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Abstract—Multiple Sequence Alignment (MSA) is a very 

effective tool in bioinformatics. It is used for the prediction of the 

structure and function of the protein, locating DNA regulatory 

elements like binding sites, and evolutionary analysis. This 

research paper proposed an optimization method for the 

improvement of multiple sequence alignment generated through 

progressive alignment. This optimization method consists of a 

fusion of two problem-solving techniques, divide-conquer and 

genetic algorithms in which the initial population of MSAs was 

generated through progressive alignment. Each multiple 

alignment was then divided vertically into four parts, three 

genetic operators were applied on each part of the MSA, 

recombination was done to reconstruct the full MSA. To estimate 

the performance of the method the results generated through the 

method are compared with well-known existing MSA methods 

named Clustal Ω, MUSCLE, PRANK, and Clustal W. 

Experimental results showed an 11-26% increase in sum_of_pair 

score (SP score) in the proposed method in comparison to the 

above-mentioned methods. SP score is the cumulative score of all 

possible pairs of alignment within the MSA. 

Keywords—Multiple sequence alignment; divide; and conquer; 

genetic algorithm; optimization method 

I. INTRODUCTION 

Sequence alignment (SA) is the most common and 
essential task of bioinformatics. Pairwise SA is an alignment 
of two biological sequences where the similarity between the 
two sequences has been revealed through the alignment, few 
examples of SA are EMBOSS [1], BLAST[2], PSI-
BLAST[3], and AlignMe[4], in the case when three and more 
sequences are aligned, is referred as multiple sequence 
alignment (MSA). The objective of the MSA is to arrange the 
sequences in a way that exposes the evolutionary connection 
between the biological sequences. The key applications of 
MSA are the identification of a protein family-like 
phylogenetic analysis and finding DNA regulatory elements. 
MSA is a well-known problem of combinatorics and its 
complexity is quite high, hence to get an exact solution is not 
practically possible for a large number of sequences [5], that is 
why most of the multiple alignment methods are heuristic and 
provide approximate solutions. Progressive alignment and 
iterative alignment are the two most applied approaches for 
MSA. The progressive alignment method is primarily based 
on the PSA in which pairwise alignment is done for all the 
possible pairs of sequences, a distance matrix is made that 
shows the dissimilarities between the sequences. A guide tree 

is constructed through the distance matrix by any clustering 
algorithm. The guide tree displays the order of sequences to be 
aligned, most similar sequences are aligned first followed by 
the sequences of less similarity. Feng and Doolittle were the 
first who proposed a progressive alignment algorithm for 
MSA [6]. Many MSA methods based on the progressive 
alignment have been developed like CLUSTALW [7], 
MULTALIGN [8], CLUSTAL X[9]. The major disadvantage 
of this method is that the resulting MSA gets affected by the 
initial alignments so the position and length of gaps of aligned 
sequences can not be changed at a later stage. 

Iterative alignment provides a solution to this problem 
through iteratively modifying the previously aligned 
sequences while keeps on adding the new sequences, few 
examples of iterative alignment are MAFFT [10,11], 
MUSCLE [12,13], and PRRP [14]. 

The machine learning area has been explored and several 
methods are applied to deal with the MSA problem. Ant 
colony optimization was applied by Chen et al [15] it was a 
partitioning approach that consists of three phases. Ant colony 
optimization was applied on each part and at last, all the parts 
were reassembled to get the solution. 

Particle swarm optimization was combined with the 
Hidden Markov model to get the MSA by Rasmussen et al 
[16], they displayed improved results for protein sequences 
than the other HMM method for MSA like simulated 
annealing [17]. 

Reinforcement learning (RL) algorithms are used in 
solving the problem. Mircea et al [18] applied it the first time. 
The Q learning algorithm was applied along with the action-
selection approach like softmax and epsilon-greedy for 
balancing the explore-exploit strategy. This strategy explores 
the solution space that may not provide instant high scores but 
may lead to a higher gain in the longer term. Exploitation is 
the application of information already gained by prior 
experiences. A good balance of exploration and exploitation 
helps to reach the optimum result in lesser time. Reza Jafri et 
al [19] used the deep Q learning method along with the actor-
critic algorithm and experience replay method. They showed 
that their method has a speedy convergence. RLALIGN [20] is 
a pure RL-based algorithm for MSA. 
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Genetic algorithm (GA) is a type of iterative method, 
analogous to the theory of natural evolution. It generates many 
solutions at each stage every solution is attached with a fitness 
function that describes the goodness of that solution. The 
genetic operators like mutation operators and recombination 
operators are applied to the selected entities at each stage 
iteratively until the result converged to the best possible 
fitness score. Due to the MSA‘s discrete nature, GA is well 
suited to this problem. SAGA [21] is a famous MSA method 
developed by Higgins and Notredame, based on the GA. It 
attempts to get the MSA by the number of complex genetic 
operators. One more approach was proposed by Nazneen et al 
[22] in which the initial population was generated through 
randomly produced subtrees and then by shuffling of those 
subtrees. MSA-GA [23] is another method in which the initial 
population was produced through dynamic programming and 
then Genetic operators were applied to it to get the next 
generation population iteratively. 

