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Abstract—Road detection is always the key problem of re-
searches on areas of unmanned ground vehicle and computer
vision. A road detection method is proposed based on online
learning and multi-sensor fusion. First of all, the Lidar point
clouds are projected onto the images via the joint calibration
of these two kinds of sensors. Then Simple Linear Iterative
Clustering is used to segment images into many superpixles.
Based on that, a multilayer online learning method is proposed,
in which 2 Support Vector Machines are trained to detect the
road. To be specific, the superpixel layer Support Vector Machine
is used to detect road roughly, and the pixel layer Support
Vector Machine is then trained to classify the edge pixels of the
road areas, which is classified by the upper-layer Support Vector
Machine. These 2 Support Vector Machines are updated online
at each frame to be adapted to the changing environment. At last,
some experiments are carried out on KITTI RAW dataset and an
autonomous land vehicle, and the results show the effectiveness
of proposed method. The main contributions of this work lie on
as follows: 1) a multilayer learning model is proposed to detect
road more robustly and accurately; 2) an online learning method
is proposed which can be adapted to the changing environment.

Keywords—Road detection; data fusion; unmanned ground
vehicle; online learning; image segmentation

I. INTRODUCTION

Road detection [1], [2], [3] is one of the key technologies
in multiple research areas such as unmanned ground vehicle
development and machine vision. Traditional road detection
methods are based on image data captured by RGB cameras
mostly [4]. In the past decades, researchers have provided
bunches of image processing algorithms [5], [6], [7], such as
vanishing point localization, natural road boundaries detection
or CRF [8] (conditional random fields) optimization [9] after
segmentation of pixels based on prior information. However,
different illumination conditions, shadow and complicated tex-
ture background significantly impact on image quality, which
leads to rapid decline of algorithm performance. Recently, with
the development of 3 dimensional sensor, researchers have put
forward various road detection methods based on range data.
For example, Sunando Sengupta and Paul Sturgess constructed
an octree model to describe the detected environment and
attached an advanced CRF model for semantic segmentation
[10]. Benjamin Suger published a semi-supervised machine
learning method, using Lidar to construct an accessible prob-
ability map, for outdoor navigation of robots [11].

Compared to RGB cameras, three dimensional sensors
outperforms in many areas. Range data of surrounding is
detected from all directions based on 3D sensors [12], [13],
providing adequate information of target structure without
interference from illumination conditions, severe shadow, com-
plicated texture background and etc. However, 3D sensors have

their own weaknesses. First, taking stereoscopic vision into
account such as Kinect, they are influenced easily by moving
targets, leading to large amount of noise in detected range
image [14], [15]. Furthermore, their observation range is more
than 20 meters usually, which could not fulfil the requirements
of unmanned ground vehicle environment perception. Second,
although the observation range of Lidar is 120 meter in
maximum, the detecting data is increasingly sparse with the
increasing distance, due to its fixed angular resolution on
measuring targets. So, Lidar senor could not describe complete
terrain or target detail appearance in distance [16], [17].

In order to combine the advantages of these two kinds of
sensors, increasing number of researchers fuse the outcomes
of these two to acquire better environment model, especially
on road detection [18], [19]. In addition, due to the contin-
uous surrounding changes of unmanned ground vehicle, it is
difficult for the pre-trained classifier to perform well on road
detection and classification. In order to deal with this problem,
unmanned ground vehicles are required to do online learning
[20], [21] based on real-time surround environment. In this
paper, a hierarchical online learning method is put forward
and verified its efficiency on KITTI raw dataset and our own
unmanned ground vehicle. The main innovation of this paper
is as follows. (1) A hierarchical model is introduced, which
could realize robust road detection more accurate. (2) An
online learning method is put forward, which is adaptive to
continuous environment changes.

The main content of this paper is organized as follows: In
Section II, we briefly review the fusion of image and lidar data.
In Section III, we will propose our model in detail. In Section
IV, several experiments are designed to verify the effectiveness
of our model. In Section V, some conclusions are given to
finish this paper.

