
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 4, 2021

778 | P a g e

www.ijacsa.thesai.org

A Comparative Analysis of Hadoop and Spark

Frameworks using Word Count Algorithm

Yassine Benlachimi1, Abdelaziz El Yazidi2, Moulay Lahcen Hasnaoui3

ENSAM Moulay-Ismail University, LMMI Laboratory, Institute, Meknes, 50000, Morocco

Abstract—With the advent of the Big Data explosion due to

the Information Technology (IT) revolution during the last few

decades, the need for processing and analyzing the data at low

cost in minimum time has become immensely challenging. The

field of Big Data analytics is driven by the demand to process

Machine Learning (ML) data, real-time streaming data, and

graphics processing. The most efficient solutions to Big Data

analysis in a distributed environment are Hadoop and Spark

administered by Apache, both these solutions are open-source

data management frameworks and they allow to distribute and

compute the large datasets across multiple clusters of computing

nodes. This paper provides a comprehensive comparison between

Apache Hadoop & Apache Spark in terms of efficiency,

scalability, security, cost-effectiveness, and other parameters. It

describes primary components of Hadoop and Spark

frameworks to compare their performance. The major

conclusion is that Spark is better in terms of scalability and speed

for real-time streaming applications; whereas, Hadoop is more

viable for applications dealing with bigger datasets. This case

study evaluates the performance of various components of

Hadoop-such, MapReduce, and Hadoop Distributed File System

(HDFS) by applying it to the well-known Word Count algorithm

to ascertain its efficacy in terms of storage and computational

time. Subsequently, it also provides an analysis of how Spark’s

in-line memory processing could reduce the computational time

of the Word Count Algorithm.

Keywords—Big data; Hadoop; spark; machine learning;

Hadoop Distributed File System (HDFS)); MapReduce; word count

I. INTRODUCTION

Due to the advancements in computational technology,
hardware resources, and fast underlying networks, the world
witnessing an explosion of Big Data generated by social media
networks [1], Internet of Things (IoT)[2], streaming real-time
applications [3], banking sector [4], industrial setups, and
almost every notable R&D sector. According to [5] an estimate
by a well-known online source, Social Media Today, 2.5
Exabyte (1018) data is generated per day, as of 2020. This data
creation is expected to increase to 463 Exabytes per day by the
end of 2025, according to Statista [6]. Consequently, it
becomes extremely difficult to handle such enormous volumes
of Big Data by using traditional methods and tools [7]. For
example, the traditional database systems administering the
legacy warehouses have become inefficient due to the
utilization of conventional query tools. Venkatraman et al. [8]
found multiple reasons for the failure of these tools. Firstly, the
design of relational databases and data warehouses is not
suitable to synthesize the new types of data with respect to
volume, storage, veracity, and processing. Secondly, in
traditional systems, the Structured Query Language (SQL) is

utilized for communicating with databases. Thirdly, the
maintenance of rational data-houses becomes very costly and
unmanageable. Fourthly, traditional warehouses are based on
organizing records in fields in a structured manner, while most
of the Big Data on the Internet is unstructured by nature [9].
Therefore, traditional database management tools cannot
efficiently be utilized in the case of Big Data, which is
exponentially growing due to the surge in the number of
Internet & social media users, and the development of new
technologies like IoT, 5G networks, and Deep Learning (DL),
etc. This entails an extremely competitive atmosphere among
technology companies to provide accurate data in a minimum
amount of time at a low cost. It is the only concept of Big Data
that gives equal opportunity to everyone to extract the data and
use the full value from in their particular organization or
concerned field of interest. Chen et al. and Ward et al. [10, 11]
more formally defined Big Data as ―a set of several structured,
unstructured data generated from different formats of various
tasks with bulk volume that is uncontrollable by current
traditional data-handling tools‖. Contrary to the conventional
data handling tools, the Big Data analysts at Apache and the
research community developed a very efficient framework—
called Hadoop—that can process and manage huge volumes of
data [12]. Primarily, the Hadoop (Highly Archived Object-
Oriented Programming) framework spawns the input data to
multiple distributed computing nodes and provides reliable and
scalable computing results [12, 13]. Bangari et al. [14] uses
simple programming models based on Java language for
distributed processing of a large volume of datasets through the
clusters of computers. The basic idea of Hadoop setup is to use
a single server in order to handle a collection of slave
workstation nodes in which each node contains its own local
storage and computational resources. To process and store
data, Hadoop utilizes the MapReduce algorithm, which divides
any given task into smaller parts in order to distribute them
across a set of cluster nodes [15, 16]. Sharmila et al. [17]
showed another basic feature of Hadoop as is its file system
known as the Hadoop Distributed File System (HDFS), which
is an efficient storage system for cost-effective hardware.
Although Apache Hadoop remained one of the most reliable
frameworks to handle Big Data within a decade after its first
release in 2006, its efficacy was reduced after the exponential
growth of streaming real-time data, Machine/Deep Learning
(M/DL) technologies, and the use of graphics in online games
& other related applications [18]. Bell et al. [19] overcome
these limitations by another open-source framework called
Apache Spark that was developed, which incorporates diverse
features such as better memory & storage management and
more scalability.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 4, 2021

779 | P a g e

www.ijacsa.thesai.org

The primary objective of the research were analyzing the
processing times and file management systems of the
heterogeneous environment to get better performance of
Hadoop. This paper contributes by giving a comprehensive
comparison between Apache Hadoop & Apache Spark in terms
of their application, scalability, reliability, security, cost-
effectiveness, and other features. Moreover, the discussion of
primary components of these frameworks ascertains their
performance. The study concludes that the Spark framework is
more useful for streaming applications, and hence it is fast and
scalable. On the other hand, Hadoop has better security
features, and it can handle very large volumes of data.
Furthermore in this paper, a case study discusses the
performance of the Hadoop framework by implementing the
famous WorldCount algorithm. The results show the
effectiveness of Hadoop in terms of processing time and
storage required to process large dataset files. In addition, an
analysis was described by comparing these results with Spark‘s
framework to determine how its features could reduce the
processing time of the algorithm for the given files.

The remainder of this paper is organized into the following
sections. In Section 2, the characteristics of Big Data are
discussed in detail. Section 3 provides the related work.
Section 4 discusses the major components of Hadoop. Section
5 describes the WordCount Algorithm. Section 6 details the
Spark framework followed by Spark Components in Section 7
and its comparison with Hadoop in Section 8. Section 9
describes the experimental setup and results by implementing
the WordCount application on the Hadoop cluster. Then
Section 10 discusses how Spark implementation of the
WordCount application could improve the execution times.
Finally, Section 11 provides the conclusion and future work.

