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Abstract—With the advent of the Big Data explosion due to 

the Information Technology (IT) revolution during the last few 

decades, the need for processing and analyzing the data at low 

cost in minimum time has become immensely challenging. The 

field of Big Data analytics is driven by the demand to process 

Machine Learning (ML) data, real-time streaming data, and 

graphics processing. The most efficient solutions to Big Data 

analysis in a distributed environment are Hadoop and Spark 

administered by Apache, both these solutions are open-source 

data management frameworks and they allow to distribute and 

compute the large datasets across multiple clusters of computing 

nodes. This paper provides a comprehensive comparison between 

Apache Hadoop & Apache Spark in terms of efficiency, 

scalability, security, cost-effectiveness, and other parameters. It 

describes primary components of Hadoop and Spark 

frameworks to compare their performance. The major 

conclusion is that Spark is better in terms of scalability and speed 

for real-time streaming applications; whereas, Hadoop is more 

viable for applications dealing with bigger datasets. This case 

study evaluates the performance of various components of 

Hadoop-such, MapReduce, and Hadoop Distributed File System 

(HDFS) by applying it to the well-known Word Count algorithm 

to ascertain its efficacy in terms of storage and computational 

time. Subsequently, it also provides an analysis of how Spark’s 

in-line memory processing could reduce the computational time 

of the Word Count Algorithm. 
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I. INTRODUCTION 

Due to the advancements in computational technology, 
hardware resources, and fast underlying networks, the world 
witnessing an explosion of Big Data generated by social media 
networks [1], Internet of Things (IoT)[2], streaming real-time 
applications [3], banking sector [4], industrial setups, and 
almost every notable R&D sector. According to [5] an estimate 
by a well-known online source, Social Media Today, 2.5 
Exabyte (1018) data is generated per day, as of 2020. This data 
creation is expected to increase to 463 Exabytes per day by the 
end of 2025, according to Statista [6]. Consequently, it 
becomes extremely difficult to handle such enormous volumes 
of Big Data by using traditional methods and tools [7]. For 
example, the traditional database systems administering the 
legacy warehouses have become inefficient due to the 
utilization of conventional query tools. Venkatraman et al. [8] 
found multiple reasons for the failure of these tools. Firstly, the 
design of relational databases and data warehouses is not 
suitable to synthesize the new types of data with respect to 
volume, storage, veracity, and processing. Secondly, in 
traditional systems, the Structured Query Language (SQL) is 

utilized for communicating with databases. Thirdly, the 
maintenance of rational data-houses becomes very costly and 
unmanageable. Fourthly, traditional warehouses are based on 
organizing records in fields in a structured manner, while most 
of the Big Data on the Internet is unstructured by nature [9]. 
Therefore, traditional database management tools cannot 
efficiently be utilized in the case of Big Data, which is 
exponentially growing due to the surge in the number of 
Internet & social media users, and the development of new 
technologies like IoT, 5G networks, and Deep Learning (DL), 
etc. This entails an extremely competitive atmosphere among 
technology companies to provide accurate data in a minimum 
amount of time at a low cost. It is the only concept of Big Data 
that gives equal opportunity to everyone to extract the data and 
use the full value from in their particular organization or 
concerned field of interest. Chen et al. and Ward et al. [10, 11] 
more formally defined Big Data as ―a set of several structured, 
unstructured data generated from different formats of various 
tasks with bulk volume that is uncontrollable by current 
traditional data-handling tools‖. Contrary to the conventional 
data handling tools, the Big Data analysts at Apache and the 
research community developed a very efficient framework—
called Hadoop—that can process and manage huge volumes of 
data [12]. Primarily, the Hadoop (Highly Archived Object-
Oriented Programming) framework spawns the input data to 
multiple distributed computing nodes and provides reliable and 
scalable computing results [12, 13]. Bangari et al. [14] uses 
simple programming models based on Java language for 
distributed processing of a large volume of datasets through the 
clusters of computers. The basic idea of Hadoop setup is to use 
a single server in order to handle a collection of slave 
workstation nodes in which each node contains its own local 
storage and computational resources. To process and store 
data, Hadoop utilizes the MapReduce algorithm, which divides 
any given task into smaller parts in order to distribute them 
across a set of cluster nodes [15, 16]. Sharmila et al. [17] 
showed another basic feature of Hadoop as is its file system 
known as the Hadoop Distributed File System (HDFS), which 
is an efficient storage system for cost-effective hardware. 
Although Apache Hadoop remained one of the most reliable 
frameworks to handle Big Data within a decade after its first 
release in 2006, its efficacy was reduced after the exponential 
growth of streaming real-time data, Machine/Deep Learning 
(M/DL) technologies, and the use of graphics in online games 
& other related applications [18]. Bell et al. [19] overcome 
these limitations by another open-source framework called 
Apache Spark that was developed, which incorporates diverse 
features such as better memory & storage management and 
more scalability. 
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The primary objective of the research were analyzing the 
processing times and file management systems of the 
heterogeneous environment to get better performance of 
Hadoop. This paper contributes by giving a comprehensive 
comparison between Apache Hadoop & Apache Spark in terms 
of their application, scalability, reliability, security, cost-
effectiveness, and other features. Moreover, the discussion of 
primary components of these frameworks ascertains their 
performance. The study concludes that the Spark framework is 
more useful for streaming applications, and hence it is fast and 
scalable. On the other hand, Hadoop has better security 
features, and it can handle very large volumes of data. 
Furthermore in this paper, a case study discusses the 
performance of the Hadoop framework by implementing the 
famous WorldCount algorithm. The results show the 
effectiveness of Hadoop in terms of processing time and 
storage required to process large dataset files. In addition, an 
analysis was described by comparing these results with Spark‘s 
framework to determine how its features could reduce the 
processing time of the algorithm for the given files. 