II. FUSION OF IMAGE AND LIDAR DATA

To combine image and range data, joint calibration is
needed for data alignment of camera and Lidar. Lidar point
cloud is expressed as Plidar = {X,Y,Z }and its corresponding
projection outcome is recorded as Pimage = {U,V}

P image = R0
rectT

image
lidar P lidar

T image
lidar =

(
Rimage

lidar timage
lidar

0 1

)
(1)

In which, R0
rect R is the matrix to transform original image

visual angle to front view, while image lidar Timage
lidar is the

matrix to project Lidar point to image view. Rimage
lidar and timage

lidar
are rotation matrix and translation vector to project Lidar point
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Fig. 1. Result of Lidar Point Clouds Projection. Subfigure (a) is the Original
Image Captured by RGB Camera, while Subfigure (b) is the Lidar

Projection Outcome.

Fig. 2. Multiple Layers Online Learning Model.

cloud to image layer respectively. In many accessible datasets,
such as KITTI dataset, calibration parameters are in open
access, so we skip the detail computation procedure of these
parameters. Details of joint calibration computation could be
found in reference [22].

After joint calibration mentioned above, Lidar point cloud
is projected to image plane, as Fig. 1 shown. Subfigure (a) is
the original image captured by RGB camera, while subfigure
(b) is the Lidar projection outcome, in which height feature is
indicated by brightness. With joint calibration and projection
procedures, some pixels on image is corresponding to Lidar
point, which means their range and height is available.

III. MULTIPLE LAYERS ONLINE LEARNING MODEL

A. Hierarchical Online Learning Definition

In order to adapt to continuous changing background
environment in road detection, we put forward a multiple
layers online learning model as Fig. 2 shown.

In the rest of this paper, we will introduce this model in
details.

B. Super-pixel and Road Detection Definition

Super-pixel is a series of adjacent pixels composed of small
areas with similar color, brightness and texture characteristics.
Most of these small areas retain the effective information for
further image segmentation, and generally do not destroy the

(a)

(b)

Fig. 3. Result of Super-pixel Segmentation based on SLIC.

boundary information of objects in the image. Therefore, more
and more image segmentation algorithms adopt super-pixel as
the basic segmentation unit [21], [23]. As Fig. 3 shown, SLIC
super-pixel method is utilized to several super-pixel units in
this paper. In super-pixel procedure, segmentation is expressed
as R = {ri,i=1..M }, in which M is the number of super-pixels.
Then, road detection can be considered as a bi-classification
problem:

ri = (Fi, Li)
Fi = {fi1, fi2, . . . , fid}
Li = {+1,−1}

(2)

Here, Fi is the corresponding characteristic of ri, d is the
feature dimension and Li represents the final classification
outcome, in which Li=+1 indicates that rFi belongs to road
region, and Li=-1 means that ri is an off-road region.

C. Choice of Classifier

In recent years, deep learning and other new machine learn-
ing methods have been extensively studied, and have achieved
remarkable results on many datasets. However, deep learning
requires a large number of training samples to learn network
parameters, and requires very high computational resources.
Even with the use of transfer learning and other learning
technologies, the deep learning method is difficult to apply in
the specific task scenario of online road detection. Compared
with deep learning method, the final decision function of
Support Vector Machine (SVM)[24] classifier is determined
only by a few support vectors rather than all training sam-
ples. Therefore, the computational complexity is low and key
samples can be calculated automatically to realize efficient
machine learning. In the real-life scene using online road
learning, the sample size is often small, and the distribution
of positive and negative samples is very uneven in the initial
stage of learning. Therefore, compared with other classifiers,
SVM has excellent performance in online learning system.
In addition, in view of the problem that the computational
complexity of SVM classifier will raise with the increase of
training samples, the online learning model proposed in this
paper sets a maximum sample size and an update strategy

www.ijacsa.thesai.org 2 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 4, 2021

Fig. 4. Road Detection Result Only via Lidar Data.

of positive and negative samples to ensure that the proposed
method can meet the real-time requirements of road detection.