This paper suggests an approach named Genetic 
algorithm-based optimization with divide and conquer method 
(GAODC) which is a fusion approach of two problem-solving 
techniques namely a genetic algorithm and divide and conquer 
methodology. In this approach, the Sum_of_Pair score is used 
as a fitness function. It divides the MSAs into four parts and 
two operators namely insertion mutation and deletion 
mutation are applied to those parts. The fitness score is 
calculated for each part and recombination is done between 
the parts of two MSAs starting with the MSAs having the 
highest fitness score. 

The most distinguishing feature of this methodology is that 
the recombination of MSAs is based on the fitness score of the 
individual parts of MSAs. Recombination between the MSAs 
with high fitness scores has a great chance of construction of 
new MSA with higher fitness scores. To evaluate the 
performance of GAODC, it is compared with other popular 
MSA methods, namely PRANK[24], CLUSTAL Ω, MAFFT, 
and MUSCLE. BAliBASE 3.0 [25] database is used for the 
evaluation of the method. Sum_of_pair score and 
total_column score are the two objective functions that are 
used as an evaluation criterion for all the MSA methods. 

The rest of the paper is principally divided into eight main 
sections: Section II presents the basic definitions of the 
progressive alignment, Divide-conquer approach, and Genetic 
algorithm. The methodology of GAODC is explained in 
Section III, Section IV mentioned the fitness function and the 
scoring scheme. Datasets used in the method are explicated in 
Section V. Results generated through GAODC and other 
existing methods are compared in Section VI, Section VII 
summarizes the conclusions, and Section VIII lists out the 
references cited in the paper. 

II. PRELIMINARIES 

This section contains the preliminaries that are used in the 
proposed method. Section A explains the progressive 
alignment technique that is applied to generate the initial 
population, section B and C contains the basic steps of divide 
and conquer and genetic algorithm respectively. 

A. Progressive Alignment 

Progressive alignment is a basic technique of multiple 
sequence alignment it starts with the pairwise 
sequencealignment of any two sequences and then the third 
sequence is aligned, and this process continues till all the 
sequences get aligned. This method does not guarantee 
optimal alignment, but it is a very fast method for MSA. 
Following are the main steps of progressive alignment: 

1) Make the distance matrix for M(M-1)/2 pairs of 

sequences of M sequences. 

2) Make a guide tree with the help of the matrix using 

clustering algorithms like neighbor-joining [26] and 

UPGMA[27], which shows the order of sequences to be 

aligned. 

3) Add the sequences into the alignment starting from the 

sequences added first followed by other sequences added to 

the guide tree. An example of a guide tree is shown in Fig. 1 

for the sequences S1, S2, S3, and S4. As depicted in the 

figure, S1 and S2 will be aligned first followed by S3 and S4. 

B. Divide and Conquer 

Divide and conquer is a recursive problem-solving 
approach. It breaks the complex problem into smaller 
subproblems of similar type till the subproblems are converted 
to simple problems that can easily be solved then each 
subproblem is solved and combined to obtain a complete 
solution. Three main steps of the divide and conquer method 
are divide: in which the problem is divided into subproblems 
of the same kind, the second step is to conquer, that solves the 
subproblems recursively and the final step is to combine, 
where all the solutions are combined to achieve the final 
solution of the entire problem. 

C. Genetic Algorithm 

Genetic algorithms (GA) are analogous to the process of 
evolution where the best individuals are chosen to produce 
next-generation offspring. The main steps of GA are as 
follows: 

1) Generation of the initial population. 

2) Calculate the fitness function for each entity within the 

population. 

3) Choose some individual as parents. 

4) Apply genetic operators on them. 

5) Produce the next generation with the help of some 

recombination of the previous generation. 

