
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 4, 2021

429 | P a g e

www.ijacsa.thesai.org

On State-of-the-art of POS Tagger, “Sandhi” Splitter,

“Alankaar” Finder and “Samaas” Finder for

Indo-Aryan and Dravidian Languages

Hema Gaikwad1, Jatinderkumar R. Saini2*

Symbiosis Institute of Computer Studies and Research

Symbiosis International (Deemed University)

Pune, India

Abstract—Computational Linguistic refers to the

development of the computer systems that deal with human

languages. In this paper, different Computational Linguistic

Techniques such as Parts of Speech (POS) tagger, “Sandhi”

Splitter, “Alankaar” Finder and “Samaas” Finder were

considered. After a thorough literature review, it was found that

fifteen techniques were used for POS tagging, nine techniques

were used for “Sandhi” splitting, one work is done for

“Alankaar” finder and absolutely no techniques are available for

“Samaas” finder for the Indo-Aryan as well as Dravidian

languages. Analysis shows that Rule Based Approach (RBA) and

Hidden Markov Model (HMM) are frequently used for POS

tagging, RBA is most frequently used for “Sandhi” Splitter, the

general Human Intelligence (HI) is used for “Alankaar” Finder

and no “Samaas” finder technique is available for any Indian

language.

Keywords—”Alankaar”; “Samaas”; “Sandhi”; Parts of Speech

tagger (POST)

I. INTRODUCTION

Natural Language Processing (NLP) has two main branches
comprising of Natural Language Understanding (NLU) and
Natural Language Generation (NLG). Computational
Linguistic is a part of NLP and it requires a good
understanding of both programming as well as knowledge of
the language. Computational Linguistic techniques include
Machine Translation, Speech Recognition systems, Text-to-
Speech Synthesizers, Interactive Voice Response systems,
Search Engines, POST, “Sandhi” Splitter, “Alankaar” Finder
and “Samaas” Finder.

Many languages are spoken in different parts of India. The
Indian languages can be divided mainly into Indo-Aryan and
Dravidian languages. Punjabi, Hindi, Gujarati, Marathi, etc. are
the examples of Indo-Aryan languages while Malayalam,
Telugu, Kannada, etc. are the examples of the Dravidian
languages. Hindi, recognized as the official language of India,
is one of the most common languages in India [1]. It alone has
38 million native speakers and happens to be the fourth most
spoken language of the world [2]. Hindi also has various
dialects. For instance, Awadhi which is one of its dialects is
spoken in 20 districts of India and 08 districts of Nepal [3]. The
prominent texts like “Ramcharitmanas”, “Hanuman Chalisa”
and “Padmavat” are written in Awadhi [4][5][6].

This paper presents a very thorough and exhaustive study
of the various types of tools for the various Indian languages.
The tools covered in this paper include POS tagger, “Sandhi”
Splitter, “Alankaar” finder and “Samaas” finder. The best
attempt has been made to present the research works done in
the area till date.

The research work is segregated into various sections:
Section II describes related work. Section III discusses the
Analysis of NLP techniques for Indian Languages. Finally, the
Section IV describes the Conclusion and Future work.

II. RELATED WORK

Basit et al. [7] talked about Awadhi POS tagger and its tag
set. For developing tag set authors referred Bureau of Indian
standards (BIS) and used Feature Based Approaches (FBA).
Various features like word level, tag level, character level and
Boolean level are used for POS tagging. Ekbal et al. [8]
developed Bengali POS tagger using Maximum Entropy
Approach (MEA). They worked on 72,341 words and uses 26
tags. MEA is based on feature selection and it can be lexicon
feature, name entity recognition, suffix and prefix of word,
context free feature, digit feature etc. By using the above
features, the system got 88.2% accuracy. Proisl et al. [9]
experimented parts of speech tagging on Magahi and Bhojpuri
by using SoMeWeTa, Bi-Long Short Term Memory
(LSTM)+Conditional Random Field (CRF) and Standard
tagger approach. SoMeWeTa tagger depends on average
structure perceptron. Bi-LSTM uses character word embedding
and support transfer learning. Standard tagger based on
Maximum Entropy Cyclic Dependency Network (MECDN).
After experimenting, authors achieved 90.70% for Magahi and
94.08% for Bhojpuri. Ojha et al. [10] used CRF and Support
Vector Machine (SVM) for tagging the Indo Aryan Languages
Specifically Hindi, Odia and Bhojpuri. 90K tokens were used
for training the system and 2K tokens were used for testing
purpose. 88% to 93.7% accuracy was achieved with SVM and
82% to 86.7% accuracy was achieved with CRF.

Singh et al. [11] presented Bhojpuri POS tagger developed
by SVM with 87.3% to 88.6% accuracy and errors can be
minimized by increasing the corpus size. Pandey et al. [12]
developed Chhattisgarhi POS tagger using RBA. 40,000 words
(taken from story books) and 30 tags were used for testing
purpose and achieved 78% accuracy. Sinha et al. [13]

*Corresponding Author

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 4, 2021

430 | P a g e

www.ijacsa.thesai.org

presented Chhattisgarhi language rules so that this could
further be used for developing parser and translators for the
Chhattisgarhi language. Reddy et al. [14] developed cross
language POS tagger using HMM i.e. Kannada POS tagger
using Telugu resources. Bhirud et al. [15] talked about the
significance of various Computational Linguistics (CL) tools
such as Grammar checker, POST, “Sandhi” Splitter and
“Samaas” Finder.