II. CHARACTERISTICS OF BIG DATA

The Data grows in three dimensions—also known as the
3Vs model—according to the Gartner research report; these
three are Volume, Variety, and Velocity [10, 11]. It has been
observed that many industries and organizations use the 3Vs
model to analyze Big Data. However, it cannot be formally
defined by merely 3Vs, and many other characteristics also
exist to properly define Big Data [20]. Chen et al. [10] stated
these characteristics are extended to 5Vs including the above-
mentioned 3Vs. These are elaborated on the basis of line
spacing, and typestyles. Examples of these type styles are
given below and are depicted in Figure 1.

A. Veracity

It is one of the most important properties of Big Data tools
and is defined as data accuracy and it is quality relative to its
users. The veracity is ensured by providing accurate and clean
data [10].

B. Volume

It may be defined as the bulk of data to be organized,
stored, and processed. The data volume is exponentially
growing, and it is expected to grow multiple times in the
coming few decades. Chen et al. [10] Stated the current
volume of Big Data generated per day is in the realms of
Exabyte (1018).

Fig. 1. The 5Vs of Big Data.

C. Variety

It refers to the various forms in which data is available to
the users. Currently, the data can be structured, unstructured, or
semi-structured[11], depending upon its organization.
Moreover, it may be in the form of plain text, image, audio,
video, etc., or any combination of these forms.

D. Value

This simply implies how important or critical the data is to
the user. Data value describes its beneficence for a particular
organization or individual. The ratio of the valuable data is
inversely proportional to the total volume of data. Chen et al.
and Ward et al. [10, 11] for instance, in an hour-long video, the
ratio of valuable data can be of a few seconds.

E. Velocity

Velocity implies the rate at which the data is retrieved, and
it assists to identify the difference between normal data and Big
Data. The characteristic of velocity for the data warehouse is a
very significant parameter in this competitive field. For
instance, it is the velocity that plays a critical role in data
retrieval or storage at a typical social media warehouse for its
users to efficiently use it for socializing. The author in [10, 11,
and 17] found that the users of Facebook, Twitter, Instagram,
and other famous platforms expect to communicate with each
other in real-time for their everyday experience.

Most of the data analysts and experts suggest utilizing a
variety of open-source Big Data platforms in order to take
benefit from Big Data analytics [10, 21]. Elgendy and Elragal
[22] showed these platforms offer a mixture of hardware
resources using state-of-the-art software tools for data storage,
processing, analysis, and visualization. The opportunities
generally vary based upon the phenomenon where data is being
utilized, and its value depends upon the type of applications.
For example, in the stock exchange system, where demands
and consumption change at a fast rate, data has importance
only for a limited period of time [20]. Furthermore, due to the
enormity of data volumes and Big Data applications, it
becomes extremely tough for managers to select a single or a
small group of data platforms. Undoubtedly, the ever-growing
competition and limited time make it inconvenient for them to
work with a large number of Big Data platforms. However,
they still require multiple platforms due to the demands of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 4, 2021

780 | P a g e

www.ijacsa.thesai.org

repeated and multiple task solvers [22]. Nonetheless, it can be a
very useful analysis to determine an optimum set of platforms
for a given organization considering its R&D requirements and
applications.

Another significant aspect of the Big Data paradigm is data
security concerns created during the management, storage, and
processing of data.

F. Management Issues

Data is normally retrieved or stored in structured,
unstructured, or semi-structured modes in various
organizations. It is difficult to manage such diversity in data in
large volumes.

G. Storage Issues

The data sources are diverse, and it is normally retrieved
from social media, streaming systems, mobile signal
coordinates, sensor information, online recordings, and e-
business exchange reports. Storing this data in various forms
creates storage issues and requires standards to be properly
implemented.

H. Processing Issues

Based on user requirements, the Big Data systems are
expected to process data in volumes of Petabyte, Exabyte, or
even in Zettabyte. This processing can be real-time or in batch
mode. Therefore, Big Data systems must be able to cope with
user requirements.

I. Security Issues

In government & private sectors, the data is normally
vulnerable to malicious attacks and intrusions. Therefore,
organizations are expected to carry effective intrusion detection
systems and data integrity systems in order to ensure the safety
of user data and avoid data exploitation.

All the above-mentioned issues and challenges are tackled
by using efficient tools like Apache Hadoop & Spark.
Currently, the most widely used framework is Hadoop, and it is
particularly useful for processing large volumes of data by tech
giants such as Twitter, LinkedIn, eBay, and Amazon [23]. A
lot of research is performed to evaluate the performance of
Hadoop, but there is a need to improve its functionality in
terms of its time efficiency. [16,18] Identified that Hadoop is
extremely powerful in the case of storage systems due to
HDFS, but it struggles to compete with Spark in the processing
part performed by its MapReduce algorithm. This work
focused on the testing of MapReduce by recording the time
elapsed by each processing step of the algorithm with various
volumes of data downloaded in the form of data files from the
Internet. The primary aim is to ascertain the performance of
Hadoop compared to Spark to learn which application
scenarios are suitable for a particular framework.

III. RELATED WORK

Due to the enormous amount of data generated daily, the
issues of its management, storage, and processing are not only
significant for the academic community but also the industry.
For instance, Zhao et al. [18] conducted a performance
comparison between Hadoop and HAMR based on the running
PageRank algorithm. HAMR is a new technology, which

provides faster processing and memory utilization compared to
Hadoop. The comparison parameters used in the research were
memory usage, CPU consumption, and running time. Shah et
al. [24] observed the performance of Hadoop in a
heterogeneous environment with various types of hardware
resources. They developed an algorithm called Saksham, which
enables the rearrangement of the data blocks to optimize the
performance of the Hadoop in homogeneous & heterogeneous
environments. A region-based data placement policy is
proposed by Muthukkaruppan et al. [25]. The main purpose of
the proposed policy is to achieve high fault tolerance and data
locality, which does not exist in the default policy. A specific
region data block is placed in the contiguous data portion of
nodes in the region-based policy. Qureshi et al. [13] described
storage media-aware policy in order to improve the
performance of Hadoop. This policy is known as the Robust
Data Placement (RDP), which also handles the network traffic
and unbalanced workload.

Meng et al. [26] proposed a strategy that places data blocks
with disk utilization and network load while in default Hadoop,
block placement is done by Round Robin that reduces the
performance in a heterogeneous environment. This strategy
improved the HDFS performance by enhancing the space
storage utilization and throughput.

