 billion operations with 28MB of the footprint. 
Note that this comparison is assuming a baseline accuracy of 
80 per cent in recognizing the labelled visuals. It does not 
include the run time memory requirements while performing 
the computation, which is not directly proportional to the 
number of operations performed as neural networks are non-
linear models. Also, compression-decompression takes more 
computation power. Mobilenet [11] tries to address this 
problem to an extent. Though the model size is reduced from 
the storage perspective but while performing the inference on a 
lightweight platform, they may fail to give the real-time 
response due to resource constraints. To make them predict 
with a high confidence value [12] the sematic segmentation 
approach from [13], [14] is used by [15], [16], [17]. 

The practical implementation of the deep neural network in 
real-life scenarios is quite the opposite of the earlier 
description. IoT based heterogeneous devices have resource 
constraints that limit their use on them. They mostly offload 
this to the cloud, but that solution is not always feasible due to 
the latency involved. This work explores the knowledge 
distillation approach in deep neural networks for IoT edge 
devices for real-time applications. The contribution of this 
work is to train a smaller model for a lightweight target 
platform with a negligible loss of accuracy. The proposed 
lightweight model can be easily customized to the different 
domains and can be easily ported to IoT based edge devices. 
Section 2 details why deep learning on heterogeneous edge 
devices is difficult to implement. In Section 3, the state of the 
art approaches for model reduction is presented. Section 4 
delves into the knowledge distillation approach and how it can 
be used on the edge-based device followed by experimental 
setup and performance analysis of the implementation. 
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II. DEEP LEARNING ON EDGE DEVICES 
Convolution Neural Networks models have evolved to 

surpass the human capabilities in image classification task but 
when it comes to their deployment on the edge devices, there 
use is limited due to various resource constraints as described 
below: 

A. Limited Data 
The large dataset is not available in all circumstances for 

the training of the network and even it is available it may be 
quite expensive in terms of time and feasibility. Data privacy is 
another factor which forces to work with lesser data locally on 
the device itself. 

B. Limited Model Footprint 
Models which thrusted the growth of DNN with their 

accuracy limits surpassing humans are quite bulky in terms of 
memory requirements for storage. This memory could be either 
for storage of the model or for the storage of the millions of the 
weights calculated during the runtime. For practical 
implementation, the memory footprint of the application 
should be small enough to fit into any embedded device. 

C. Limited Computation 
Even with lesser data and smaller models the solution does 

not work out. Because of the millions of intermediate weights 
computation, it involves during the model run, it may require a 
desktop/server capability to finish the task in real time. The 
computational latency is not tolerable in the practical 
application involving the heterogeneous edge device. Now as 
the heterogeneous edge devices has limited capabilities, one 
need to devise the ways to eliminate or reduce these limitation 
causes. The next section describes this in detail. 

III. DEEP NEURAL NETWORK REDUCTION 
Though DNNs have the tremendous diversity of structures, 

still the core computation of a network is the variations of 
matrix-multiplications or more precisely multiply-and-
accumulate (MAC) operations. The factors which effect the 
MAC operations are batch size, image dimensions, filter type, 
no. of channels, kernel size and activation size. These 
combined for every neuron to neuron connections make the 
millions of hyper-parameters of the DNN. 

To reduce these transformation functions parameterized by 
learnable weights, researchers worldwide have developed their 
own various model compression techniques, but only some of 
the well-researched approaches are covered here for brief 
overview. 

A. Pruning 
The hyper parameter space of the DNN is reduced by 

trimming the network physically or pruning the network itself 
in various ways. 

The unimportant weight connections can be pruned if they 
are below a predefined threshold or if they are redundant. 
About 50% of the weights can be pruned without fine-tuning 
and with fine-tuning, more than 80% of the weights can be 
pruned [18]. The pruning of the weights can be driven by 
energy distribution for the network [19]. In Energy Inference 

Engine [20], the sparse weights after pruning can also be 
compressed to reduce memory access bandwidth. Huffman 
coding is used to reduce storage and bandwidth requirements 
for weights by 20-30% [21]. 

Another approach to trim the individual neurons is that if 
they are redundant [22]. As these are basic element of the 
network so the associated connections of the neuron will also 
be obliterated. In the literature many ways are researched to do 
this type of pruning, even some of the neuron layers which do 
not contribute much in the network updation can also be 
removed [23]. 

Convolutional filters are applied to the data and according 
to their importance, they can be eliminated from the network. 
The filter’s importance can be known by their influence on the 
weight calculation or L1/L2 norm [24]. Other methods are also 
researched in the literature which is not the scope of this work. 

B. Quantization 
The network architecture can be improved in many ways 

e.g. by reducing the quantity of weights and number of 
operations. The large convolution operation can be replaced 
with a number of smaller convolution operators having fewer 
weights in total, keeping the effective receptive field same i.e. 
large filters can be emulated with several of the smaller size 
filters in cascade e.g. convolution of size n by n can be made 
by combining 1 by n convolution with N by 1 convolution 
[21]. SqueezeNet [25] uses this approach to achieve an overall 
reduction in number of weights up to 50x compared to 
AlexNet, while keeping the accuracy in similar range. 