Verma et al. [16] talked about the Lexical analysis or
tokenization process. The authors used different religious text
such as Bible, Gita, Guru Granth Sahib, Rigveda and Quran to
perform the lexical analysis process. Bhatt et al. [17] checked
the accuracy of Gujrati POS tagger. For this, the author worked
on two different data sets and two different methods. The data
sets were Sports information dataset and Amusement dataset.
By using HMM 70% and 56% accuracy were gained for sports
information dataset and Amusement dataset respectively. By
using RBA model, authors got 76% and 80% accuracy for
sports information dataset and amusement dataset respectively.
Sharma et al. [18] stated that multiple techniques were used to
perform POS tagging on Hindi text. The techniques either
based on Rules or based on Statistics or based on both. The
statistical model could be SVM, HMM, CRF and MEA.

Narayan et al. [19] developed Hindi POS tagger using
Artificial Neural Network (ANN) and achieved 91.03%
accuracy. Narayan et al. [20] developed Hindi POS tagger
using Quantum Neural Network (QNN) and achieved 99.13%
accuracy. Mohnot et al. [21] proposed Hindi POS tagger
developed using Hybrid Approach (HA) and it could be the
combination of RBA, CRF, HMM and so on. 80,000 words
and seven types of tags were used for experiment purpose.
Joshi et al. [22] stated that three approaches were very common
for POS tagging, they are RBA, Statistical Approach (SA) and
HA. Garg et al. [23] used RBA for Hindi POS tagger. In this
paper authors referred news, essay and short stories and
collected 26,149 words and used 30 different tags and achieved
87.55% accuracy. Shrivastava et al. [24] developed Hindi POS
tagger using Longest Suffix Matching Approach of HMM and
got 93.12% accuracy. Dalal et al. [25] stated that Maximum
Entropy Markov Model (MEMM) is used for POS tagging and
chunking. This model is having various features such as corpus
based feature, word based feature, dictionary based feature and
context based features. The first three features are used for
POS tagging and last feature is used for chunking purpose.

Antony et al. [26] developed Kannada POS tagger using
SVM. Authors himself developed his own corpus, and words
are taken from Kannada newspaper and books. Initially the
corpus size was 1000 words then 25,000 words and finally
54,000 words and 30 tags. Accordingly, authors gained 48%,
66% and 86% accuracy respectively. Priyadarshi et al. [27]
proposed Maithili POS using CRF. Author himself annotated
Maithili text and created a corpus which consisted of 52,190
words. 85.88% accuracy was achieved when experiment was
performed on wikipedia dumps and other Maithili web
resources. Mundotiya et al. [28] developed Maithili POS tagger
using CRF and achieved 0.77% precision & recall, 0.78% F1
score and 0.77% accuracy. Jha et al. [29] discussed about the
“Sandhi” rules and Machine Learning models for analyzing the
word, generating multiple words, concatenation with root word

to suffix or prefix. Singh et al. [30] developed morphology
based Manipuri POS tagger. Authors used dictionaries for root
word, prefix and suffix. System was tested on 3784 sentences
that consist of 10,917 words. The result shows that 69% words
were correctly tagged while 31% of them were incorrectly
tagged (23% unknown words and 8% known words).

Patil et al. [31] developed Rule based Marathi POS tagger.
The system is tested with small corpus size and achieved
78.82% accuracy. Authors stated that system’s accuracy can be
increased by increasing the corpus size. Singh et al. [32]
presented N-gram HMM for POS tagger. Authors considered
tourism domain and collected 1,95,647 words for experiment
purpose. Kaur et al. [33] talked about Punjabi POS tagger
developed using HMM with tag set of 630 tags. Large tag set
creates the data sparseness problem and it could be resolved by
reducing the tag set. In this paper author suggested the new tag
set proposed by Technical department of Indian languages
(TDIL) and it consist of only 36 tags instead of 630 tags. The
accuracy with 36 tags and 630 tags were 92-95% and 85-87%
respectively. Mittal et al. [34] described N-gram HMM model
for Punjabi POS tagger. Result showed that N-gram model is
not suitable for unknown words because of spelling mistake or
foreign language words.

Sharma et al. [35] stated that correctness of POS tagger
depends on how accurately tagger tags the words of a sentence.
The problem with the existing tagger is that it fails to tag the
compound words and complex sentences. Authors were
interested to increase the efficiency of existing Punjabi POS
tagger by implementing the Viterbi algorithm of Bi-gram
HMM. Suresh et al. [36] developed Telugu POS tagger using
HMM with 620 tags but TDIL proposed only 34 tags for
Indian languages. After experimenting 92-95% and 85-87%
accuracy achieved with 34 tags and 620 tags respectively.
Jagadeesh et al. [37] used unsupervised learning algorithm and
Deep Learning (DL) methods for developing Telugu POS. The
Table I indicate approaches for POS tagger for Indian
Languages.

Al Shamsi et al. [38] used HMM to develop Arabic POS
tagger and got 97% accuracy. Demilie et al. [39] developed
POS tagger for Awngi language using HMM. Authors used 23
tags and 188,760 words for training and testing purpose.
93.64% and 94.77% accuracy is achieved with Uni-gram and
Bi-gram HMM respectively. Purnamasari et al. [40] talked
about Indonesian rule based POS tagger and authors used
KBBI (Indonesian large dictionary) and morphological rules
for tagging purpose.