6) Repeat steps 2 to 5 until the stop criterion. 

7) End. 

 

Fig. 1. The Guide Tree Displays the Order of the Sequences to be Aligned in 

Progressive Alignment. 
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III. METHOD 

Genetic algorithm-based optimization with divide and 
conquer (GAODC) consists of the following main steps: 
population initialization, division, mutation, and 
recombination. 

After generating the initial population with the help of 
progressive alignment and random insertion of gaps, the 
division of each individual into four upright parts is 
performed, Fig. 3 shows the vertical division of the MSA. 
Mutation operators are applied on each part of the MSA and 
two types of recombination (One Point and Two Point 
recombination) are performed to generate a next-generation 
population. Mutation operations are done on each part of the 
MSA instead of the whole MSA and one point and two-point 
recombination are achieved based on the fitness score. 
Application of mutation operators on the vertical parts of 
MSA instead of full MSA and the fitness score-based 
recombination are the main features of the method. This 
vertical division is done after the initial population generated, 
two mutation operators, namely, insertion mutation operator 
and deletion mutation operators are applied on each segment 
of the MSA to achieve a better alignment score. 

A. Gap Insertion Mutation 

a gap insertion mutation operator is introduced that picks 
an MSA from the population and creates a gap randomly at 
each row, the changes are retained if fitness improves. Fig. 2 
illustrates the example of gap insertion mutation for the 
following four sequences: 

S1: ABV, S2: BV, S3: AV, and S4:ABV 

 

Fig. 2. Depicts Insertion Mutation Applied on Alignment A and the 

Resulting Alignment B. 

B. Gap Removal Mutation 

A gap elimination mutation operator is designed that picks 
an MSA and selects the positions randomly to eliminate the 
gap. If the selected positions are not a gap then move forward 
till a gap is found and delete the gap. If no gap is found, then 
go back and delete the first gap found. Retain the changes if 
the fitness score is increased. Fig. 3 illustrates the example of 
deletion mutation operation on MSA (A) for the sequences S1, 
S2, S3, and S4. 

 

Fig. 3. Depicts Deletion Mutation Applied to Alignment A and the Resulting 

Alignment B. 

The key feature of the algorithm is the division step which 
takes place before the mutation operators are applied and the 
mutation is done on the part of the MSAs instead of the full 
MSA. The crux of this algorithm is that this strategy increases 
the randomness and the recombination between the parts of 
the parents based on the fitness score, enhances the chance of 
getting a new MSA with a higher score. Following are the 
main steps of the algorithm- 

1) Population initialization: The initial population is 

produced with the help of the progressive alignment technique 

which consists of the following steps: 

A. Compute the distance between each possible pair of 
sequences using the formula: 

d (Qi , Qj) = 1- { M (Qi,Qj)/ min (li,lj) }           (1) 

Here M (Qi, Qj)- Number of matches between the ith 
sequence and jth sequence. 

li and lj – Sequence length of the ith sequence and jth 
sequence, respectively: 

B. A guide tree is constructed to get the order of 
sequences to be aligned.  

C. Sequences are aligned in the order directed by the 
guide tree. Most identical sequences are aligned first 
followed by the distant sequences. Three types of 
alignment are possible here 

a. Sequence to sequence alignment 

b. Group of aligned sequences to a sequence 

c. Group to group. 

After generating the MSA through progressive alignment, 
random gap insertions are done to generate the initial 
population of size n. 

2) To generate the next generation alignments these steps 

are used: Division: Divide the individual MSA into four 

upright parts for example, from MSAs 1 to n, it will be - a1, 

b1, c1, d1 to an, bn, cn, dn. Deletion mutation operators and 

insertion mutation operators are applied on each part of the 

MSA individually and changes are saved with the highest 

fitness score of each part. Now we have four parts of each 

parent, fitness score of (a+b), and (a+b+c) parts are calculated 

for all the MSAs. Fig. 4 illustrates the example of the division 

process for four sequences S1: ABVKWSPNVS, S2: 

BVKWSNS, S3: AVKSPV, and S4: ABVKSYS. Now two 

types of recombination are done to produce the next 

generation alignments, one-point recombination, and two-

point recombination. An illustration of one-point 

recombination for the above example is shown in Fig. 6, 7 and 

8 whereas Fig. 5 depicts the two-point recombination for the 

above-mentioned example. 