Weights of fully connected layers can be quantized using 
Regularization technique [26], [27]. Clustering by ‘k-means’ 
[28] achieved more than 20x compression with negligible loss 
of accuracy. Hashed Nets [29] use a low-cost hash function to 
group weights into hash buckets to share parameters. 

C. Knowledge Distillation 
Knowledge distillation (KD) was introduced by [30] as: 

• Train a large model that performs and generalizes very 
well. This is called the teacher model. 

• Take all the data you have and compute the predictions 
of the teacher model. The total dataset with these 
predictions is called the knowledge, and the predictions 
themselves are often referred to as soft targets. This is 
the knowledge distillation step. 

• Use the previously obtained knowledge to train the 
smaller network, called the student model. 

Fig. 1 summarizes this pictorially. 

 
Fig. 1. Example of a Transfer Learning Model. 
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IV. TEACHER-STUDENT LEARNING 
Knowledge distillation starts with training a larger model, 

the teacher ‘T’. As it is trained on a heavier platform (GPU), it 
achieves high performance. Then a lightweight model known 
as student ‘S’ is deployed to learn from ‘T’. Now, ‘S’ is 
supposed to give comparable performance as ‘T’ but with less 
memory and more speed. 

To improve knowledge transfer from teacher to student  
various types of methods are researched. Assuming a trained 
‘T’ has already eliminated some label errors contained in the 
ground truth data, the authors in [29] treated the hard label 
predicted by ‘T’ as the underlying knowledge. While in [30], 
the soft label produced by ‘T’, i.e., the classification 
probabilities, are focused to provide more information to 
transfer. In general, knowledge is transferred from the ‘T’ to 
‘S’ by minimizing a loss function in which the target is the 
distribution of class probabilities predicted by ‘T’. This 
probability distribution has the correct class at a very high 
probability (close to ‘1’) with all other class probabilities very 
close to ‘0’. As such, it does not provide much information 
beyond the ground truth labels already provided in the dataset. 
For this, Hinton [30], introduced the concept of "softmax 
temperature". As it grows, the probability distribution 
generated by the softmax function becomes softer, providing 
more information as to which classes ‘T’ found more like the 
predicted class. This is the “dark knowledge” embedded in the 
‘T’ and transferred to ‘S’ in the distillation process. The 
distillation related work can be categorized as below: 

• Feature Map: The feature map across channel 
dimension can be averaged to obtain spatial attention 
map [31]. The inner product of two feature maps can be 
used for the inter-layer flow [32]. The author in [33] 
improved this idea with singular value decomposition 
(SVD). A recent work [34] demonstrated the 
effectiveness of mimicking feature map directly in 
distillation. 

• Transfer strategy: FitNets [35] selected a hidden layer 
from ‘T’ and ‘S’ to be hint layer and guided layer 
respectively. ‘S’ can get a better initialization through 
pre-training the guided layer with the hint layer as 
supervision. Net2net [36] proposed a function-
preserving transformation, which makes it possible to 
directly reuse it from ‘T’ to initialize the 
hyperparameters of ‘S’. 

• Hybrid strategy: Adversarial learning is used with 
distillation by using a comparator to check the outputs 
of ‘S’ and ‘T’ are close enough or not [37]. The author 
in [38] exploited reinforcement learning to search the 
best network structure of ‘S’ under the influence of ‘T’. 
In [39] and [40] progressive or lifelong learning is 
referred to make knowledge transfer step by step. 

Looking to this a novel approach to developing deep 
learning models for various domains is proposed. As every 
student in a class distribution may not have a similar capability 
or generally it a Gaussian curve. To flatten the curve on the 
higher side of learning capability, the model tries to imbibe the 
relative knowledge which can be used on the lightweight 
students to perform the object detection task with comparable 
performance. The aim is, to provide a generic solution to the 
problem with the assumption that the model can only be 
transferred successfully using the smaller dataset avoiding the 
limitations of the domain transfer. 

V. EXPERIMENTAL EVALUATION AND DISCUSSION 
A popular framework Caffe [41] is chosen for the binary 

image classification task. The Redux Dogs vs. Cats 
competition dataset [42] is used for training and testing 
purpose on NVIDIA GTX 770 with 1536 GPU cores [43]. The 
training data consists of 12500 images of each for Cats and 
Dogs. For testing phase 12500 images random images from the 
dataset are chosen. 