The remainder of this paper is organized into the following 
sections. In Section 2, the characteristics of Big Data are 
discussed in detail. Section 3 provides the related work. 
Section 4 discusses the major components of Hadoop. Section 
5 describes the WordCount Algorithm. Section 6 details the 
Spark framework followed by Spark Components in Section 7 
and its comparison with Hadoop in Section 8. Section 9 
describes the experimental setup and results by implementing 
the WordCount application on the Hadoop cluster. Then 
Section 10 discusses how Spark implementation of the 
WordCount application could improve the execution times. 
Finally, Section 11 provides the conclusion and future work. 

II. CHARACTERISTICS OF BIG DATA 

The Data grows in three dimensions—also known as the 
3Vs model—according to the Gartner research report; these 
three are Volume, Variety, and Velocity [10, 11]. It has been 
observed that many industries and organizations use the 3Vs 
model to analyze Big Data. However, it cannot be formally 
defined by merely 3Vs, and many other characteristics also 
exist to properly define Big Data [20]. Chen et al. [10] stated 
these characteristics are extended to 5Vs including the above-
mentioned 3Vs. These are elaborated on the basis of line 
spacing, and typestyles. Examples of these type styles are 
given below and are depicted in Figure 1. 

A. Veracity 

It is one of the most important properties of Big Data tools 
and is defined as data accuracy and it is quality relative to its 
users. The veracity is ensured by providing accurate and clean 
data [10]. 

B. Volume 

It may be defined as the bulk of data to be organized, 
stored, and processed. The data volume is exponentially 
growing, and it is expected to grow multiple times in the 
coming few decades. Chen et al. [10] Stated the current 
volume of Big Data generated per day is in the realms of 
Exabyte (1018). 

 

Fig. 1. The 5Vs of Big Data. 

C. Variety 

It refers to the various forms in which data is available to 
the users. Currently, the data can be structured, unstructured, or 
semi-structured[11], depending upon its organization. 
Moreover, it may be in the form of plain text, image, audio, 
video, etc., or any combination of these forms. 

D. Value 

This simply implies how important or critical the data is to 
the user. Data value describes its beneficence for a particular 
organization or individual. The ratio of the valuable data is 
inversely proportional to the total volume of data. Chen et al. 
and Ward et al. [10, 11] for instance, in an hour-long video, the 
ratio of valuable data can be of a few seconds. 

E. Velocity 

Velocity implies the rate at which the data is retrieved, and 
it assists to identify the difference between normal data and Big 
Data. The characteristic of velocity for the data warehouse is a 
very significant parameter in this competitive field. For 
instance, it is the velocity that plays a critical role in data 
retrieval or storage at a typical social media warehouse for its 
users to efficiently use it for socializing. The author in [10, 11, 
and 17] found that the users of Facebook, Twitter, Instagram, 
and other famous platforms expect to communicate with each 
other in real-time for their everyday experience. 

Most of the data analysts and experts suggest utilizing a 
variety of open-source Big Data platforms in order to take 
benefit from Big Data analytics [10, 21]. Elgendy and Elragal 
[22] showed these platforms offer a mixture of hardware 
resources using state-of-the-art software tools for data storage, 
processing, analysis, and visualization. The opportunities 
generally vary based upon the phenomenon where data is being 
utilized, and its value depends upon the type of applications. 
For example, in the stock exchange system, where demands 
and consumption change at a fast rate, data has importance 
only for a limited period of time [20]. Furthermore, due to the 
enormity of data volumes and Big Data applications, it 
becomes extremely tough for managers to select a single or a 
small group of data platforms. Undoubtedly, the ever-growing 
competition and limited time make it inconvenient for them to 
work with a large number of Big Data platforms. However, 
they still require multiple platforms due to the demands of 
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repeated and multiple task solvers [22]. Nonetheless, it can be a 
very useful analysis to determine an optimum set of platforms 
for a given organization considering its R&D requirements and 
applications. 

Another significant aspect of the Big Data paradigm is data 
security concerns created during the management, storage, and 
processing of data. 

F. Management Issues 

Data is normally retrieved or stored in structured, 
unstructured, or semi-structured modes in various 
organizations. It is difficult to manage such diversity in data in 
large volumes. 

G. Storage Issues 

The data sources are diverse, and it is normally retrieved 
from social media, streaming systems, mobile signal 
coordinates, sensor information, online recordings, and e-
business exchange reports. Storing this data in various forms 
creates storage issues and requires standards to be properly 
implemented. 

H. Processing Issues 

Based on user requirements, the Big Data systems are 
expected to process data in volumes of Petabyte, Exabyte, or 
even in Zettabyte. This processing can be real-time or in batch 
mode. Therefore, Big Data systems must be able to cope with 
user requirements. 