D. Road Detection in Super-pixel Level

In the multi-level learning model proposed in this paper, the
first level classifier is at super-pixel scale. Generally speaking,
one of the important factors affecting the performance of
online road detection methods is the selection strategy of
positive and negative samples. Many image-based online road
detection algorithms assume a small area at the middle-bottom
of the image as an initial road area and the image edge
belonging to a non-road area [9], [21] when selecting classifier
samples. However, in the actual scene, the edge of the image
is mostly sky or building, which can not represent all kinds
of negative samples near road. On the contrary, in many road
detection methods based on Lidar, there are some problems
in extracting positive samples. A typical algorithm for road
detection based on Lidar data is to project the point cloud
data of Lidar into two-dimensional grid map, then calculate
the height difference of each grid. By setting a threshold
artificially, the grid whose height difference is lower than the
threshold is taken as a positive sample and the other grid as a
negative sample [25]. As shown in Fig. 4, the first picture is the
original image captured by RGB camera, and the area labelled
in red in the second image indicates the positive sample area.
In such methods, off-road regions with small height difference
(such as lawn and road) can not be effectively distinguished.

In conclusion, image data is more suitable for extract-
ing positive samples, while Lidar data is more suitable for
extracting negative ones. Therefore, in this paper, we use a
fusion method in this paper to combine Lidar and image data.
Specifically, we assume that the super-pixels in the rectangular
frame (as shown in Fig. 5(a)) at the image bottom are positive
samples. Then use the Lidar data to separate obstacles from
non-obstacles, and assume that the super-pixels belonging to
obstacles are negative samples.

In order to figure out the super-pixels which belong to
obstacles, Lidar point cloud data is projected to a plane
constructed by X and Y coordinate axis. The plane is described
in grid map form, then the maximum height difference of
each grid is calculated and an artificial threshold is set to
separate road girds and obstacle grids. Afterwards, project all
obstacle grids to image plane as shown in red pixels in Fig.

(a)

(b)

Fig. 5. Selection of Training Samples of Classifier in the First Layer.

5(a). Finally, those super-pixels with over a threshold of Lidar
obstacle pixels are labelled as negative samples. As can be
seen in Fig. 5(b) positive and negative samples are colored in
red and blue respectively.

For each super-pixel unit, the color histogram and LBP
texture features in HSI space are extracted from the color
image, and the average height feature and height variance
feature are extracted from the projected Lidar point image.
After that, these samples are added to the sample library, and
the first-level SVM classifier is updated and trained online.
Then, all the super-pixel units in the whole image are classified
by this classifier, and the first-level road detection results are
obtained.

In addition, the online learning model sets the total capacity
of the training sample library when updating the first level
classifier online for each frame. If the current training sample
library is not full, the positive and negative samples of this
frame are directly added to the training sample library. If
the current training sample library capacity has reached the
maximum, then according to the proportion of positive and
negative samples in the current sample library and sample
collection time, part of the samples are deleted to make room
for samples selected from current frame. Specifically, if there
are more positive samples than negative samples in the current
sample bank, the positive samples will be deleted, and on the
other hand, the negative samples will be deleted. Secondly, the
oldest samples will be deleted first to ensure that the trained
classifier can continuously adapt to the latest environment.