Similarly, Dai et al. [27] presented their proposed Replica
Replacement Policy (RRP) developed in 2017 to improve the
Hadoop performance by eliminating the utility of HDFS
balancer; consequently, the replica is evenly distributed among
the homogeneous and heterogeneous nodes. This policy
generates better results of replica management as compared to
the default replica management policy of the HDFS in Hadoop.
Herodotou et al. [28] proposed a new tool to optimize the
default parameters of Hadoop; for instance, the total number of
map reduces, scheduling policy and the reuse of JVM to
increase the performance. The tool is called Startfish, and its
main purpose is to work with Hadoop phases such as
placement, scheduling, and tuning of the assigned jobs to the
computing nodes. Panatula et al. [29] worked on the
performance of HadoopMapReduce Word Count Algorithm
and presented it on the Twitter data. The experimental setup
was based on a 4-node Hadoop system to analyze the
performance of the algorithm. It was concluded that Hadoop
can work efficiently with the setup of 3 or more nodes. Gohil et
al. [15] processed a different set of applications of MapReduce
including Word Count and Tera Sort etc. to evaluate Hadoop
performance. The evaluation parameters were to set up a
dedicated cluster and decrease the I/O latency of the network.
Likewise, the in-house Hadoop cluster setup and Amazon EC2
instances are also used to evaluate the Hadoop performance.
Khan et al. [30] have modeled the estimation of the
provisioning of the resources and completion time of the jobs.
Furthermore, the Hadoop and Spark-based distributed system
performance has been evaluated by Taran et al. [31]. A
performance evaluation framework is proposed for Hadoop by
Lin et al. [16] on the basis of cluster computing nodes across a
clustered network. A configuration strategy is proposed by Jain
et al. [32], in which MapReduce parameters are configured
with optimized tuning to improve the performance of Hadoop.
To analyze the performance of Hadoop, several applications

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 4, 2021

781 | P a g e

www.ijacsa.thesai.org

were processed and tested repeatedly by Londhe et al. [33]
using the Amazon platform for Hadoop. In [34], an analysis of
the computational performance of the processors on a private
network was presented in order to reduce the input/output
latency of the network.

This work implemented a well-known WordCount
Algorithm using Hadoop to evaluate the framework
performance and provide a thorough analysis of the difference
between Hadoop and Spark frameworks.

IV. HADOOP COMPONENTS

Hadoop framework allows the users to record & process
Big Data in a distributed network, across several computing
nodes using easy-to-use programming methods. It is an open-
source framework designed by D. Cutting & M. Cafarella [14].
Most researchers and developers consider Hadoop the most
efficient tool in the Big Data domain. It is sometimes
misunderstood as merely a database, but it is a comprehensive
ecosystem that allows distributing data for processing across
thousands of servers and keeping the overall performance
extremely optimized. As mentioned earlier, there are two basic
components of the Hadoop system: HDFS and MapReduce
algorithm [35].

The basic architecture of the Hadoop framework is depicted
in Figure 2. It based on the Master-Slave system, in which the
master node is called the name node, and the slave is the data
node, which keeps and processes the actual data. For fault
tolerance, the factor of replication is set at 3, where the
MapReduce algorithm helps the replicated data to be processed
in parallel mode [26]. In the following, the components of the
Hadoop system describe in detail:

Fig. 2. Hadoop Architecture.

A. HDFS

A large amount of data in the form of sets is stored on
HDFS which is a distributed file management system and
works on the commodity hardware [38]. Thousands of nodes
clustered in a distributed system can be supported using the
HDFS in a reliable manner at a low cost. It can support large
files containing volumes of data in terabytes. Furthermore, it
provides portability for data across various platforms and
nodes. However, the most important feature of HDFS is its
ability to reduce traffic congestion across networks, because
processing and data are moved closer to each other.

To perform low-latency computations, another significant
open-source system has been developed on top of HDFS,

which is called the HBase [36]. It is essentially a distributed
non-relational database system using column-based value/key
data presentation. [36, 37] found a developer can spawn data
across distributed cluster nodes and update the data tables at
very fast rates by using HBase. However, HDFS cannot be
replaced and mixed with HBase due to its non-relational
DBMS nature, although HBase can help to process the real-
time data by using its in-memory processing engine [40]. The
HDFS is used in many systems that consist of conventional file
systems such as ext2 (Linux) or FAT (Windows). But HDFS is
totally different from all these traditional file systems for the
following main reasons:

HDFS is optimized to maximize data rates. The size of a
data block is 64MB in HDFS as compared to 512 bytes to 4
KB in most of the traditional file systems, which significantly
reduces the seek time. In addition, it is possible to further
extend the size of a block to 128MB or 256MB. Moreover,
[26] showed HDFS is a Write Once Read Many (WORM) file
management system: any file can be written once but can be
accessed several times.

Another prominent feature of HDFS is its fault tolerance
where it furnishes a block-based replication framework with a
configurable number of replications (by default, it is 3) [23,
26]. During the composing stage, every block compared to the
record is imitated on isolated hubs in the bunch, which assists
with ensuring its dependability and accessibility, when
understanding the information. In the event that a block is
inaccessible on one node, duplicates of that block are ensured
to be accessible on a different node.

HDFS builds on the native OS file system to present a
unified storage system built on a heterogeneous array of disks
and file systems.

B. MapReduce

White [38] found MapReduce is the most significant
component of the Hadoop framework. In the clusters of the
Hadoop, the scalability is provided by MapReduce on
thousands of computing servers. The term ‗MapReduce‘ is
constituted from two different words; Map and Reduce. Both
these terms are attributed to performing different tasks in the
Hadoop system. The job of mapping data is performed by the
Map function. The map function converts the original data into
the form of sets. The purpose of making sets is to make key
pairs of all unique elements of data, which serves as the output
of the map function. Subsequently, the output of the Map
function becomes the input data of the Reduce function. The
main job of the Reduce function is to reduce the number of key
pairs of all unique elements in a key pair [15]. Figure 3 depicts
the MapReduce process. The input data is split by the
distributed file system and mapped to the Map node in
key/value format. Then the Reduce node merges the key/value
pairs to further reduce them and store them using the file
system [38].

1) In the Hadoop system, the job of the Map function is

performed firstly, followed by the Reduce function.

Sometimes the map function job is enough to process the data

efficiently. In Figure 3, the architecture and process of the

MapReduce give a thorough overview.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 4, 2021

782 | P a g e

www.ijacsa.thesai.org

Fig. 3. MapReduce Process [39].

2) The tasks are distributed on multiple nodes in the

MapReduce, which works as the computational model of

Hadoop in order to process a large amount of data on clusters

containing a large number of servers/nodes.

3) MapReduce works as the processing component of

Hadoop because it processes the data concurrently on multiple

nodes to reduce the overall computational cost and henceforth,

increase the efficiency. When MapReduce gets data as input,

it distributes it on the different nodes. The output of the

mapper becomes intermediate data, which is in the split form.