I. Security Issues 

In government & private sectors, the data is normally 
vulnerable to malicious attacks and intrusions. Therefore, 
organizations are expected to carry effective intrusion detection 
systems and data integrity systems in order to ensure the safety 
of user data and avoid data exploitation. 

All the above-mentioned issues and challenges are tackled 
by using efficient tools like Apache Hadoop & Spark. 
Currently, the most widely used framework is Hadoop, and it is 
particularly useful for processing large volumes of data by tech 
giants such as Twitter, LinkedIn, eBay, and Amazon [23]. A 
lot of research is performed to evaluate the performance of 
Hadoop, but there is a need to improve its functionality in 
terms of its time efficiency. [16,18] Identified that Hadoop is 
extremely powerful in the case of storage systems due to 
HDFS, but it struggles to compete with Spark in the processing 
part performed by its MapReduce algorithm. This work 
focused on the testing of MapReduce by recording the time 
elapsed by each processing step of the algorithm with various 
volumes of data downloaded in the form of data files from the 
Internet. The primary aim is to ascertain the performance of 
Hadoop compared to Spark to learn which application 
scenarios are suitable for a particular framework. 

III. RELATED WORK 

Due to the enormous amount of data generated daily, the 
issues of its management, storage, and processing are not only 
significant for the academic community but also the industry. 
For instance, Zhao et al. [18] conducted a performance 
comparison between Hadoop and HAMR based on the running 
PageRank algorithm. HAMR is a new technology, which 

provides faster processing and memory utilization compared to 
Hadoop. The comparison parameters used in the research were 
memory usage, CPU consumption, and running time. Shah et 
al. [24] observed the performance of Hadoop in a 
heterogeneous environment with various types of hardware 
resources. They developed an algorithm called Saksham, which 
enables the rearrangement of the data blocks to optimize the 
performance of the Hadoop in homogeneous & heterogeneous 
environments. A region-based data placement policy is 
proposed by Muthukkaruppan et al. [25]. The main purpose of 
the proposed policy is to achieve high fault tolerance and data 
locality, which does not exist in the default policy. A specific 
region data block is placed in the contiguous data portion of 
nodes in the region-based policy. Qureshi et al. [13] described 
storage media-aware policy in order to improve the 
performance of Hadoop. This policy is known as the Robust 
Data Placement (RDP), which also handles the network traffic 
and unbalanced workload. 

Meng et al. [26] proposed a strategy that places data blocks 
with disk utilization and network load while in default Hadoop, 
block placement is done by Round Robin that reduces the 
performance in a heterogeneous environment. This strategy 
improved the HDFS performance by enhancing the space 
storage utilization and throughput. 

Similarly, Dai et al. [27] presented their proposed Replica 
Replacement Policy (RRP) developed in 2017 to improve the 
Hadoop performance by eliminating the utility of HDFS 
balancer; consequently, the replica is evenly distributed among 
the homogeneous and heterogeneous nodes. This policy 
generates better results of replica management as compared to 
the default replica management policy of the HDFS in Hadoop. 
Herodotou et al. [28] proposed a new tool to optimize the 
default parameters of Hadoop; for instance, the total number of 
map reduces, scheduling policy and the reuse of JVM to 
increase the performance. The tool is called Startfish, and its 
main purpose is to work with Hadoop phases such as 
placement, scheduling, and tuning of the assigned jobs to the 
computing nodes. Panatula et al. [29] worked on the 
performance of HadoopMapReduce Word Count Algorithm 
and presented it on the Twitter data. The experimental setup 
was based on a 4-node Hadoop system to analyze the 
performance of the algorithm. It was concluded that Hadoop 
can work efficiently with the setup of 3 or more nodes. Gohil et 
al. [15] processed a different set of applications of MapReduce 
including Word Count and Tera Sort etc. to evaluate Hadoop 
performance. The evaluation parameters were to set up a 
dedicated cluster and decrease the I/O latency of the network. 
Likewise, the in-house Hadoop cluster setup and Amazon EC2 
instances are also used to evaluate the Hadoop performance. 
Khan et al. [30] have modeled the estimation of the 
provisioning of the resources and completion time of the jobs. 
Furthermore, the Hadoop and Spark-based distributed system 
performance has been evaluated by Taran et al. [31]. A 
performance evaluation framework is proposed for Hadoop by 
Lin et al. [16] on the basis of cluster computing nodes across a 
clustered network. A configuration strategy is proposed by Jain 
et al. [32], in which MapReduce parameters are configured 
with optimized tuning to improve the performance of Hadoop. 
To analyze the performance of Hadoop, several applications 
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were processed and tested repeatedly by Londhe et al. [33] 
using the Amazon platform for Hadoop. In [34], an analysis of 
the computational performance of the processors on a private 
network was presented in order to reduce the input/output 
latency of the network. 

This work implemented a well-known WordCount 
Algorithm using Hadoop to evaluate the framework 
performance and provide a thorough analysis of the difference 
between Hadoop and Spark frameworks. 