E. Road Boundary Classification in Pixel Scale

In the super-pixel-based road detection algorithm, different
scale setting of super-pixels has a significant impact on the
accuracy of road detection. Many researchers are trying to
solve this problem by using the idea of stratification. For exam-
ple, document [21] proposes a multi-scale learning framework.
They set up θ(odd) super-pixel segmentation layers of different
scales from small to large, then trained a SVM classifier at each
level, and used a voting method to get the final classification
results next. However, in our research procedure, scale of
super-pixels only influence road boundary pixels, while inner
road regions are not sensitive to super-pixel scale as can be
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seen in Fig. 6. In each image, super-pixel segmentation is
shown in upper half, while road detection outcome in the below
half. In that, this kind of methods witness a narrow promotion
after consuming large amount of computation resources. To
reduce the complexity of algorithm as well as ensure the
accuracy of boundary localization, we train a second layer of
SVM classifier in pixel scale based on road boundary super-
pixels to polish up road detection result, after acquiring the first
layer segmentation procedure. To be specific, we suppose road
super-pixel set as Rroad, which is segmented by the first layer
classifier, while Ei indicates whether ith super-pixel belongs
to road boundary, and its neighbourhood is expressed as ηi,
Then Ei is calculated as follow.

Ei =

{
1, if ∃rj /∈ Rroad&rj ∈ ηi

0, else (3)

In the second SVM classifier layer, all pixels in road
boundary super-pixels (Ei = 1) are become samples to be
classified. Here, all pixels on road (Ei = 0) are used as positive
samples, while pixels in obstacle super-pixels in the first layer
are used as negative samples.

Unlike the updating method of the first-layer classifier, the
second-layer classifier does not retain the samples of historical
frames, but extracts the RGB values of all positive and negative
samples of the current frame, as well as the average height
and height variance of the super-pixels as features from each
frame. We retrain the classifier in this layer, and segments all
samples to be classified. Fig. 7 shows an example of sample
choosing for the second-layer classifier. In Fig. 7, red and blue
region indicates all the positive and negative sample pixels,
respectively to train the second-layer SVM classifier, while
the green region indicates all the pixels to be classified (road
boundary region).

Finally, after the first-layer super-pixel classifying, the
second-layer of our method separate road and off-road pixels
in road boundary regions (green areas in Fig. 7). Combining
output of the first-layer, the final road detection result is
observed. The efficiency of the edge polishing up procedure is
proved by experiments afterwards.

IV. EXPERIMENTS

To verify the efficiency of proposed algorithm, we choose a
dataset (2011 09 26 drive 0013) randomly from KITTI RAW
DATA. This dataset contains 143 continuous frames with a
resolution of 1242×375 pixels, as well as corresponding Lidar
frame with over 100 thousand points and the joint calibration
parameters. The KITTI RAW DATA does not provide ground
truth, so we label road regions on each frame artificially for
algorithm verification.

Fig. 8 shows the number of training samples of the first-
layer classifier with time accumulating. As can be seen in Fig.
8, positive samples are less than negative ones at the very
beginning in the super-pixel classifier layer with a training
bank containing 5000 training samples in total. However,
with time going, the difference between positive and negative
sample number starts to decrease after the 47th frame. The
oldest sample keeps to be replaced continuously, and reaches

(a)

(b)

(c)

Fig. 6. Road Detection Results in Super-pixel Layer of Different Scales.
Super-pixel Number is Set at 100 in (a), 200 in (b) and 500 in (c).

Fig. 7. Selection of Samples of Classifier in Pixel Layer.
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Fig. 8. Number of Training Samples of the SVM Classifier in the First Layer.

a balance with almost the same percentage. An uneven classi-
fying problem becomes an even one at this point.

Fig. 9 illustrates road detection results of single layer (first
layer) and multiple layers (total structure) learning models.
As can be seen in Fig. 9, multiple layers model outperforms
the single layer model. Due to an independent classification
procedure of road boundary pixels, it can make full use of the
road boundary information and detect road border well, which
lead to higher road detection accuracy.

In order to further verify the efficiency of multi-sensors
fusion and hierarchical online learning model, we realize four
kinds of road detection methods on KITTI RAW DATA:

(1) Compute height difference in each super-pixel using
Lidar data [25], then set a threshold (25 cm) artificially. Label
super-pixels with height difference lower than this threshold
as road regions, while the rest as non-road regions.