Subsequently, the shuffle process is used to exchange the data

between various nodes. The data containing the same key is

assigned to the same key of the reducer node and the output of

the reducer is finally stored.

C. Hadoop WordCount

Lin, and Liu; Sharmila et al. [16, 17] stated that the Hadoop
WordCount is a simple algorithm that is used to read the input
text files, and count the number of unique words existing in a
file.

Fig. 4. Hadoop WordCount Resources Utilization [15].

In this algorithm, the input is a text file and different output
files are generated in which information about words and their
count is computed. On each level of this algorithm, different
computing resources are utilized as depicted in Figure 5. In the
Hadoop WordCount, the map and reduce functions perform in
parallel. Figure 4 shows a comparison between some of the
famous applications which are used to test the Hadoop system.
It also presents the system resource utilization in the case of
each application, and it can be noted that Word Count is a
CPU-bound application.

V. THE WORD COUNT ALGORITHM

Figure 5 depicts WordCount Algorithm for counting the
number of words occurrences in a file by using MapReduce
programming.

1: Class Mapper <K1,V1,K2,V2 >

2: function map(K1,V1)

3: List words = V1.splitBy (token) ;

4: foreach K2 in words

5: write(K2,1) ;

6: end for

7: end function

 8: end class

1: Class Reducer <K2,V2,K3,V3 >

2: function reduce(K2,Iterable<V2> itor)

3: sum = 0 ;

4: foreach count in itor

5: sum += count ;

6: end for

7: write(K3,sum) ;

8: end function

 9: end class

Fig. 5. Algorithms of Word Count in Hadoop.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 4, 2021

783 | P a g e

www.ijacsa.thesai.org

The principle is the same as above to count the integers:
build pairs (key, list) where "key" is a word and "list" a list of 1
each designating an occurrence of a word.

The map step includes additional work which consists of
breaking up the text file (or a simple character string) into
words. A word is simply located between two patterns or the
‗space‘ characters. The combined step is implicit before
executing the reduce function toolbar. In Figure 5, the main job
of the map function is to split the words of a line at a time
through the tokens. A key value is assigned to each unique
word and the output of this function is in the form of a
key/value set, which contains the word and a key-value with
the format: ―<<word>, 1>. These key/value pairs are the inputs
of the Reduce function. In the default order of the dictionary,
the keys are sorted before the execution of the Reduce
function. The reduce function job is to count the occurrence of
each unique word. Finally, the Reduce function outputs the
result on HDF. An example of the Map and Reduce function is
shown in Figure 6. The original data is stored in a file
containing different words, and after the WordCount algorithm
is applied, the output is shown in the form of word counts.

In this example (depicted in Figure 6), the original data is
shown in the left block. This data is retrieved from a file and
mapped on the Map function. This file has different words such
as Test, Reduce, Map, and HDFS. The map function splits
these words using tokenization. In the map function, a
key/value set is assigned to each unique word of the file which
creates the key/value pairs and serves as the input of the
Reduce function. The counting process is done by the Reduce
function. The Reduce function count of each unique word is
taken as the output, and it is stored on HDF to be later saved on
the local storage.

Similar to the WordCount, there are many other
applications of MapReduce, such as TeraSort and Sort. In the
Hadoop MapReduce, TeraSort is used to sort the 1TB of data
at an extremely fast rate. The HDFS file system makes it an
ideal choice to fine-tune the configuration of a Hadoop cluster
to quickly process these applications. In MapReduce, sort is an
algorithm with an objective to process and analyze the data.
According to [39], the improvement in MapReduce application
is achieved at 59.15813, 64.23517, and 18.05475 for the
TeraSort, Sort, and WordCount applications respectively, if the
default settings of Hadoop at map level are considered.

Fig. 6. Data Sample of WordCount.

VI. SPARK BASED BIG DATA ANALYSIS

Bell [19] establishes that the Apache Spark is a model-
based open-source framework that is used to examine huge
datasets in streaming applications. This framework was
established in contrast with the Hadoop MapReduce model at
UC Berkeley AMPLAB [19, 40] Architecture of Apache Spark
is shown in Figure 7. Bell [19] showed that the main
components of Apache Spark are the program of driver,
initiators, cluster director, and the HDFS. The main program of
Spark is its driver program. At the time of the startup of the
Spark program, Spark Context is produced that plays a
significant role in the whole implementation of the job [38].
The resources are managed in clusters when the Spark Context
program is linked with the cluster manager. In order to store
the app information and run the logic, the program is spawned
through the cluster managers.

Fig. 7. Architecture of Spark.

Bell [19] said that Spark can be operated using multiple
programming languages such as Scala, Java, Python, and R.
Each language is provided with multiple libraries & APIs to
support Big Data analytics. However, the most popular
language in the Spark community is Scala, as Spark‘s core is
implemented in Scala. Moreover, scalability is always a great
concern in the case of Big Data analytics, which is handled
efficiently in the Scala language. It is more compact compared
to Java; a program written in Java is much larger in size
compared to its equivalent of Scala. For comparison, it can be
noted that one line of code in Scala is equal to 20-25 lines of
code in Java. In order to enhance efficiency and reliability,
numerous programs are being transformed from Java to Scala
[33].

Bell [19] stated that the basic framework of Spark consists
of two major technologies namely, Resilient Distributed
Dataset (RDD) & Directed Acyclic Graph (DAG). The
description of these two technologies as follows:

A. Resilient Distributed Datasets (RDD)

The Resilient Distributed Datasets (RDDs) are used to
gather elements that are fault-tolerant and continue in parallel
fashion as a primary concept of Spark [41]. Once the RDDs are
created, they cannot be changed. It is impossible to change

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 4, 2021

784 | P a g e

www.ijacsa.thesai.org

them even with their ability to transform and perform actions.
These datasets help to reorganize the computations and data
processing enhancement [41]. Ganesh et al. [29] found a
typical RDD provides information to regenerate on multiple
nodes, and that is the primary reason for their fault tolerance.
By transforming the current lists of data or changing the files in
HDFS, the RDD is created. In case of misinformation of
specific compartments of RDD, the default value is used by a
spark programmer. A typical RDD executes two types of
methods given as follows:

B. Transformation

A new RDD instead of a single value run at the time of
performing changes on RDD. The analyses of computation are
not sudden to transform, because the computation speed is very
slow. When a program runs on this, then they are implemented.
The following functions of transformation are performed:
Mapping, Filtering, Reduce ByKey, FlatMap, and Group
ByKey.