IV. HADOOP COMPONENTS 

Hadoop framework allows the users to record & process 
Big Data in a distributed network, across several computing 
nodes using easy-to-use programming methods. It is an open-
source framework designed by D. Cutting & M. Cafarella [14]. 
Most researchers and developers consider Hadoop the most 
efficient tool in the Big Data domain. It is sometimes 
misunderstood as merely a database, but it is a comprehensive 
ecosystem that allows distributing data for processing across 
thousands of servers and keeping the overall performance 
extremely optimized. As mentioned earlier, there are two basic 
components of the Hadoop system: HDFS and MapReduce 
algorithm [35]. 

The basic architecture of the Hadoop framework is depicted 
in Figure 2. It based on the Master-Slave system, in which the 
master node is called the name node, and the slave is the data 
node, which keeps and processes the actual data. For fault 
tolerance, the factor of replication is set at 3, where the 
MapReduce algorithm helps the replicated data to be processed 
in parallel mode [26]. In the following, the components of the 
Hadoop system describe in detail: 

 

Fig. 2. Hadoop Architecture. 

A. HDFS 

A large amount of data in the form of sets is stored on 
HDFS which is a distributed file management system and 
works on the commodity hardware [38]. Thousands of nodes 
clustered in a distributed system can be supported using the 
HDFS in a reliable manner at a low cost. It can support large 
files containing volumes of data in terabytes. Furthermore, it 
provides portability for data across various platforms and 
nodes. However, the most important feature of HDFS is its 
ability to reduce traffic congestion across networks, because 
processing and data are moved closer to each other. 

To perform low-latency computations, another significant 
open-source system has been developed on top of HDFS, 

which is called the HBase [36]. It is essentially a distributed 
non-relational database system using column-based value/key 
data presentation. [36, 37] found a developer can spawn data 
across distributed cluster nodes and update the data tables at 
very fast rates by using HBase. However, HDFS cannot be 
replaced and mixed with HBase due to its non-relational 
DBMS nature, although HBase can help to process the real-
time data by using its in-memory processing engine [40]. The 
HDFS is used in many systems that consist of conventional file 
systems such as ext2 (Linux) or FAT (Windows). But HDFS is 
totally different from all these traditional file systems for the 
following main reasons: 

HDFS is optimized to maximize data rates. The size of a 
data block is 64MB in HDFS as compared to 512 bytes to 4 
KB in most of the traditional file systems, which significantly 
reduces the seek time. In addition, it is possible to further 
extend the size of a block to 128MB or 256MB. Moreover, 
[26] showed HDFS is a Write Once Read Many (WORM) file 
management system: any file can be written once but can be 
accessed several times. 

Another prominent feature of HDFS is its fault tolerance 
where it furnishes a block-based replication framework with a 
configurable number of replications (by default, it is 3) [23, 
26]. During the composing stage, every block compared to the 
record is imitated on isolated hubs in the bunch, which assists 
with ensuring its dependability and accessibility, when 
understanding the information. In the event that a block is 
inaccessible on one node, duplicates of that block are ensured 
to be accessible on a different node. 

HDFS builds on the native OS file system to present a 
unified storage system built on a heterogeneous array of disks 
and file systems. 

B. MapReduce 

White [38] found MapReduce is the most significant 
component of the Hadoop framework. In the clusters of the 
Hadoop, the scalability is provided by MapReduce on 
thousands of computing servers. The term ‗MapReduce‘ is 
constituted from two different words; Map and Reduce. Both 
these terms are attributed to performing different tasks in the 
Hadoop system. The job of mapping data is performed by the 
Map function. The map function converts the original data into 
the form of sets. The purpose of making sets is to make key 
pairs of all unique elements of data, which serves as the output 
of the map function. Subsequently, the output of the Map 
function becomes the input data of the Reduce function. The 
main job of the Reduce function is to reduce the number of key 
pairs of all unique elements in a key pair [15]. Figure 3 depicts 
the MapReduce process. The input data is split by the 
distributed file system and mapped to the Map node in 
key/value format. Then the Reduce node merges the key/value 
pairs to further reduce them and store them using the file 
system [38]. 

1) In the Hadoop system, the job of the Map function is 

performed firstly, followed by the Reduce function. 

Sometimes the map function job is enough to process the data 

efficiently. In Figure 3, the architecture and process of the 

MapReduce give a thorough overview. 
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Fig. 3. MapReduce Process [39]. 

2) The tasks are distributed on multiple nodes in the 

MapReduce, which works as the computational model of 

Hadoop in order to process a large amount of data on clusters 

containing a large number of servers/nodes. 

3) MapReduce works as the processing component of 

Hadoop because it processes the data concurrently on multiple 

nodes to reduce the overall computational cost and henceforth, 

increase the efficiency. When MapReduce gets data as input, 

it distributes it on the different nodes. The output of the 

mapper becomes intermediate data, which is in the split form. 

Subsequently, the shuffle process is used to exchange the data 

between various nodes. The data containing the same key is 

assigned to the same key of the reducer node and the output of 

the reducer is finally stored. 

C. Hadoop WordCount 

Lin, and Liu; Sharmila et al. [16, 17] stated that the Hadoop 
WordCount is a simple algorithm that is used to read the input 
text files, and count the number of unique words existing in a 
file. 

 

Fig. 4. Hadoop WordCount Resources Utilization [15]. 