(2) Attach the method proposed in document [21] and use
multi-scale super-pixel voting model for road detection.

(3) Use the fusion method proposed in this paper, by
extracting positive and negative sample. Then detect road
combining the method proposed in document [21], which uses
multi-scale super-pixel voting model to detect road.

(4) Use the proposed multi-sensors fusion method in this
paper to extract positive and negative samples, then detect road
by multi-layers online learning model.

In this paper, we verify these four kinds of online road
detection models’ efficiency by six different parameters: FPR,
TPR, Precision, Recall, Accuracy and F-measure. Table I put
forward all kinds of parameters of these four learning models.

As can be seen in Table I, model (3) witness a significant
promotion on road detection efficiency compared to model
(1) and (2), so that the multi-sensors fusion efficiency can
be proved compared to the single sensor road detection. In
addition, Model (4) achieves the best performance, which
further proves that multi-layer online learning model maks
efforts to better road detection.

Next, we test the proposed method on our own unmanned
ground vehicle to verify the efficiency in actual driving sce-
nario. The unmanned ground vehicle is shown in Fig. 10.
This vehicle contains a pre-calibrated RGB camera, Velodyne
HDL64 Lidar and other kinds of sensors.

In our experiments, 3000 frames are collected in total as a
dataset. Each frame contains a RGB image and corresponding

(a)

(b)

(c)

(d)

(e)

Fig. 9. Road Detection Results in Super-pixel Layer of Different Scales. (a)
illustrates the Original Image of Two Input Scenario, (b) Shows the

Outcome of the First-layer, (c) Indicates the Outcome of the Second-layer,
and (d) is the Ground Truth, while (e) is the ROC Curve of Single Layer

and Multiple Layers Models.

TABLE I. PERFORMANCES OF DIFFERENT ROAD DETECTION METHODS

Model FPR TPR Precision Recall Accuracy F-measure

Model (1) 0.0846 0.8043 0.6517 0.8043 0.8161 0.7593
Model (2) 0.0740 0.9301 0.7033 0.9301 0.9241 0.7941
Model (3) 0.0734 0.9313 0.7126 0.9313 0.9276 0.8033
Model (4) 0.0680 0.9466 0.7178 0.9466 0.9343 0.8165

Lidar point cloud data, as well as ground truth with artificial
labelled road region. Finally, the proposed method achieves
91.07% precision on this dataset with an average running time
at 87.35ms per frame, which meets real-time requirements.
Fig. 11 shows part of our road detection results.

V. CONCLUSION

This paper proposes a road detection model used on
unmanned ground vehicle based on online learning and multi-
sensors fusion. According to our model, SLIC method is first
utilized to separate image data to several super-pixels. Then
Lidar data which belongs to obstacles is projected to image
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Fig. 10. An Autonomous Land Vehicle.

(a)

(b)

Fig. 11. Some Experimental Results. (a) Proposes Two Input Images, while
(b) Indicates the Corresponding Road Detection Outcomes.

plane to separate image super-pixels into two kinds: obstacles
and non-obstacles. Here in our method, we assume that super-
pixels at mid-bottom of the image belongs to road region.

Afterwards, we put forward a multi-layer online learning
model. In the first layer, large scale road detection is fulfilled
by a SVM classifier, which trained by road and obstacle
super-pixels. Next, another SVM classifier is developed for
meticulous road detection in boundary regions. We utilize a
new strategy to update the training sample bank, which could
balance the percentage of positive and negative samples auto-

matically. Maximum sample amount is limited to deal with the
distribution problem of training data. Real-time requirements
are met, while hierarchical classifier online learning is also
accomplished to adapt to the environment changes.

The experiments performed on KITTI RAW DATA and our
unmanned ground vehicle confirm that the proposed method
meets real-time requirements in online learning road detection.
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