1) Action: A single value is examined and run when

action methods are used on RDDs. At the time of an action

method, the computation of data processing is performed and

sent to a resultant value. In this respect, few action techniques

are primary, take, decrease, gather, count, for each, and Count

ByKey.

C. Directed Acyclic Graph (DAG)

Directed Acyclic Graph (DAG) engine is an updated Spark
method to help cyclic data flow [40,41]. DAG consists of task
phases that should be performed on the cluster of Spark nodes.
Spark produces several DAGs of the input data that consist of
an arbitrary number of steps, while DAG is further processed
by the MapReduce which consists of two steps of Map and
Reduce, as described in Section IV. Gohil et al. [15] showed
that after the completion of a single step, this process allows
for the processing of a simple task as compared to a complex
task to be processed in multiple steps in a single run.

VII. COMPONENTS OF APACHE SPARK

Spark‘s underlying architecture is just like Hadoop, but it
uses the in-memory system to process the streaming and
graphics data. Due to the provision of in-memory processing, it
can handle complex analyses on large volumes of data. There
are multiple subsystems for memory handling, job assignment,
fault tolerance, and storage, etc. Moreover, Spark can access
information stored on different platforms such as Hadoop
HDFS, Mesos, Mongo DB, Cassandra, H-Base, Amazon S3,
and the data sources from standard cloud interfaces [34].
Figure 8 depicts major components of the Spark system. These
components include Spark SQL, Spark Streaming, MLib, and
GraphX [16]. The brief discussion these components are as
follows:

A. Directed Acyclic Graph (DAG)

The primary component of this framework is Spark core. It
handles all the basic functions related to I/O, dispatching, and
arrangement of the distributed tasks. All the other components
interact with the core to invoke their basic functionalities.

Fig. 8. Components of Spark.

B. Spark SQL

Spark SQL combines the traditional relational tables with
RDDs for users to use SQL commands to communicate with
large datasets for complex analytics [42]. It permits the use of
old BI and visualization tools to allow performing SQL queries
on Spark. An advanced RDD data concept method is
introduced to provide support for structured and semi-
structured data.

C. Spark Streaming

Kroß and Krcmar [43] stated that Spark Streaming is used
for the processing of real-time data. To support the processing
of real-time data of RDD, it uses an API called DStream. This
component has the ability to seamlessly parallelize the data for
streaming applications.

D. Spark GraphX

GraphX is a library that introduces ‗the Resilient
Distributed Property Graph‘ introduced by GraphX which has
the ability to work with graphics and related computations
[44]. Aggregate messages, sub-graphs and join vertices, and an
optimized variant of Pregel API are various operators of
GraphX. It also provides various graph-related algorithms and
builders to simplify the graph analytics tasks.

E. MLlib

Meng et al. [45] found MLlib is an extensive framework to
invoke Machine Learning (ML) options in Spark. It enables
several basic ML algorithms like clustering, classification, and
regression, etc. In Big Data, mining requires automation-based
systems to dig out certain patterns of data, and MLlib provides
a platform for data mining.

MLlib is a relatively new technology in Spark as compared
to Mahout [46], which has been utilized as a set of Java APIs
for machine learning. Mahout provides several optimized ML
algorithms, thereby relieving its users to worry about the
development of basic algorithms. Instead, they can work on
their analytical problem on their datasets. The basic advantage
of MLlib over Mahout is that it offers regression models
[45,46].

VIII. HADOOP VS SPARK

In the Big Data domain, the need for efficient, accurate, and
reliable analytics along with excellent data visualization is
increasing with every passing day [10, 11, 17]. Geczy [47]
Identified that Tech giants like Yahoo, Amazon, Uber, eBay,
Facebook, and Twitter, etc. heavily rely on these analytics for
their smooth operations. These companies need optimized
costs, real-time analytics, and fault tolerance with their data

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 4, 2021

785 | P a g e

www.ijacsa.thesai.org

processing. For more than a decade, Hadoop served as a
prominent platform in order to provide these options to tech
companies, government organizations like NASA & CERN,
but the technological needs are becoming more and more
advanced. Nowadays, Big Data analytics also require Machine
Learning (ML) capabilities, streaming systems, and graphics
processing [43–45]. Hadoop is an excellent platform for batch
processing and large volumes of data, but it struggles with
streaming applications and Machine Learning capabilities, etc.
[10, 45]. Ward, and Barker [11] showed to overcome these
limitations in Hadoop, Spark was introduced as another open-
source project. It has built-in libraries for streaming, graphics,
and ML capabilities, and it is designed to work on multiple
programming languages.

Currently, both Hadoop and Spark are being used globally
for different reasons, and they are the most prominent
platforms for Big Data analytics and processing. Therefore, it
is very hard to figure out which of these two is better. In [35], a
comparison in terms of optimization is presented, and it is
concluded that Spark performs much better in terms of
accessing the storage systems and utilization of memory
bandwidth. Table 1 present a brief comparison of Hadoop with
Spark in terms of various features. The selection of these
features from state-of-the-art research [2].

As shown in Table 1, the major difference between Hadoop
and spark is the underlying methodology used to process the
data [48]. Spark has the capability to perform Batch & Stream
processing, whereas Hadoop can only operate with Batch
processing. This particular capability is invoked in Spark by
allowing in-memory processing, instead of disk-based
computations in Hadoop. Hence, in the case of Hadoop, read
and write operations are performed by seeking data available
on a disk. This provides a fundamental advantage to Spark over
Hadoop, as this difference in the technique of processing
greatly affects the processing speeds. As all the processing in
the case of Spark is performed in the memory, it takes lesser
time to process data. According to [35], Spark is 100 times
faster as compared to Hadoop.

Hadoop is most suitable in applications where the results
are not immediately required in a short time. Contrarily, Spark
is useful in applications when the results are needed in real-
time. For instance, Spark is a good platform for stock price
evaluation and enterprises [35].

Another major difference between the two frameworks is
the amount of data to be processed. Htay and Phyu [39]
indicated that Hadoop can process a massive amount of data as
compared to Spark. Initially, Hadoop was also utilized for data
archiving because Hadoop has the ability to store the data in
large volumes due to HDFS. Using Hadoop, a user can store
the data not only for a few years but for decades in its original
and archiving form [1]. Chen and Zhang [7] stated that spark is
simple to use as compared to Hadoop due to its easy-to-use
APIs and many friendly features. If cost is taken in consider,
Hadoop is less costly as compared to Spark. Similarly, Hadoop
has better security features compared to Spark. Hadoop does
not support data caching whereas Spark supports caching of
data memory. Hadoop has a higher latency of computing as it
has less data interactivity, as opposed to Spark [48].