Wicaksono et al. [41] developed POS tagger for Indonesian
language using HMM. Affix tree, succeeding POS tag and
additional lexicon methods were used to improve the accuracy.
The result stated that affix tree and additional lexicon methods
are best to improve the accuracy of POS tagger than
succeeding POS tag. Dibitso et al. [42] developed Setswana
African Language POS using SVM. Authors reviewed POS
taggers for different African languages and identified
challenges and techniques. Table II shows approaches for POS
tagger for International Languages from 2006 to 2019 duration.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 4, 2021

431 | P a g e

www.ijacsa.thesai.org

TABLE I. APPROACHES FOR POS TAGGER FOR INDIAN LANGUAGES

S. No Author(s) Language Year Approach

1 Basit et al. [7] Awadhi 2008 FBA

2 Ekbal et al. [8] Bengali 2008 MEA

3 Proisl et al. [9]
Bhojpuri &

Magadhi
2019

SoMeWeTa,

MECDN,Bi-

LSTM+CRF

4 Ojha et al.[10] Bhojpuri 2015 SVM, CRF

5 Singh et al.[11] Bhojpuri 2015 SVM

6 Pandey et al. [12] Chhattisgarhi 2018 RBA

7 Sinha et al. [13] Chhattisgarhi 2018 RBA

8 Reddy et al. [14]
Cross

Language
2011 HMM

9 Bhirud et al. [15] Generic 2017 CL

10 Verma et al. [16] Generic 2017 ML

11 Bhatt et al. [17] Gujrati 2019 HMM, RBA

12 Sharma et al. [18] Hindi 2020 RBA, SA, HA

13 Narayan et al. [19] Hindi 2014 ANN

14 Narayan et al. [20] Hindi 2014 QNN

15 Mohnot et al. [21] Hindi 2014 HA

16 Joshi et al. [22] Hindi 2013 HMM

17 Garg et al. [23] Hindi 2012 RBA

18 Shrivastava et al. [24] Hindi 2008 HMM

19 Dalal et al. [25] Hindi 2006 MEMM

20 Antony et al. [26] Kannada 2010 SVM

21 Priyadarshi et al. [27] Maithili 2020 CRF

22 Mundotiya et al. [28] Maithili 2020 CRF

23 Jha et al. [29] Maithili 2018 RBA

24 Singh et al. [30] Manipuri 2008 MBA

25 Patil et al. [31] Marathi 2014 RBA

26 Singh et al. [32] Marathi 2013 N-gram HMM

27 Kaur et al. [33] Punjabi 2015 HMM

28 Mittal et al. [34] Punjabi 2014 HA

29 Sharma et al. [35] Punjabi 2011
Bi-gram

HMM

30 Suresh et al. [36] Telugu 2019 HMM

31 Jagadeesh et al. [37] Telugu 2016 DL

TABLE II. APPROACHES FOR POS TAGGER FOR INTERNATIONAL

LANGUAGES

S.No Author(s) Language Year Approach

1 Al Shamsi et al. [38] Arabic 2006 HMM

2 Demilie et al. [39] Awangi 2019 HMM

3 Purnamasari et al. [40] Indonesian 2018 RBA

4 Wicaksono et al. [41] Indonesian 2010 HMM

5 Dibitso et al. [42]
Setswana

African
2019 SVM

Kovida et al. [43] discussed General Approaches (GA)
used for language independent “Sandhi” Splitter and the
system has been tested on two languages Telugu and
Malayalam. Devadath et al. [44] conducted “Sandhi” splitting
experiment on Dravidian languages. Authors evaluated the
performance of “Sandhi” splitting tool and analyzed error
propagation rate. Joshi et al. [45] presented “Sandhi” viched
(“Sandhi” Splitter) using different Hindi rules. They
experimented their system on 847 Hindi compound words and
got 75% accuracy. Gupta et al. [46] developed a Rule based
“Sandhi” Viched system for Hindi Language. The authors
tested the system on more than 200 words and got 60% to 80%
accuracy. Deshmukh et al. [47] compared four “Sandhi”
analyzer and “Sandhi” Splitter systems developed in Sanskrit,
Marathi, Hindi and Malayalam and authors found that RBA
was used for all four languages.

Murthy et al. [48] developed first “Sandhi” Splitter in
Kannada using “Sandhi” Place Determination (SPD) and
Prefix Suffix method (PSM). The experiment was performed
on 7000 words in Kannada language and achieved 80%
accuracy. Shashirekha et al. [49] presented RBA based agama
“Sandhi” Splitter namely Yakaragama and Vakaragama. The
experiment was tested on the words taken from Kannada
newspaper and online resources. The developed system
achieved 98.85% accuracy.

Shree et al. [50] proposed Kannada “Sandhi” Splitter using
CRF method. Sebastian et al. [51] discussed the results and
issues of Malayalam word Splitter developed using Machine
Learning (ML) approaches. Premjith et al. [52] used DL
methods such as RNN, LSTM and Gated Recurrent Units
(GRU) for constructing and splitting the words and obtained
98.08%, 97.88% and 98.16% accuracy respectively. Nisha et
al. [53] developed the Malayalam “Sandhi” Splitter using
Memory Based Language Processing (MBLP) algorithm. This
algorithm was based on suffix separation. Authors discussed
three methods for suffix separation such as Root driven
method, Affix stripping method and the Suffix stripping
method. Devadath et al. [54] developed the Malayalam
“Sandhi” Splitter using the HA and got 91.1% accuracy and
authors stated that HA was better than RBA and SA, because it
is faster and more accurate.