In this algorithm, the input is a text file and different output 
files are generated in which information about words and their 
count is computed. On each level of this algorithm, different 
computing resources are utilized as depicted in Figure 5. In the 
Hadoop WordCount, the map and reduce functions perform in 
parallel. Figure 4 shows a comparison between some of the 
famous applications which are used to test the Hadoop system. 
It also presents the system resource utilization in the case of 
each application, and it can be noted that Word Count is a 
CPU-bound application. 

V. THE WORD COUNT ALGORITHM 

Figure 5 depicts WordCount Algorithm for counting the 
number of words occurrences in a file by using MapReduce 
programming. 

1: Class Mapper <K1,V1,K2,V2 > 

2: function map(K1,V1) 

3: List words = V1.splitBy (token) ;  

4: foreach K2 in words 

5: write(K2,1) ; 

6: end for 

7: end function 

 8: end class  

1: Class Reducer <K2,V2,K3,V3 > 

2: function reduce(K2,Iterable<V2> itor) 

3: sum = 0 ;  

4: foreach count in itor 

5: sum += count ;  

6: end for 

7: write(K3,sum) ;  

8: end function 

 9: end class  

Fig. 5. Algorithms of Word Count in Hadoop. 
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The principle is the same as above to count the integers: 
build pairs (key, list) where "key" is a word and "list" a list of 1 
each designating an occurrence of a word. 

The map step includes additional work which consists of 
breaking up the text file (or a simple character string) into 
words. A word is simply located between two patterns or the 
‗space‘ characters. The combined step is implicit before 
executing the reduce function toolbar. In Figure 5, the main job 
of the map function is to split the words of a line at a time 
through the tokens. A key value is assigned to each unique 
word and the output of this function is in the form of a 
key/value set, which contains the word and a key-value with 
the format: ―<<word>, 1>. These key/value pairs are the inputs 
of the Reduce function. In the default order of the dictionary, 
the keys are sorted before the execution of the Reduce 
function. The reduce function job is to count the occurrence of 
each unique word. Finally, the Reduce function outputs the 
result on HDF. An example of the Map and Reduce function is 
shown in Figure 6. The original data is stored in a file 
containing different words, and after the WordCount algorithm 
is applied, the output is shown in the form of word counts. 

In this example (depicted in Figure 6), the original data is 
shown in the left block. This data is retrieved from a file and 
mapped on the Map function. This file has different words such 
as Test, Reduce, Map, and HDFS. The map function splits 
these words using tokenization. In the map function, a 
key/value set is assigned to each unique word of the file which 
creates the key/value pairs and serves as the input of the 
Reduce function. The counting process is done by the Reduce 
function. The Reduce function count of each unique word is 
taken as the output, and it is stored on HDF to be later saved on 
the local storage. 

Similar to the WordCount, there are many other 
applications of MapReduce, such as TeraSort and Sort. In the 
Hadoop MapReduce, TeraSort is used to sort the 1TB of data 
at an extremely fast rate. The HDFS file system makes it an 
ideal choice to fine-tune the configuration of a Hadoop cluster 
to quickly process these applications. In MapReduce, sort is an 
algorithm with an objective to process and analyze the data. 
According to [39], the improvement in MapReduce application 
is achieved at 59.15813, 64.23517, and 18.05475 for the 
TeraSort, Sort, and WordCount applications respectively, if the 
default settings of Hadoop at map level are considered. 

 

Fig. 6. Data Sample of WordCount. 

VI. SPARK BASED BIG DATA ANALYSIS 

Bell [19] establishes that the Apache Spark is a model-
based open-source framework that is used to examine huge 
datasets in streaming applications. This framework was 
established in contrast with the Hadoop MapReduce model at 
UC Berkeley AMPLAB [19, 40] Architecture of Apache Spark 
is shown in Figure 7. Bell [19] showed that the main 
components of Apache Spark are the program of driver, 
initiators, cluster director, and the HDFS. The main program of 
Spark is its driver program. At the time of the startup of the 
Spark program, Spark Context is produced that plays a 
significant role in the whole implementation of the job [38]. 
The resources are managed in clusters when the Spark Context 
program is linked with the cluster manager. In order to store 
the app information and run the logic, the program is spawned 
through the cluster managers. 

 

Fig. 7. Architecture of Spark. 

Bell [19] said that Spark can be operated using multiple 
programming languages such as Scala, Java, Python, and R. 
Each language is provided with multiple libraries & APIs to 
support Big Data analytics. However, the most popular 
language in the Spark community is Scala, as Spark‘s core is 
implemented in Scala. Moreover, scalability is always a great 
concern in the case of Big Data analytics, which is handled 
efficiently in the Scala language. It is more compact compared 
to Java; a program written in Java is much larger in size 
compared to its equivalent of Scala. For comparison, it can be 
noted that one line of code in Scala is equal to 20-25 lines of 
code in Java. In order to enhance efficiency and reliability, 
numerous programs are being transformed from Java to Scala 
[33]. 