As presented in Table 1, both Hadoop and Spark support
auto-scaling, which means that if the data requires more nodes,
then the frameworks give provision to add more nodes for
distributing the workload automatically. Furthermore, as
discussed above, Spark is flexible to support multiple
programming languages in contrast to Hadoop only allowing
Java programming.

Based on this comparison, it is very difficult to determine
which framework is better. But generally, it can ascertain that
both are useful for their own set of applications. For instance,
Spark is better in real-time applications, where streaming data
is required to be processed, whereas Hadoop is useful for
processing large volumes of data when it is not strictly time-
bound [1]. Furthermore, Spark provides excellent built-in APIs
and libraries to optimize most of the user tasks, which can help
to save a lot of programming effort. It has higher interactivity
of data. Finally, it offers options for batch processing and
streaming, as well as ML & graphic processing. Hence, Spark
is obviously more advanced.

TABLE I. COMPARISON BETWEEN SPARK AND HADOOP

Features Hadoop Spark

Processing Mode Batch Batch and Stream

Scalability Horizontal Horizontal

Message Delivery Guarantees Exactly once Exactly once

Computation Mode Disk-based In memory

Auto-scaling Yes Yes

Iterative Computation Yes Yes

Speed Slow Fast

Amount of Data for Processing More Less

Security More Secure Less Secure

Cost High Low

Performance Fair Good

Language Scala Java

Data Caching Support No Support

IX. EXPERIMENTS AND RESULTS

To evaluate the performance of the MapReduce algorithm,
the study used the Hadoop framework by implementing the
WordCount algorithm in Java and performed the
corresponding data analysis. The dataset consists of four
different text files named chas.txt, ac.txt, xad.txt, and xaa.txt;
all downloaded from the Internet. The corresponding file sizes
are 202MB, 137MB, 69MB, and 34MB respectively. This test
dataset contains random text comprising diverse words. Table
1 presents the study dataset.

To execute the data, a number of computing machines (or
nodes) clustered across a network work together in MapReduce
fashion. This number can be as large as in millions if the
volumes of data are extremely large. The Map and Reduce
functions may work on the same machine or on separate
machines. The management of these machines is performed by
master node(s).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 4, 2021

786 | P a g e

www.ijacsa.thesai.org

A developed of a cluster of three machines to crunch the
data given in Table 2 that used in the experiment. The
hardware resources of the setup are presented in Table 3. The
master node had four cores with main memory of 2GB, and it
handled all the control processes. The other two nodes were
single-core machines with 1GB of memory each.

The cluster executed the WordCount application, and it
recorded the total time elapsed by the MapReduce function
with respect to the size of each file. The algorithm first loads
the text data into the HDFS data storage. When this data is
available on the cluster, it can be used for analysis.
Subsequently, the algorithm reads the text files and counts all
the words in the given text files using MapReduce functions.
The results are presented in Table 4. The investigation
evaluated the time of Map and Reduce functions separately in
the case of each file. The file sizes of the 202MB, 137MB,
69MB, and 34MB take 954645ms, 153826ms, 86224ms, and
57508ms to map all the words in each file by the Map function,
respectively. On the other hand, the Reduce function takes
57964ms, 51089ms, 5095ms, and 6472ms, respectively.

TABLE II. TEST DATASET FOR WORD COUNT ALGORITHM

File name File size (in MB)

chast.txt 202

ac.txt 137

xad.txt 69

xaa.txt 34

TABLE III. HARDWARE RESOURCES FOR TEST CLUSTER

Machine Cores Memory Network

Master 4 2GB 192.168.1.4

Slave1 2 1GB 192.168.1.6

Slave2 2 1GB 192.168.1.7

TABLE IV. HADOOP-MAPREDUCE (WORDCOUNT) IMPACT ON FILES SIZE

Data File

(in MB)

Time elapsed by Map

function (ms)

Time elapsed by Reduce

function (ms)

202 (chast) 954645 57964

137 (xac) 153826 5108

69 (xad) 86224 5095

34 (xaa) 57508 6472

Figure 9 shows the graphical representation of the
MapReduce function time on the WordCount algorithm. The
slope of the graph shows that the map function takes more time
compared to the reduced function for the WordCount
algorithm. It can be noted that the time elapsed by the Map and
Reduce functions are directly proportional to the size of the
file. As the size of the file increases, the time elapse of the Map
and Reduce functions is also increased. The slope of the
reducer function goes upward slightly as the size of the file
increases, but the time slope of the mapper function goes
upward at 75 degrees as the file size increases from 137MB to
202MB. The difference between these two files is not too

much. The performance of the mapper function is not very
prominent in case of an increase in the file size. This is because
Hadoop is normally optimized for the data file sizes in GBs
and TBs. Another reason for the timing results is the size of the
cluster that have used. Hadoop is normally utilized for clusters
with thousands of nodes, crunching data volumes in the range
of gigabytes & terabytes, etc.

Fig. 9. WordCount Algorithm Time Impact.

X. DISCUSSION

The study implemented the WordCount application using
Hadoop and executed it in a cluster, as discussed in Section IX.
If all the parameters and hardware resources are kept the same,
and the WordCount algorithm is implemented on the Spark
framework, the study note that the overall processing time is
reduced by a factor of 10. Similarly, the in-line memory
processing option in Spark makes it 100x faster for memory
operations. Another advantage of Spark is the reduced number
of Lines of Codes (LoCs) of Scala. The Hadoop
implementation took 60 LoCs in Java to write the MapReduce
function, but the same code took only 5 LoCs in Scala in the
case of Spark. Therefore, the only complication in the case of
Spark is learning a Scala, but this learning can reduce a lot of
effort.

XI. CONCLUSION AND FUTURE WORK

This article described two frameworks, Hadoop and Spark,
which allow the processing of Big Data on clusters of
computing machines. The study first discussed the main
characteristics of Big Data followed by the primary
components of Hadoop and Spark. Then it discussed the
underlying storage architecture called HDFS in both
frameworks. Afterwards it detailed the MapReduce algorithm
used as a core program in Hadoop operations. Subsequently, it
differentiated both the frameworks on the basis of various
features like cost, scalability, programming languages, and
processing modes, etc. The enquiry concluded that Spark is
better for streaming applications, while Hadoop is better in the
case of processing large datasets in batch processing mode.
One of the main objectives of this work is to evaluate the
performance of the WordCount application in terms of
processing time for both frameworks. Finally, the study
provided a discussion on the limitations of Hadoop as
compared to Spark while processing the WordCount
application. The investigation concludes that the performance
of Hadoop can be measured on the basis of different aspects,
such as tuning of the MapReduce parameters and the total

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 4, 2021

787 | P a g e

www.ijacsa.thesai.org

number of nodes, etc. In the future, it intend to extend this
work by taking big datasets on a larger cluster and report the
memory speed and execution times for more complex
applications. The research will compare the performance of
Hadoop and Spark for a given set of application parameters,
and propose an optimization function to choose a particular
framework for a given application. It will evaluate the
performance of these applications in terms of data growth, the
number of iterations, and data processing in real-time.
Unfortunately, the current version of Spark is unable to handle
a large number of workloads using SQL-like queries, as
required by tech giants like Google, Facebook, and Yahoo, etc.
Consequently, some modifications are suggested in newer
Spark versions to allow multithreading options to spawn
application tasks more efficiently. The research intends to
further explore Spark to find out optimized options for
application submission using large datasets.