Das et al. [55] developed Malayalam “Sandhi” Splitter
using HA and Malayalam characters were represented by
unicode. Nair et al. [56] developed Malayalam “Sandhi”
Splitter using RBA to split the compound words. The system
was tested on 4000 compound words and got 90% accuracy.
Authors stated that work can be extended to other Dravidian
languages because they have structural similarity. Joshi et al.
[57] developed Marathi “Sandhi” Splitter using RBA. The
experiment was tested on 150 words and got 70-80% accuracy.
Patil et al. [58] proposed “Sandhi” viched system for Sanskrit
language using RBA.

Bhardwaj et al. [59] developed Sanskrit benchmark called
“Sandhi”kosh. “Sandhi”kosh includes Rule based corpus,
Literature corpus, Bhagavad Gita corpus, UoH corpus and
Astaadhyaayi. In this paper authors presented three most
popular “Sandhi” splitting tools such as JNU tool, UoH tool
and INRIA tool. All these tools refer “Sandhi”kosh for

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 4, 2021

432 | P a g e

www.ijacsa.thesai.org

referring any rules. All these are openly available and can be
used by anyone for validating their tools.

Hellwig et al. [60] introduced Convolution Neural Network
(CNN) and RNN for splitting the Sanskrit compound words
and this model is also suitable for German compound words.
Hellwig et al. [61] developed “Sandhi” resolution and “Sandhi”
splitting system using RNN. Natarajan et al. [62] used
Bayesian Word Segmentation Method (BWSM) for Sanskrit
“Sandhi” Splitter. Rao et al. [63] focused Consonant and
Phrase based “Sandhi” splitting for Telugu language. Vempaty
et al. [64] developed a “Sandhi” Splitter for Telugu language
by using Finite State Automata (FSA). The corpus size is 158K
words and authors got 80.30% accuracy on 500 words.
Table III depicts approaches for “Sandhi” Splitter for Indian
Languages.

Adhikari et al. [65] discussed the rules for improving the
existing Nepali morphological analyzers. Paul et al. [66]
discussed about the Nepali stemmer developed using an affix
stripping technique and rule based technique. The system was
tested on 1800 words of different domain. These domains
include news on Economics, Health & Political in Nepali
language, which are based on Devanagari Script. The overall
accuracy of the designed system was 90.48%. Basapur et al.
[67] stated that developing a “Sandhi” Splitter or “Sandhi”
joiner for Pali language is bit difficult because the complex
nature of grammar rules. The Table IV represents approaches
for “Sandhi” Splitter for International Languages from 2014 to
2020.

Hemlata et al. [68] stated that translation is the process of
changing the words from one language to the other language
without altering the meaning. Translation is a difficult task
because it involves large no. of Ras and Alankaar. These help
to enhance the beauty of the literature. Ramcharitmanas is an
Awadhi epic which has a tremendous usage of Alankaar. It can
be translated through machine, but doing so will deplore the
beauty of the epic. Authors did this work better with the help of
Human Intelligence (HI).

Das et al. [69] stated parse structure and simple sentence
generation algorithm are used to generate simple sentences
from the complex or compound sentences. Sharma [70] stated
two things. Firstly, sentence simplification methods are used to
simplify compound sentences. Secondly the RBA, HMM POS
tagger and lexicon based morph are used to identify syntactic
errors. On testing, the system got 93.30% precision, 97.32%
recall rate and 95.25% F measures. Garain et al. [71] stated that
sentences can be simplified by preparing parse tree and their
efficiency could be decided on the basis of parse tree’s
efficiency. Poornima et al. [72] defined the RBA for sentence
simplification. It is a two-step process. In first step, split the
sentence by seeing the delimiter and in second step again split
the sentence by seeing the connectives. Zhu et al. [73] stated
that sentence simplification process consists of source and
target. Complex sentence and simple sentence could be source
and target. Tree based simplification model is used for
splitting, dropping, reordering and substitution.

As discussed above, although some papers on sentence
simplification were found, no papers were found on “Samaas”
Finder for any Indian language.