One-point recombination: It contains the following steps: 

1) (a) part of one parent with MaxScore(a) will be 

combined with the (b+c+d) part of the other parent with 

MaxScore (b+c+d). 
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2) (a+b) part of one parent with MaxScore (a+b) will be 

combined with the (c+d) part of the other parent with 

MaxScore(c+d). 

3) (a+b+c) part of one parent with MaxScore(a+b+c) will 

be combined with the d part of another parent with 

MaxScore(d). 

4) Continue Steps 1, 2 and 3 with other parents with the 

next maximum scores. 

5) Evaluate the fitness function for all new MSAs. 

Two-point recombination: Two-point recombination 
contains the following steps: 

1) Part a and c of one parent having MaxScore(a+c) are 

recombined with the b and d part of the other parent with 

MaxScore(b+d). 

2) Continue step 1 with other parents with the next 

maximum scores. 

3) Evaluate the fitness score for all new MSAs. 

Elitism: This is a popular approach of the genetic 
algorithm where the individual with the highest fitness value 
of that generation, is passed as it is to the next generation so 
that we may not lose the best solution at any stage. 

New generation: The creation of a new generation is 
formed with the selection of the best distinct half of the 
collective parents, and children who are generated through the 
mutation and crossovers. The key feature of the method is that 
selection of parents is not random but it is based on the fitness 
score of the part to be recombined with the part of the other 
parent and this increases the possibility of getting a higher 
score after recombination and safeguard a good balance 
between exploitation and exploration. The new generation 
formation (shown in Fig. 9) is considered as the parent 
population of the next generation and therefore the process of 
evolution continues. 

Termination condition: The best score and its 
corresponding MSA have recorded in each generation if there 
is no improvement in the solution till 100 MSA then the 
execution of the algorithm will be ended. 

 

Fig. 4. Depicts the Division Process of MSAs in Four Parts Namely a,b, c, 

and d. 

 

Fig. 5. Two-point Crossover after Applying Insertion and Deletion Mutation 

on a, b, c, and d Parts of the MSAs. 

 

Fig. 6. One-point Crossover on (a) Part of One Parent with MaxScore (a) 

Combined with the (b+c+d) Part of the other Parent with MaxScore (b+c+d), 

after Applying Insertion and Deletion Mutation on a, b, c, and d Parts of the 

MSAs. 

 

Fig. 7. One-point Crossover on (a+b) Part of One Parent with MaxScore 

(a+b) Combined with the (c+d) Part of the other Parent with MaxScore (c+d), 

after Applying Insertion and Deletion Mutation on a, b, c, and d Parts of the 

MSAs. 

 

Fig. 8. One-point Crossover on (a+b+c) Part of One Parent with 

MaxScore(a+b+c) Combined with the (d) Part of the other Parent with 

MaxScore (d), after Applying Insertion and Deletion Mutation on a, b, c, and 

d Parts of the MSAs. 
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Fig. 9. Depiction of Construction of New Generation Population. 

IV. FITNESS FUNCTION AND SCORING SCHEME 

The fitness function in a genetic algorithm comprises all 
the parameters of the particular problem and estimates the 
solution that how much it is close to the actual solution. In the 
MSA problem, the most reliable scoring scheme Sum _of 
_Pair score (SP score) is taken as the fitness function, it is 
represented by the equation 2: 

S = ∑ ∑        
     

   
    +Gap- Penalty           (2) 

Here S(j,k), is the sum of the pair score of jth and kth 
sequences, and ‗ n‘ is the total number of sequences. The 
sum_of_pair score for all n(n-1) /2 pairs of the biological 
sequences is computed and added. For the match/mismatch 
score the BLOSUM 62 matrix is used. 

The gap penalty is a fine incurred for inserting a gap in the 
process of MSA. The affine gap penalty is applied to compute 
the fine, represented by equation 3: 

Gp = A + B (t-1)              (3) 

Where A is the Gap Opening penalty, B is the gap 
extension penalty and t is the number of consecutive gaps in a 
row. 

To calculate the quality of MSA methods one more 
parameter total_column_score (TC score) is being used. TC 
score evaluates the ability of the MSA methods to align all the 
residues appropriately in each column. Mathematically it is 
defined in equation 4: 

S =∑ {
          
           

 
                (4) 

Here d is the length of the MSA, Ti and Ri are the ith 
columns of test MSA and reference MSA respectively if the 
column of test MSA matched completely it will return ‗1‘ else 
it will return ‗0‘. The summation of all the values for each 
column divided by the number of total columns gives the 
value of TCscore as shown in equation 5. 