Bell [19] stated that the basic framework of Spark consists 
of two major technologies namely, Resilient Distributed 
Dataset (RDD) & Directed Acyclic Graph (DAG). The 
description of these two technologies as follows: 

A. Resilient Distributed Datasets (RDD) 

The Resilient Distributed Datasets (RDDs) are used to 
gather elements that are fault-tolerant and continue in parallel 
fashion as a primary concept of Spark [41]. Once the RDDs are 
created, they cannot be changed. It is impossible to change 
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them even with their ability to transform and perform actions. 
These datasets help to reorganize the computations and data 
processing enhancement [41]. Ganesh et al. [29] found a 
typical RDD provides information to regenerate on multiple 
nodes, and that is the primary reason for their fault tolerance. 
By transforming the current lists of data or changing the files in 
HDFS, the RDD is created. In case of misinformation of 
specific compartments of RDD, the default value is used by a 
spark programmer. A typical RDD executes two types of 
methods given as follows: 

B. Transformation 

A new RDD instead of a single value run at the time of 
performing changes on RDD. The analyses of computation are 
not sudden to transform, because the computation speed is very 
slow. When a program runs on this, then they are implemented. 
The following functions of transformation are performed: 
Mapping, Filtering, Reduce ByKey, FlatMap, and Group 
ByKey. 

1) Action: A single value is examined and run when 

action methods are used on RDDs. At the time of an action 

method, the computation of data processing is performed and 

sent to a resultant value. In this respect, few action techniques 

are primary, take, decrease, gather, count, for each, and Count 

ByKey. 

C. Directed Acyclic Graph (DAG) 

Directed Acyclic Graph (DAG) engine is an updated Spark 
method to help cyclic data flow [40,41]. DAG consists of task 
phases that should be performed on the cluster of Spark nodes. 
Spark produces several DAGs of the input data that consist of 
an arbitrary number of steps, while DAG is further processed 
by the MapReduce which consists of two steps of Map and 
Reduce, as described in Section IV. Gohil et al. [15] showed 
that after the completion of a single step, this process allows 
for the processing of a simple task as compared to a complex 
task to be processed in multiple steps in a single run. 

VII. COMPONENTS OF APACHE SPARK 

Spark‘s underlying architecture is just like Hadoop, but it 
uses the in-memory system to process the streaming and 
graphics data. Due to the provision of in-memory processing, it 
can handle complex analyses on large volumes of data. There 
are multiple subsystems for memory handling, job assignment, 
fault tolerance, and storage, etc. Moreover, Spark can access 
information stored on different platforms such as Hadoop 
HDFS, Mesos, Mongo DB, Cassandra, H-Base, Amazon S3, 
and the data sources from standard cloud interfaces [34]. 
Figure 8 depicts major components of the Spark system. These 
components include Spark SQL, Spark Streaming, MLib, and 
GraphX [16]. The brief discussion these components are as 
follows: 

A. Directed Acyclic Graph (DAG) 

The primary component of this framework is Spark core. It 
handles all the basic functions related to I/O, dispatching, and 
arrangement of the distributed tasks. All the other components 
interact with the core to invoke their basic functionalities. 

 

Fig. 8. Components of Spark. 

B. Spark SQL 

Spark SQL combines the traditional relational tables with 
RDDs for users to use SQL commands to communicate with 
large datasets for complex analytics [42]. It permits the use of 
old BI and visualization tools to allow performing SQL queries 
on Spark. An advanced RDD data concept method is 
introduced to provide support for structured and semi-
structured data. 

C. Spark Streaming 

Kroß and Krcmar [43] stated that Spark Streaming is used 
for the processing of real-time data. To support the processing 
of real-time data of RDD, it uses an API called DStream. This 
component has the ability to seamlessly parallelize the data for 
streaming applications. 

D. Spark GraphX 

GraphX is a library that introduces ‗the Resilient 
Distributed Property Graph‘ introduced by GraphX which has 
the ability to work with graphics and related computations 
[44]. Aggregate messages, sub-graphs and join vertices, and an 
optimized variant of Pregel API are various operators of 
GraphX. It also provides various graph-related algorithms and 
builders to simplify the graph analytics tasks. 

E. MLlib 

Meng et al. [45] found MLlib is an extensive framework to 
invoke Machine Learning (ML) options in Spark. It enables 
several basic ML algorithms like clustering, classification, and 
regression, etc. In Big Data, mining requires automation-based 
systems to dig out certain patterns of data, and MLlib provides 
a platform for data mining. 

MLlib is a relatively new technology in Spark as compared 
to Mahout [46], which has been utilized as a set of Java APIs 
for machine learning. Mahout provides several optimized ML 
algorithms, thereby relieving its users to worry about the 
development of basic algorithms. Instead, they can work on 
their analytical problem on their datasets. The basic advantage 
of MLlib over Mahout is that it offers regression models 
[45,46]. 

VIII. HADOOP VS SPARK 

In the Big Data domain, the need for efficient, accurate, and 
reliable analytics along with excellent data visualization is 
increasing with every passing day [10, 11, 17]. Geczy [47] 
Identified that Tech giants like Yahoo, Amazon, Uber, eBay, 
Facebook, and Twitter, etc. heavily rely on these analytics for 
their smooth operations. These companies need optimized 
costs, real-time analytics, and fault tolerance with their data 
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processing. For more than a decade, Hadoop served as a 
prominent platform in order to provide these options to tech 
companies, government organizations like NASA & CERN, 
but the technological needs are becoming more and more 
advanced. Nowadays, Big Data analytics also require Machine 
Learning (ML) capabilities, streaming systems, and graphics 
processing [43–45]. Hadoop is an excellent platform for batch 
processing and large volumes of data, but it struggles with 
streaming applications and Machine Learning capabilities, etc. 
[10, 45]. Ward, and Barker [11] showed to overcome these 
limitations in Hadoop, Spark was introduced as another open-
source project. It has built-in libraries for streaming, graphics, 
and ML capabilities, and it is designed to work on multiple 
programming languages. 