TABLE III. APPROACHES FOR “SANDHI” SPLITTER FOR INDIAN

LANGUAGES

S.No Author(s) Language Year Approach

1 Kovida et al [43]
Agglutinative

Language
2011 GA

2 Devadath et al [44] Dravidian 2016 GA

3 Joshi et al [45] Hindi 2016 RBA

4 Gupta et al [46] Hindi 2009 RBA

5 Deshmukh et al [47]
Indian

Language
2014 GA

6 Murthy et al[48] Kannada 2017 SPD, PSM

7 Shashirekha et al[49] Kannada 2016 RBA

8 Shree et al[50] Kannada 2016 CRF

9 Sebastian et al [51] Malayalam 2020 ML

10 Premjith et al [52] Malayalam 2018 DL

11 Nisha et al [53] Malayalam 2016 MBLP

12 Devadath et al [54] Malayalam 2014 RBA, SA

13 Das et al [55] Malayalam 2012 RBA,ML

14 Nair et al [56] Malayalam 2011 RBA

15 Joshi et al [57] Marathi 2012 RBA

16 Patil et al [58] Sanskrit 2018 RBA

17 Bhardwaj et al [59] Sanskrit 2018 RBA

18 Hellwig et al [60] Sanskrit 2018 ANN, QNN

19 Hellwig et al [61] Sanskrit 2015 RNN

20 Natarajan et al [62] Sanskrit 2011 BWSM

21 Rao et al [63] Telugu 2014 RBA

22 Vempaty et al [64] Telugu 2011 FSA

TABLE IV. APPROACHES FOR “SANDHI” SPLITTER FOR INTERNATIONAL

LANGUAGES

S.No Year Author(s) Language Approach

1 2020 Adhikari et al. [65] Nepali RBA

2 2014 Paul et al. [66] Nepali RBA

3 2019 Basapur et al. [67] Pali GA

III. ANALYSIS OF NLP TECHNIQUES FOR INDIAN

LANGUAGES

After analyzing the contents of Table I and Table III, we
find that fifteen techniques are used for POS tagging and nine
techniques are used for “Sandhi” splitting for many Indian
Languages. Very less work is done for “Alankaar” Finder and
no work is done for “Samaas” finder. Table V indicates POS

tagger approaches abbreviation, Table VI represents “Sandhi”
Splitter approaches abbreviation and Table VII indicates
“Alankaar” Finder approach abbreviation.

Various graphs have been prepared by considering the
different parameters. Fig. 1 shows Language-wise available
POS tagger. Fig. 2 is for No. of approaches used by POS tagger
and Fig. 3 is year-wise POS tagger.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 4, 2021

433 | P a g e

www.ijacsa.thesai.org

TABLE V. POS TAGGER APPROACHES AND ITS ABBREVIATION

S.No Approach name Abbreviation

1 Rule Based Approach RBA

2 Stochastic Approach SA

3 Hybrid Approach HA

4 Artificial Neural Network ANN

5 Quantum Neural Network QNN

6 Hidden Markov Model HMM

7 Maximum Entropy Markov Model MEMM

8 N Gram Markov Model NGMM

9 Feature Based Approach FBA

10 Conditional Random Field CRF

11 Support Vector Machine SVM

12 Morphology Based Approach MBA

13 Author has not provided the details SoMeWeTa

14 Bi-Long Short Term Memory Bi-LSTM

15 Maximum Entropy Cyclic Dependency Network MECDN

TABLE VI. “SANDHI” SPLITTER APPROACHES AND ITS ABBREVIATION

S.No Approach name Abbreviation

1 Rule Based Approach RBA

2 Deep Learning DL

3 Machine Learning ML

4 Conditional Random Field CRF

5 Memory Based Language Processing MBLP

6 Bayesian Word Segmentation Method BWSM

7 Finite State Automata FSA

8 “Sandhi” Place Determination SPD

9 Prefix and Suffix Method PSM

TABLE VII. “ANANKAAR” FINDER APPROACH AND ITS ABBREVIATION

S.No Approach name Abbreviation

1 Human Intelligence HI

Fig. 1. Language-Wise Available POS Tagger.

Fig. 2. No. of Approaches used by POS Taggers.

Fig. 3. Year-Wise POS Tagger.

Different graphs have been made for “Sandhi” Splitter.
Fig. 4 represent language-wise available “Sandhi” Splitter.
Fig. 5 shows the No. of approaches used by “Sandhi” Splitter
and Fig. 6 is year-wise “Sandhi” Splitter.

Fig. 4. Language-Wise Available “Sandhi” Splitter.

Fig. 5. No. of Approaches used by “Sandhi” Splitter.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 4, 2021

434 | P a g e

www.ijacsa.thesai.org

Fig. 6. Year-Wise “Sandhi” Splitter.

Fig. 7 shows the various approaches used by different
Computational Linguistic tools.

Fig. 7. Different Approaches used by POS Tagger, “Sandhi” Splitter,

“Alankaar” Finder and “Samaas” Finder.

After reviewing all research papers, it is observed that most
of the Computational Linguistics work is done in Maharashtra,
Punjab, Telangana, Tamil Nadu and Uttar Pradesh. Table VIII
depicts the state wise statistics.

Fig. 8 shows the Political map of India [74] and the state
wise linguistic work are represented on the map.

TABLE VIII. COMPUTATIONAL LINGUISTICS STATISTICS STATE WISE

State Count State Count

Andhra Pradesh 2 Madhya Pradesh 1

Assam 1 Maharashtra 8

Bihar 1 Meghalaya 1

Chhattisgarh 3 Punjab 7

Delhi 3 Rajasthan 2

Gujrat 1 Tamil Nadu 4

Haryana 1 Telangana 5

Jharkhand 1 Uttar Pradesh 4

Karnataka 3 West Bengal 3

Kerala 4

Fig. 8. State Wise Computational Linguistic Work.

IV. CONCLUSION AND FUTURE WORK

Linguistic techniques are helpful for understanding the
natural languages. Four Computational Linguistic tools namely
POS tagger, “Sandhi” Splitter, “Alankaar” Finder and
“Samaas” Finder for Indo-Aryan and Dravidian languages have
been considered. It is observed that POS tagger and “Sandhi”
Splitter are available while “Alankaar” Finder and “Samaas”
Finder are not. Most of the POS taggers are available only for
Hindi language while “Sandhi” splitters are available mostly
for Malayalam language. Fifteen techniques such as RBA, SA,
HA, ANN, QNN, HMM, MEMM, N-gram HMM, FBA, CRF,
SVM, MBA, Bi-LSTM and MECDN are suitable for POS
tagging. It is observed that most of the Indian language POS
taggers are built by using RBA and HMM.