The model calculates the probability of a pet and assigns a 
numeric value between 0 and 1 for the predicted class. 
Currently the implementation involves binary classification; 
cat and dog, but it can be extended easily to include other types 
of pets. For that the model will give the probability values for 
each class and the highest value is the closest. The accuracy of 
the implemented training models depends on the model 
training parameters and varies with change in hyper parameters 
that itself is a separate research area.  The log-loss formula can 
be used to represent the accuracy of any model: 

( ) ( ) ( )
1

1 ˆ ˆlog 1 log 1
n

i i i i
i

Logloss y y y y
n =

= − + − −  ∑
         (1) 

Where, n represents the number of images in the test set. y 
the prediction probability for the dog and y^ equals to ‘1’ if the 
current image is identified as a dog or equals to ‘0’ if a current 
image is predicted as cat. The log-loss probability is calculated 
for each run and note that a smaller value of log loss is desired. 

First, the complex teacher model is trained using labeled 
data and then same is tested with the unlabeled data to classify 
the pet either cat or dog. Fig. 2(a) shows the learning curve of 
the teacher model achieving 75% validation accuracy in 1500 
iterations which occurred in about 2 and ½ hours. Further, the 
weights from the teacher model are used to pass to the student 
model as per knowledge distillation criteria, i.e., the student 
model is initialized with the pre-trained data/weights from the 
teacher model. Fig. 2(b) shows the training/learning curve of 
the student model achieving a 95% validation accuracy in 
about 1000 iterations which occurred in less than 2 hours. 

In Table I, while doing transfer learning, the accuracy has 
jumped from 75% to 95% that too in lesser run time. The log 
loss value also comes down close to unity, the ideal log loss 
value for this problem. 
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Fig. 2. Learning Curve for (a) Teacher Model; (b) Student Model. 

 
Fig. 3. Learning Curve for the GPU with Previous (a) Teacher Model; (b) Student Model. 

TABLE I. PERFORMANCE COMPARISON FOR TWO MODELS 

Parameters Teacher 
(Training run) 

Student 
(Transfer learning) 

Accuracy (%) 75 95 

Iteration 1500 1000 

Time Taken (minutes) 155 110 

Log Loss 8.9 1.1 

To validate the transfer learning results further multiple 
runs are conducted on the higher capacity single GPU 
(NVIDIA GTX 1080Ti with 3584 cores) [44] configuration 
and with dual GPU configuration. The results are shown in 
Fig. 3 and summarized in Table II. It shows the comparison 
matrix from all the test runs on various GPU platforms. In 
model 1, using the GPU with significantly greater number of 
cores reduces the number of iterations to achieve the similar 
results and it converges faster. On the other hand, with model 
2, the results are similar both in terms of accuracy and number 
of iterations irrespective of the platform availability. It 
indicates that transfer learning-based approach comes out as a 
clear winner for limited resource environment. 

Next, the task is performed for binary, ternary, and 
multiclass identification and their performance is compared on 
basis of inference speed. The results show in Table III that the 
inference speed does not depend on the number of classes. The 

multiple domains are also considered to prove that for similar 
recognition accuracy the inference speed achieved is about 50 
frames per second or 20ms per image. 

TABLE II. RESULTS FROM VARIOUS GPU CORES 

Platform 
NVIDIA 
GPU core 
count 

Model-1 (Training) Model-2 (Transfer Learning) 

Accuracy 
(%) 

Number of 
Iterations 

Accuracy 
(%) 

Number of 
Iterations 

1536 75 1500 95 1000 

3584 75/90 1000/4000 96 1000 

3584 x 2 75/90 1000/4000 96 <1000 

TABLE III. PERFORMANCE COMPARISON FOR MULTICLASS DETECTION 

Classification Object Labelled Inference Speed 

Binary Cat and Dog 1.5fps 
0.663s/image 

Ternary1 Date, fig and hazelnut 2.95 fps 
0.339s/image 

Ternary2 Platelets, RBC, and 
WBC 

142 fps 
0.007s/image 

Multi-class 
(5-classes) 

Docks, Boats, Lifts, 
Jetskis, and Cars 

48 fps 
0.020s/image 
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VI. CONCLUSION 
It can be safely concluded that using transfer learning 

approach a student model converges faster than the original 
complex teacher model. This directly translates to the saving in 
resource for each run of the learning which is exactly what is 
required for the implementation of CNN on heterogeneous 
embedded platform with lesser resources as now the lesser 
powerful embedded GPU (compared to discrete ones) can 
achieve similar accuracy. The results will make deployment 
and inferencing of DNN in heterogeneous devices easier and 
devices friendly. General-purpose experimentation platforms 
like raspberry-pi can be also used for the same. For the future 
work Nvidia latest platform like Jetson-TK [45] can be 
considered for real time implementation of this approach. 

GPU acceleration and model compression are orthogonal to 
each other. How much a model can be compressed and 
accelerated subject to given resource constraints (storage, 
computational power, and energy) and user-specified 
performance goals (accuracy, latency) is open research 
question. The development of the generalized model 
compression and acceleration framework would add another 
value to it. More research in this area can lead to trade-off 
between model compression and acceleration dynamically. 
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