ACKNOWLEDGMENT

The preferred spelling of the word ―acknowledgment‖ in
America is without an ―e‖ after the ―g‖. Avoid the stilted
expression ―one of us (R. B. G.) thanks ...‖. Instead, try ―R. B.
G. thanks...‖.Put sponsor acknowledgments in the unnumbered
footnote on the first page.

REFERENCES

[1] Z. Tufekci, ―Big Questions for social media big data:
Representativeness, validity and other methodological pitfalls,‖
Proceedings of the 8th International Conference on Weblogs and Social
Media, ICWSM 2014, pp. 505–514, 2014.

[2] R. Sakthivel, V. Parthipan, and D. Dhanasekaran, ―Big data analytics on
smart and connected communities using Internet of Things,‖
International Journal of Pharmacy and Technology, vol. 8, no. 4, pp.
19590–19601, 2016.

[3] M. Mohammadi, A. Al-Fuqaha, S. Sorour, and M. Guizani, ―Deep
learning for IoT big data and streaming analytics: A survey,‖ ArXiv, vol.
20, no. 4, pp. 2923–2960, 2017.

[4] U. Srivastava, and S. Gopalkrishnan, ―Impact of big data analytics on
banking sector: Learning for Indian Banks,‖ Procedia Computer
Science, vol. 50, pp. 643–652, 2015, doi:10.1016/j.procs.2015.04.098.

[5] https://www.socialmediatoday.com/news/10-social-media-statistics-you-
need-to-know-in-2019-infographic/559181/.

[6] https://www.statista.com/markets/.

[7] C.L. Philip Chen, and C.Y. Zhang, ―Data-intensive applications,
challenges, techniques and technologies: A survey on Big Data,‖
Information Sciences, vol. 275, pp. 314–347, 2014,
doi:10.1016/j.ins.2014.01.015.

[8] S. Venkatraman, K.F.S. Kaspi, and R. Venkatraman, ―SQL Versus
NoSQL Movement with Big Data Analytics,‖ International Journal of
Information Technology and Computer Science, vol. 8, no. 12, pp. 59–
66, 2016, doi:10.5815/ijitcs.2016.12.07.

[9] T.K. Das, and P. Mohan Kumar, ―Big data analytics: A framework for
unstructured data analysis,‖ International Journal of Engineering and
Technology, vol. 5, no. 1, pp. 153–156, 2013.

[10] M. Chen, S. Mao, and Y. Liu, ―Big data: A survey,‖ Mobile Networks
and Applications, vol. 19, no. 2, pp. 171–209, 2014.

[11] J.S. Ward, and A. Barker, ―Undefined By Data: A Survey of Big Data
Definitions,‖ ArXiv Preprint ArXiv:1309.5821, 2013.

[12] D. Zhao, ―Performance comparison between Hadoop and HAMR under
laboratory environment,‖ Procedia Computer Science, vol. 111, pp.
223–229, 2017, doi:10.1016/j.procs.2017.06.057.

[13] N.M.F. Qureshi, and D.R. Shin, ―RDP: A storage-tier-aware robust data
placement strategy for hadoop in a cloud-based heterogeneous
environment,‖ KSII Transactions on Internet and Information Systems,
vol. 10, no. 9, pp. 4063–4086, 2016, doi:10.3837/tiis.2016.09.003.

[14] K. Bangari, S. Meduri, and C.C.Y. Rao, ―Implementation of Word
Count-Hadoop Framework with Map Reduce Algorithm.‖ International
Journal of Computer Trends and Technology (IJCTT), vol. 49, no. 3, pp.
179-182, 2017.

[15] P. Gohil, D. Garg, and B. Panchal, ―A performance analysis of
MapReduce applications on big data in cloud based Hadoop,‖ in 2014
International Conference on Information Communication and Embedded
Systems, ICICES 2014, IEEE: pp. 1–6, 2015,
doi:10.1109/ICICES.2014.7033791.

[16] W. Lin, and J. Liu, ―Performance analysis of MapReduce program in
heterogeneous cloud computing,‖ Journal of Networks, vol. 8, no. 8, pp.
1734–1741, 2013, doi:10.4304/jnw.8.8.1734-1741.

[17] K. Sharmila, S. Kamalakkannan, R. Devi, and C. Shanthi, ―Big data
analysis using apache hadoop and spark,‖ in International Journal of
Recent Technology and Engineering, IEEE: pp. 167–170, 2019,
doi:10.35940/ijrte.A2128.078219.

[18] V. Kalavri, and V. Vlassov, ―MapReduce: Limitations, optimizations
and open issues,‖ in Proceedings - 12th IEEE International Conference
on Trust, Security and Privacy in Computing and Communications,
TrustCom 2013, IEEE: pp. 1031–1038, 2013,
doi:10.1109/TrustCom.2013.126.

[19] J. Bell, ―Apache Spark,‖ Machine Learning, vol. 17, pp. 275–314, 2015,
doi:10.1002/9781119183464.ch11.

[20] B. Data, ―Big data characteristics and sources,‖ The Macrotheme
Review, vol. 3, no. 6, pp. 8–10, 2017.

[21] Begum, F. Fatima, and R. Haneef, ―Big Data and Advanced Analytics,‖
in Advances in Intelligent Systems and Computing, IEEE: pp. 594–601,
2019, doi:10.1007/978-3-030-11890-7_57.

[22] N. Elgendy, and A. Elragal, ―Big data analytics: A literature review
paper,‖ in Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), Springer: pp. 214–227, 2014, doi:10.1007/978-3-319-
08976-8_16.

[23] J.R. Saura, B.R. Herraez, and A. Reyes-Menendez, ―Comparing a
traditional approach for financial brand communication analysis with a
big data analytics technique,‖ IEEE Access, vol. 7, pp. 37100–37108,
2019, doi:10.1109/ACCESS.2019.2905301.