Nine techniques namely RBA, DL, ML, CRF, MBLP,
BWSM, FSA, SPD and PSM are appropriate for “Sandhi”
Splitter. RBA is commonly used by researchers for developing
“Sandhi” Splitter. The study shows that HI could be used for
“Alankaar” Finder. But technique for “Samaas” Finder are
unavailable yet.

As a future work, the authors would like to extend this
work and use ML techniques for linguistic tools i.e. POS
tagger, “Sandhi” Splitter, “Alankaar” Finder and “Samaas”
Finder for Indo-Aryan and Dravidian languages.

REFERENCES

[1] The Constitution Of India, (2019). Government Of India Ministry Of
Law and Justice Legislative Department.

[2] Information from Omniglot (2008), The online encyclopedia of writing
systems and languages.

[3] Internet Archive, (2007), Linguistic Survey of India Vol. 6.

[4] Ramcharitmans, (2015), Tulsidas Ramcharitmanas.

[5] The Divine India, (2020), Hanuman Chalisa.

[6] Kavitakosh, (2006),Ramcharitmans/Tulsidas.

[7] Basit, A., & Kumar, R. (2019) Towards a Part-of-Speech Tagger for
Awadhi: Corpus and Experiments.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 4, 2021

435 | P a g e

www.ijacsa.thesai.org

[8] Ekbal, A., Haque, R., & Bandyopadhyay, S. (2008). Maximum entropy
based Bengali part of speech tagging. Advances in Natural Language
Processing and Applications, Research in Computing Science (RCS)
Journal, 33, 67-78.

[9] Proisl, T., Uhrig, P., Blombach, A., Dykes, N., Heinrich, P., Kabashi, B.,
& Mammarella, S. (2019). The_Illiterati: Part-of-Speech Tagging for
Magahi and Bhojpuri without even knowing the alphabet.
In Proceedings of the First International Workshop on NLP Solutions for
Under Resourced Languages (NSURL 2019) co-located with ICNLSP
2019-Short Papers (pp. 73-79).

[10] Ojha, A. K., Behera, P., Singh, S., & Jha, G. N. (2015). Training &
evaluation of POS taggers in Indo-Aryan languages: a case of Hindi,
Odia and Bhojpuri. In the proceedings of 7th Language & Technology
Conference: Human Language Technologies as a Challenge for
Computer Science and Linguistics (pp. 524-529).

[11] Singh, S., & Jha, G. N. (2015, August). Statistical tagger for Bhojpuri
(employing support vector machine). In 2015 International Conference
on Advances in Computing, Communications and Informatics
(ICACCI) (pp. 1524-1529). IEEE.

[12] Pandey, V., Padmavati, M. V., & Kumar, R. Rule Based Parts of Speech
Tagger for Chhattisgarhi Language.

[13] Sinha, S.K. Sahu, & S ther (2018). Parts of speech tagging for
Chhattisgarhi language. International journal of creative research
thoughts (Volume 6, Issue 1 February 2018, ISSN: 2320-2882.

[14] Reddy, S., & Sharoff, S. (2011, November). Cross language POS
taggers (and other tools) for Indian languages: An experiment with
Kannada using Telugu resources. In Proceedings of the Fifth
International Workshop On Cross Lingual Information Access (pp. 11-
19).

[15] Bhirud, N. S., Bhavsar, R., & Pawar, B. (2017). Grammar checkers for
natural languages: a review. International Journal on Natural Language
Computing (IJNLC), 6(4), 51-62.

[16] Verma, M. (2017). Lexical analysis of religious texts using text mining
and machine learning tools. International Journal of Computer
Applications, 168(8), 39-45.

[17] Bhatt, P. M., & Ganatra, A. Analyzing& enhancing accuracy of part of
speech tagger with the usage of mixed approaches for
Gujarati. International Journal of Recent Technology and Engineering
(IJRTE) ISSN: 2277, 3878.

[18] Sharma, A., & Yadav, V. Approaches to Part of speech Tagging in
Hindi Language: A Review.

[19] Narayan, R., Chakraverty, S., & Singh, V. P. (2014). Neural network
based parts of speech tagger for Hindi. IFAC Proceedings
Volumes, 47(1), 519-524.

[20] Narayan, R., Singh, V. P., & Chakraverty, S. (2014). Quantum neural
network based parts of speech tagger for Hindi. International Journal of
Advancements in Technology, 5(2), 137-152.

[21] Mohnot, K., Bansal, N., Singh, S. P., & Kumar, A. (2014). Hybrid
approach for Part of Speech Tagger for Hindi language. International
Journal of Computer Technology and Electronics Engineering
(IJCTEE), 4(1), 25-30.

[22] Joshi, N., Darbari, H., & Mathur, I. (2013). HMM based POS tagger for
Hindi. In Proceeding of 2013 International Conference on Artificial
Intelligence, Soft Computing (AISC-2013) (pp. 341-349).

[23] Garg, N., Goyal, V., & Preet, S. (2012, December). Rule based Hindi
part of speech tagger. In Proceedings of COLING 2012: Demonstration
Papers (pp. 163-174).

[24] Shrivastava, M., & Bhattacharyya, P. (2008, December). Hindi POS
tagger using naive stemming: harnessing morphological information
without extensive linguistic knowledge. In International Conference on
NLP (ICON08), Pune, India.