Currently, both Hadoop and Spark are being used globally 
for different reasons, and they are the most prominent 
platforms for Big Data analytics and processing. Therefore, it 
is very hard to figure out which of these two is better. In [35], a 
comparison in terms of optimization is presented, and it is 
concluded that Spark performs much better in terms of 
accessing the storage systems and utilization of memory 
bandwidth. Table 1 present a brief comparison of Hadoop with 
Spark in terms of various features. The selection of these 
features from state-of-the-art research [2]. 

As shown in Table 1, the major difference between Hadoop 
and spark is the underlying methodology used to process the 
data [48]. Spark has the capability to perform Batch & Stream 
processing, whereas Hadoop can only operate with Batch 
processing. This particular capability is invoked in Spark by 
allowing in-memory processing, instead of disk-based 
computations in Hadoop. Hence, in the case of Hadoop, read 
and write operations are performed by seeking data available 
on a disk. This provides a fundamental advantage to Spark over 
Hadoop, as this difference in the technique of processing 
greatly affects the processing speeds. As all the processing in 
the case of Spark is performed in the memory, it takes lesser 
time to process data. According to [35], Spark is 100 times 
faster as compared to Hadoop. 

Hadoop is most suitable in applications where the results 
are not immediately required in a short time. Contrarily, Spark 
is useful in applications when the results are needed in real-
time. For instance, Spark is a good platform for stock price 
evaluation and enterprises [35]. 

Another major difference between the two frameworks is 
the amount of data to be processed. Htay and Phyu [39] 
indicated that Hadoop can process a massive amount of data as 
compared to Spark. Initially, Hadoop was also utilized for data 
archiving because Hadoop has the ability to store the data in 
large volumes due to HDFS. Using Hadoop, a user can store 
the data not only for a few years but for decades in its original 
and archiving form [1]. Chen and Zhang [7] stated that spark is 
simple to use as compared to Hadoop due to its easy-to-use 
APIs and many friendly features. If cost is taken in consider, 
Hadoop is less costly as compared to Spark. Similarly, Hadoop 
has better security features compared to Spark. Hadoop does 
not support data caching whereas Spark supports caching of 
data memory. Hadoop has a higher latency of computing as it 
has less data interactivity, as opposed to Spark [48]. 

As presented in Table 1, both Hadoop and Spark support 
auto-scaling, which means that if the data requires more nodes, 
then the frameworks give provision to add more nodes for 
distributing the workload automatically. Furthermore, as 
discussed above, Spark is flexible to support multiple 
programming languages in contrast to Hadoop only allowing 
Java programming. 

Based on this comparison, it is very difficult to determine 
which framework is better. But generally, it can ascertain that 
both are useful for their own set of applications. For instance, 
Spark is better in real-time applications, where streaming data 
is required to be processed, whereas Hadoop is useful for 
processing large volumes of data when it is not strictly time-
bound [1]. Furthermore, Spark provides excellent built-in APIs 
and libraries to optimize most of the user tasks, which can help 
to save a lot of programming effort. It has higher interactivity 
of data. Finally, it offers options for batch processing and 
streaming, as well as ML & graphic processing. Hence, Spark 
is obviously more advanced. 

TABLE I. COMPARISON BETWEEN SPARK AND HADOOP 

Features Hadoop Spark 

Processing Mode Batch Batch and Stream 

Scalability Horizontal Horizontal 

Message Delivery Guarantees Exactly once Exactly once 

Computation Mode Disk-based In memory 

Auto-scaling Yes Yes 

Iterative Computation Yes Yes 

Speed Slow Fast 

Amount of Data for Processing More Less 

Security More Secure Less Secure 

Cost High Low 

Performance Fair Good 

Language Scala Java 

Data Caching Support No Support 

IX. EXPERIMENTS AND RESULTS 

To evaluate the performance of the MapReduce algorithm, 
the study used the Hadoop framework by implementing the 
WordCount algorithm in Java and performed the 
corresponding data analysis. The dataset consists of four 
different text files named chas.txt, ac.txt, xad.txt, and xaa.txt; 
all downloaded from the Internet. The corresponding file sizes 
are 202MB, 137MB, 69MB, and 34MB respectively. This test 
dataset contains random text comprising diverse words. Table 
1 presents the study dataset. 

To execute the data, a number of computing machines (or 
nodes) clustered across a network work together in MapReduce 
fashion. This number can be as large as in millions if the 
volumes of data are extremely large. The Map and Reduce 
functions may work on the same machine or on separate 
machines. The management of these machines is performed by 
master node(s). 
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A developed of a cluster of three machines to crunch the 
data given in Table 2 that used in the experiment. The 
hardware resources of the setup are presented in Table 3. The 
master node had four cores with main memory of 2GB, and it 
handled all the control processes. The other two nodes were 
single-core machines with 1GB of memory each. 