[24] Shah, and M. Padole, ―Saksham: Resource Aware Block Rearrangement
Algorithm for Load Balancing in Hadoop,‖ Procedia Computer Science,
vol. 167, pp. 47–56, 2020, doi:10.1016/j.procs.2020.03.181.

[25] K. Muthukkaruppan, K. Ranganathan, and L. Tang,. U.S. Patent
Application No. 14/996,627, 2016.

[26] L. Meng, W. Zhao, H. Zhao, and Y. Ding, ―A network load sensitive
block placement strategy of HDFS,‖ KSII Transactions on Internet and
Information Systems, vol. 9, no. 9, pp. 3539–3558, 2015,
doi:10.3837/tiis.2015.09.014.

[27] W. Dai, I. Ibrahim, and M. Bassiouni, ―An Improved Replica Placement
Policy for Hadoop Distributed File System Running on Cloud
Platforms,‖ in Proceedings - 4th IEEE International Conference on
Cyber Security and Cloud Computing, CSCloud 2017 and 3rd IEEE
International Conference of Scalable and Smart Cloud, SSC 2017, IEEE:
pp. 270–275, 2017, doi:10.1109/CSCloud.2017.65.

[28] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F.B. Cetin, and S.
Babu, ―Starfish: A Self-tuning System for Big Data Analytics.,‖ in Cidr,
pp. 261–272, 2011.

[29] P. Ganesh, K. Sailaja Kumar, D. Evangelin Geetha, and T. V. Suresh
Kumar, ―Performance evaluation of cloud service with hadoop for
twitter data,‖ Indonesian Journal of Electrical Engineering and
Computer Science, vol. 13, no. 1, pp. 392–404, 2019,
doi:10.11591/ijeecs.v13.i1.pp392-404.M. Khan, Y. Jin, M. Li, Y. Xiang,
and C. Jiang, ―Hadoop Performance Modeling for Job Estimation and
Resource Provisioning,‖ IEEE Transactions on Parallel and Distributed
Systems, vol. 27, no. 2, pp. 441–454, 2016,
doi:10.1109/TPDS.2015.2405552.

[30] V. Taran, O. Alienin, S. Stirenko, Y. Gordienko, and A. Rojbi,
―Performance evaluation of distributed computing environments with
hadoop and spark frameworks,‖ in arXiv, IEEE: pp. 80–83, 2017.

[31] Jain, and M. Choudhary, ―Analyzing & optimizing hadoop
performance,‖ in Proceedings of the 2017 International Conference On

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 4, 2021

788 | P a g e

www.ijacsa.thesai.org

Big Data Analytics and Computational Intelligence, ICBDACI 2017,
IEEE: pp. 116–121, 2017, doi:10.1109/ICBDACI.2017.8070820.

[32] S. Londhe, and S. Mahajan, ―Effective and Efficient Way of Reduce
Dependency on Dataset With the Help of Mapreduce on Big Data,‖
International Journal of Students‘ Research in Technology &
Management, vol. 3, no. 6, pp. 401, 2015, doi:10.18510/ijsrtm.2015.364.

[33] M. Young, The Technical Writer‘s Handbook. Mill Valley, CA:
University Science, 1989.

[34] M. Santos, K. Santos, E. Alves, and A. Dantas, ―CPU Bound Analysis of
Wordcount Application in Hadoop Yarn Virtualized Nodes Using the
Xen Platform,‖ in 2018 Symposium on High Performance Computing
Systems (WSCAD), IEEE: pp. 274–274, 2019,
doi:10.1109/wscad.2018.00056.

[35] P.J. Morris, ―The dawn of big data.,‖ in North Carolina medical journal,
IEEE: pp. 177, 2014, doi:10.18043/ncm.75.3.177.S. Nishimura, S. Das,
D. Agrawal, and A. El Abbadi, ―MD-HBase: A scalable multi-
dimensional data infrastructure for location aware services,‖ in
Proceedings - IEEE International Conference on Mobile Data
Management, IEEE: pp. 7–16, 2011, doi:10.1109/MDM.2011.41.

[36] T. White, ―Hadoop: The definitive guide 4th Edition,‖ Online, vol. 54,
pp. 258, 2012, doi:citeulike-article-id:4882841.

[37] T.T. Htay, and S. Phyu, ―Improving the performance of Hadoop
MapReduce Applications via Optimization of concurrent containers per
Node,‖ in 2020 IEEE Conference on Computer Applications, ICCA
2020, IEEE: pp. 1–5, 2020, doi:10.1109/ICCA49400.2020.9022836.

[38] R.K. Chawda, and G. Thakur, ―Big data and advanced analytics tools,‖
in 2016 symposium on colossal data analysis and networking (CDAN),
IEEE: pp. 1–8, 2016.

[39] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M.J.
Franklin, S. Shenker, and I. Stoica, ―Resilient distributed datasets: A

fault-tolerant abstraction for in-memory cluster computing,‖ in
Proceedings of NSDI 2012: 9th USENIX Symposium on Networked
Systems Design and Implementation, pp. 15–28, 2012.

[40] M. Armbrust, R.S. Xin, C. Lian, Y. Huai, D. Liu, J.K. Bradley, X.
Meng, T. Kaftan, M.J. Frankliny, A. Ghodsi, and M. Zaharia, ―Spark
SQL: Relational data processing in spark,‖ in Proceedings of the ACM
SIGMOD International Conference on Management of Data, pp. 1383–
1394, 2015, doi:10.1145/2723372.2742797.

[41] J. Kroß, and H. Krcmar, ―Modeling and Simulating Apache Spark
Streaming Applications,‖ Softwaretechnik-Trends, vol. 36, no. 4, pp. 1–
3, 2016.

[42] J.E. Gonzalez, R.S. Xin, A. Dave, D. Crankshaw, M.J. Franklin, and I.
Stoica, ―GraphX: Graph processing in a distributed dataflow
framework,‖ in Proceedings of the 11th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2014, pp. 599–
613, 2014.

[43] Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J.
Freeman, D.B. Tsai, M. Amde, and S. Owen, ―Mllib: Machine learning
in apache spark,‖ The Journal of Machine Learning Research, vol. 17,
no. 1, pp. 1235–1241, 2016.

[44] D. Lyubimov, and A. Palumbo, Apache Mahout: Beyond MapReduce,
CreateSpace Independent Publishing Platform, 2016.

[45] H. Schildt, ―Big data and organizational design–the brave new world of
algorithmic management and computer augmented transparency,‖
Innovation: Management, Policy and Practice, vol. 19, no. 1, pp. 23–30,
2017, doi:10.1080/14479338.2016.1252043.

[46] P. Geczy, ―Big data characteristics,‖ The Macrotheme Review, vol. 3,
no. 6, pp. 94–104, 2014.