[25] Dalal, A., Nagaraj, K., Sawant, U., & Shelke, S. (2006). Hindi part-of-
speech tagging and chunking: A maximum entropy
approach. Proceeding of the NLPAI Machine Learning Competition.

[26] Antony, P. J., & Soman, K. P. (2010, July). Kernel based part of speech
tagger for Kannada. In 2010 International Conference on Machine
Learning and Cybernetics (Vol. 4, pp. 2139-2144). IEEE.

[27] Priyadarshi, A., & Saha, S. K. (2020). Towards the first Maithili part of
speech tagger: Resource creation and system development. Computer
Speech & Language, 62, 101054.

[28] Mundotiya, R. K., Singh, M. K., Kapur, R., Mishra, S., & Singh, A. K.
(2020). Basic Linguistic Resources and Baselines for Bhojpuri, Magahi
and Maithili for Natural Language Processing. arXiv preprint
arXiv:2004.13945.

[29] Jha, S. K., Singh, P. P., & Kaul, V. K. (2018). VEA Model in Word
Formation Process of Maithili MT.

[30] Singh, T. D., & Bandyopadhyay, S. (2008). Morphology driven
manipuripos tagger. In Proceedings of the IJCNLP-08 Workshop on
NLP for less privileged languages.

[31] Patil, H. B., Patil, A. S., & Pawar, B. V. (2014). Part-of-Speech Tagger
for Marathi Language using Limited Training Corpora. International
Journal of Computer Applications, 975, 8887.

[32] Singh, J., Joshi, N., & Mathur, I. (2013, August). Development of
Marathi part of speech tagger using statistical approach. In 2013
International Conference on Advances in Computing, Communications
and Informatics (ICACCI) (pp. 1554-1559). IEEE.

[33] Kaur, M., Aggerwal, M., & Sharma, S. K. (2014). Improving Punjabi
Part of Speech Tagger by Using Reduced Tag Set. International Journal
of Computer Applications & Information Technology, 7(2), 142.

[34] Mittal, S., Sethi, N. S., & Sharma, S. K. (2014). Part of speech tagging
of Punjabi language using N gram model. International Journal of
Computer Applications, 100(19).

[35] Sharma, S. K., & Lehal, G. S. (2011, June). Using hidden markov model
to improve the accuracy of Punjabi pos tagger. In 2011 IEEE
International Conference on Computer Science and Automation
Engineering (Vol. 2, pp. 697-701). IEEE.

[36] Suresh, V. Reduced TagsetTo Improve Accuracy of HMM Based Parts
of Speech Tagger in Telugu Language.

[37] Jagadeesh, M., Kumar, M. A., & Soman, K. P. (2016). Deep belief
network based part-of-speech tagger for Telugu language.
In Proceedings of the Second International Conference on Computer and
Communication Technologies (pp. 75-84). Springer, New Delhi.

[38] Al Shamsi, F., & Guessoum, A. (2006, April). A hidden Markov model-
based POS tagger for Arabic. In Proceeding of the 8th International
Conference on the Statistical Analysis of Textual Data, France (pp. 31-
42).

[39] Demilie, W. B. (2019, September) Parts of Speech Tagger for Awngi
Language. International journal of Engineering Science and Computing
(Vol. 9, Issue No 9).

[40] Purnamasari, K. K., & Suwardi, I. S. (2018, September). Rule based Part
of Speech Tagger for Indonesian Language. In IOP Conference Series:
Materials Science and Engineering (Vol. 407, No. 012151, pp. 1-4).

[41] Wicaksono, A. F., & Purwarianti, A. (2010, August). HMM Based part-
of-speech tagger for bahasa Indonesia. In Fourth International
MALINDO Workshop, Jakarta.

[42] Dibitso, M. A., Owolawi, P. A., & Ojo, S. O. (2019, November). Part of
Speech Tagging for Setswana African Language. In 2019 International
Multidisciplinary Information Technology and Engineering Conference
(IMITEC) (pp. 1-6). IEEE.

[43] Kovida, K. P. N., Sneha, N., & Mamidi, R. (2011). Statistical Sandhi
Splitter For Agglutinative Languages.

[44] Devadath, V. V., & Sharma, D. M. (2016, August). Significance of an
accurate sandhi-Splitter in shallow parsing of dravidian languages.
In Proceedings of the ACL 2016 Student Research Workshop (pp. 37-
42).

[45] Joshi, B. K., & Kushwah, K. K. (2016). Sandhi: the rule based word
formation in Hindi. International Journal of Computer Science and
Information Security, 14(12), 781.

[46] Gupta, P., & Goyal, V. (2009). Implementation of rule based algorithm
for Sandhi-Viched of compound Hindi words. arXiv preprint
arXiv:0909.2379.

[47] Deshmukh, R., Bhojane, V., & PIIT, N. P. (2014). Sandhi Splitting
Techniques For Different Indian Languages. International Journal of
Engineering Technology, Management and Applied Sciences
(ijetmas), 2(7).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 4, 2021

436 | P a g e

www.ijacsa.thesai.org

[48] Murthy, S. R., Akshatha, A. N., Upadhyaya, C. G., & Kumar, P. R.
(2017, September). Kannada spell checker with sandhi Splitter. In 2017
International Conference on Advances in Computing, Communications
and Informatics (ICACCI) (pp. 950-956). IEEE.