TCscore = S/d              (5) 

V. DATABASE 

To evaluate the performance of the proposed method the 
dataset BAliBASE V3.0 (http://www.lbgi.fr/balibase/) was 
chosen. It is a commonly used benchmark database of protein 
sequences. It contains the set of protein sequences and their 
corresponding reference MSAs. It comprises an application 

BAliscore that calculates the SPscore and TCscore of test 
MSAs with the comparison of reference MSAs, its scores vary 
in the range of 0 to 1. If the test MSA is identical to the 
reference MSA the value of BAliscore is ‗1‘ and if the test 
MSA not at all matches the reference MSA BAliscore is ‗0‘. 

BAliBASE v3 contains six different groups of protein 
sequences namely RV11, RV12, RV20, RV30, RV40, and 
RV50. RV11 has 38 sets of very divergent protein sequences 
that are equidistant and have <20% identity. RV12 was 
constructed by 44 sets of sequences of 20%- 40% similarity. 
RV20 formed with 41 sets of sequences having few orphan 
sequences while all other sequences are having <40% 
sequences. RV 30 consists of 30 sets of sequences from 
different families having <25% of identity among the families. 
RV 40 is a set of 49 sets of protein sequences with a large 
number of insertions whereas RV 50 is formed by 16 sets of 
sequences having a large number of internal insertions with < 
20% identity. 

VI. RESULTS AND DISCUSSION 

To evaluate the results of GAODC, its results for 
benchmark database BAliBASE 3.0 are compared with four 
other MSA methods namely Clustal Ω, MUSCLE, Clustal W, 
and PRANK. Parameter values for GOADC are given in 
Table I. Two criteria SPscore and TCscore are used to 
evaluate the quality of the MSAs. The results are shown in 
Table II. 

Fig. 10 depicts the sp scores of five methods across the six 
datasets for which the analysis is conducted. Fig. 11 illustrates 
the TC Score across the same datasets used to calculate SP 
Score for all five methods. 

TABLE I. PARAMETERS USED IN GAODC 

Name Value 

Population Size 100 

Substitution Matrix BLOSUM 62 

Gap Penalty 
Gap opening -3, 

Gap extension-2 

TABLE II. RESULTS OF SP SCORE AND TC SCORE OF EACH METHOD 

ACROSS ALL SIX DATASETS 

Methods   GAODC CLUSTALΩ MUSCLE 
CLUSTAL 

W 
PRANK 

RV11 
SP 0.548 0.452 0.442 0.5 0.354 

TC 0.25 0.247 0.228 0.229 0.168 

RV12 
SP 0.878 0.826 0.827 0.865 0.737 

TC 0.763 0.683 0.679 0.717 0.548 

RV20 
SP 0.855 0.772 0.766 0.852 0.7 

TC 0.15 0.31 0.25 0.22 0.17 

RV30 
SP 0.82 0.68 0.65 0.73 0.51 

TC 0.33 0.37 0.25 0.28 0.18 

RV40 
SP 0.845 0.756 0.726 0.789 0.6 

TC 0.402 0.428 0.338 0.398 0.244 

RV50 
SP 0.747 0.681 0.724 0.742 0.55 

TC 0.481 0.417 0.344 0.312 0.245 
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Fig. 10. Comparative Results of SPscore of each Method Across all Six 

Datasets. 

 

Fig. 11. Comparative Results of TCscore of each Method Across all Six 

Datasets. 

Results show that the overall performance of the method is 
better than other methods. SP score of GAODC is 
approximately 13% higher than all other methods across six 
databases. The TC score of the GAODC method is highest 
among all other methods for four datasets including RV11, 
RV12, RV40, and RV50. In the case of datasets RV 20 and 
RV 30, which contain orphan sequences and groups of 
sequences having different families respectively, the TCscore 
of GAODC is marginally less by approximately 1.7% than the 
other methods. 

High SP Score and TC Score suggest that GAODC 
generate better quality MSAs as compared to other methods 
used in this analysis. 

VII. CONCLUSION 

This paper proposes a method for the MSA of biological 
sequences that is a combination of two problem-solving 
techniques divide-conquer and genetic algorithm. As part of 
this method, the recombination method is applied where the 
MSAs are recombined based on the SP score of the parts of 
each MSA thus increasing the possibility of getting the most 
optimum MSA. Results show that our method outperformed 
the other widely used MSA techniques on SPscore criteria. 
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