The cluster executed the WordCount application, and it 
recorded the total time elapsed by the MapReduce function 
with respect to the size of each file. The algorithm first loads 
the text data into the HDFS data storage. When this data is 
available on the cluster, it can be used for analysis. 
Subsequently, the algorithm reads the text files and counts all 
the words in the given text files using MapReduce functions. 
The results are presented in Table 4. The investigation 
evaluated the time of Map and Reduce functions separately in 
the case of each file. The file sizes of the 202MB, 137MB, 
69MB, and 34MB take 954645ms, 153826ms, 86224ms, and 
57508ms to map all the words in each file by the Map function, 
respectively. On the other hand, the Reduce function takes 
57964ms, 51089ms, 5095ms, and 6472ms, respectively. 

TABLE II. TEST DATASET FOR WORD COUNT ALGORITHM 

File name File size (in MB) 

chast.txt 202 

ac.txt 137 

xad.txt 69 

xaa.txt 34 

TABLE III. HARDWARE RESOURCES FOR TEST CLUSTER 

Machine Cores Memory Network 

Master 4 2GB 192.168.1.4 

Slave1 2 1GB 192.168.1.6 

Slave2 2 1GB 192.168.1.7 

TABLE IV. HADOOP-MAPREDUCE (WORDCOUNT) IMPACT ON FILES SIZE 

Data File 

(in MB) 

Time elapsed by Map 

function (ms) 

Time elapsed by Reduce 

function (ms) 

202 (chast) 954645 57964 

137 (xac) 153826 5108 

69 (xad) 86224 5095 

34 (xaa) 57508 6472 

Figure 9 shows the graphical representation of the 
MapReduce function time on the WordCount algorithm. The 
slope of the graph shows that the map function takes more time 
compared to the reduced function for the WordCount 
algorithm. It can be noted that the time elapsed by the Map and 
Reduce functions are directly proportional to the size of the 
file. As the size of the file increases, the time elapse of the Map 
and Reduce functions is also increased. The slope of the 
reducer function goes upward slightly as the size of the file 
increases, but the time slope of the mapper function goes 
upward at 75 degrees as the file size increases from 137MB to 
202MB. The difference between these two files is not too 

much. The performance of the mapper function is not very 
prominent in case of an increase in the file size. This is because 
Hadoop is normally optimized for the data file sizes in GBs 
and TBs. Another reason for the timing results is the size of the 
cluster that have used. Hadoop is normally utilized for clusters 
with thousands of nodes, crunching data volumes in the range 
of gigabytes & terabytes, etc. 

 

Fig. 9. WordCount Algorithm Time Impact. 

X. DISCUSSION 

The study implemented the WordCount application using 
Hadoop and executed it in a cluster, as discussed in Section IX. 
If all the parameters and hardware resources are kept the same, 
and the WordCount algorithm is implemented on the Spark 
framework, the study note that the overall processing time is 
reduced by a factor of 10. Similarly, the in-line memory 
processing option in Spark makes it 100x faster for memory 
operations. Another advantage of Spark is the reduced number 
of Lines of Codes (LoCs) of Scala. The Hadoop 
implementation took 60 LoCs in Java to write the MapReduce 
function, but the same code took only 5 LoCs in Scala in the 
case of Spark. Therefore, the only complication in the case of 
Spark is learning a Scala, but this learning can reduce a lot of 
effort. 

XI. CONCLUSION AND FUTURE WORK 

This article described two frameworks, Hadoop and Spark, 
which allow the processing of Big Data on clusters of 
computing machines. The study first discussed the main 
characteristics of Big Data followed by the primary 
components of Hadoop and Spark. Then it discussed the 
underlying storage architecture called HDFS in both 
frameworks. Afterwards it detailed the MapReduce algorithm 
used as a core program in Hadoop operations. Subsequently, it 
differentiated both the frameworks on the basis of various 
features like cost, scalability, programming languages, and 
processing modes, etc. The enquiry concluded that Spark is 
better for streaming applications, while Hadoop is better in the 
case of processing large datasets in batch processing mode. 
One of the main objectives of this work is to evaluate the 
performance of the WordCount application in terms of 
processing time for both frameworks. Finally, the study 
provided a discussion on the limitations of Hadoop as 
compared to Spark while processing the WordCount 
application. The investigation concludes that the performance 
of Hadoop can be measured on the basis of different aspects, 
such as tuning of the MapReduce parameters and the total 
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number of nodes, etc. In the future, it intend to extend this 
work by taking big datasets on a larger cluster and report the 
memory speed and execution times for more complex 
applications. The research will compare the performance of 
Hadoop and Spark for a given set of application parameters, 
and propose an optimization function to choose a particular 
framework for a given application. It will evaluate the 
performance of these applications in terms of data growth, the 
number of iterations, and data processing in real-time. 
Unfortunately, the current version of Spark is unable to handle 
a large number of workloads using SQL-like queries, as 
required by tech giants like Google, Facebook, and Yahoo, etc. 
Consequently, some modifications are suggested in newer 
Spark versions to allow multithreading options to spawn 
application tasks more efficiently. The research intends to 
further explore Spark to find out optimized options for 
application submission using large datasets. 
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