[49] Shashirekha, H. L., & Vanishree, K. S. (2016, September). Rule based
Kannada Agama Sandhi Splitter. In 2016 International Conference on
Advances in Computing, Communications and Informatics
(ICACCI) (pp. 549-553). IEEE.

[50] Shree, M. R., Lakshmi, S., & Shambhavi, B. R. (2016, October). A
novel approach to Sandhi splitting at character level for Kannada
language. In 2016 International Conference on Computation System and
Information Technology for Sustainable Solutions (CSITSS) (pp. 17-
20). IEEE.

[51] Sebastian, M. P., & Kumar, G. S. (2020). Machine learning approach to
suffix separation on a sandhi rule annotated malayalam data set. South
Asia Research, 40(2), 231-249.

[52] Premjith, B., Soman, K. P., & Kumar, M. A. (2018). A deep learning
approach for Malayalam morphological analysis at character
level. Procedia computer science, 132, 47-54.

[53] Nisha, M., & Raj, P. R. (2016). Sandhi Splitter for malayalam using
mblp approach. Procedia Technology, 24, 1522-1527.

[54] Devadath, V. V., Kurisinkel, L. J., Sharma, D. M., & Varma, V. (2014,
December). A sandhi Splitter for malayalam. In Proceedings of the 11th
International Conference on Natural Language Processing (pp. 156-
161).

[55] Das, D., Radhika, K. T., Rajeev, R. R., & PC, R. R. (2012). Hybrid
sandhi-Splitter for malayalam using unicode. In in proceedings of
National Seminar on Relevance of Malayalam in Information
Technology.

[56] Nair, L. R., & Peter, S. D. (2011, September). Development of a rule
based learning system for splitting compound words in Malayalam
language. In 2011 IEEE Recent Advances in Intelligent Computational
Systems (pp. 751-755). IEEE.

[57] Joshi Shripad, S. (2012). Sandhi splitting of Marathi compound
words. Int. J. on Adv. Computer Theory and Engg, 2(2).

[58] Patil, B., & Patil, M. (2018). Implementation of Sandhi Viccheda for
Sanskrit Words/Sentences/Paragraphs.

[59] Bhardwaj, S., Gantayat, N., Chaturvedi, N., Garg, R., & Agarwal, S.
(2018, May). Sandhikosh: A benchmark corpus for evaluating sanskrit
sandhi tools. In Proceedings of the Eleventh International Conference on
Language Resources and Evaluation (LREC 2018).

[60] Hellwig, O., & Nehrdich, S. (2018). Sanskrit word segmentation using
character-level recurrent and convolutional neural networks.
In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing (pp. 2754-2763).

[61] Hellwig, O. (2015, November). Using Recurrent Neural Networks for
joint compound splitting and Sandhi resolution in Sanskrit. In 4th
Biennial Workshop on Less-Resourced Languages.

[62] Natarajan, A., & Charniak, E. (2011, November). S3-Statistical Sandhi
Splitting-Statistical Sandhi Splitting. In Proceedings of 5th International
Joint Conference on Natural Language Processing (pp. 301-308).

[63] Rao, T. K., & Prasad, T. V. (2014). Telugu Bigram Splitting using
Consonant-based and Phrase-based Splitting. Editorial Preface, 5(5),
122.

[64] Vempaty, P. C., & Nagalla, S. C. P. (2011). Automatic sandhi splitting
method for Telugu, an Indian language. Procedia-Social and Behavioral
Sciences, 27, 218-225.

[65] Adhikari, M., & Neupane, A. (2020). A vowel based word Splitter to
improve performance of existing Nepali morphological analyzers on
words borrowed from Sanskrit. Kathmandu University Journal of
Science, Engineering and Technology, 14(1).

[66] Paul, A., Dey, A., & Purkayastha, B. S. (2014). An Affix Removal
Stemmer for Natural Language Text in Nepali. International Journal of
Computer Applications, 91(6).

[67] Basapur, S., Shivani, V., & Nair, S. (2019). Pāli Sandhi–A
computational approach. In Proceedings of the 6th International Sanskrit
Computational Linguistics Symposium (pp. 181-192).

[68] Hemlata, M. A., & Kalan, B. K. Distortion or Translation (2019).
Studying Figures of Speech in Ramcharitmanasa.

[69] Das, B., Majumder, M., & Phadikar, S. (2018). A novel system for
generating simple sentences from complex and compound
sentences. International Journal of Modern Education and Computer
Science, 12(1), 57.

[70] Sharma, S. K. (2019). Sentence Reduction for Syntactic Analysis of
Compound Sentences in Punjabi Language. EAI Endorsed Transactions
on Scalable Information Systems, 6(20), e4.

[71] Garain, A., Basu, A., Dawn, R., & Naskar, S. K. (2019, November).
Sentence simplification using syntactic parse trees. In 2019 4th
International Conference on Information Systems and Computer
Networks (ISCON) (pp. 672-676). IEEE.

[72] Poornima, C., Dhanalakshmi, V., Anand, K. M., & Soman, K. P. (2011).
Rule based sentence simplification for english to tamil machine
translation system. International Journal of Computer
Applications, 25(8), 38-42.

[73] Zhu, Z., Bernhard, D., & Gurevych, I. (2010, August). A monolingual
tree-based translation model for sentence simplification. In Proceedings
of the 23rd International Conference on Computational Linguistics
(Coling 2010) (pp. 1353-1361).

[74] Maps of Inida, (2020), India Outline Map with States and Union
Territories.

