
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

Multi-Robot based Control System
Atef Gharbi1

Faculty of Computing and Information Technology1
Northern Border University

Rafha, KSA
Institut National des Sciences Appliquées et de Technologie (INSAT), LISI1

Université de Carthage
Tunisia

Abstract—One of the most important challenge in Robotic
Flexible Manufacturing Systems (RFMS) is how to develop a
Multi-Robot based control system in which the robot is able to
take intelligent decision to a changing environment. The
problematic is how to ensure the flexibility with the proposed
multi-robot based control system based on triggering strategies.
The flexibility of the whole system is expanded by the capacity of
the flexible robots to effectively ensure tasks assigned to it.
Through this paper, three contributions can be presented: (i) the
RFMS based Control Architecture by presenting in details the
main components and methods, (ii) the planning model, and
(iii) the different levels of flexibility in RFMS.

Keywords—Robotic Flexible Manufacturing Systems (RFMS);
multi-robot based control system; RFMS control architecture;
planning model; flexibility

I. INTRODUCTION
Nowadays, Flexible Manufacturing Systems (FMS) are

facing widely frequent market changes determined by world-
wide competition, new customers’ requirements, continuous
evolution of software and hardware, and the rapid introduction
of new products [1]. Flexible Manufacturing Systems must
ensure high quality products at acceptable costs and react
rapidly to new market and products changes [2]. FMS can meet
product changes, but they cannot respond to structural changes.
In fact, the manufacturing systems are not able to face the
dynamic changing environment due to their static control
structure [3-5]. To react rapidly to the quickly changing
environment, Robotic Flexible Manufacturing Systems
(RFMS) based on multi-robot control system is considered as a
good solution having the properties such as adaptability and
flexibility [6]. Multi-robot based control system is an emerging
solution which is becoming more and more popular as it helps
to decentralize the decision in the control system [7].
Nowadays, there is a huge number of research activities that
has been approved in this sense [8-10]. It is basic for Robotic
Flexible Manufacturing Systems to have capacities such as
autonomy, flexibility and adaptability. The RFMS framework
based on Multi-Robot based control is intended to meet these
criteria. A flexible manufacturing system can be applied either
on static or dynamic system [11]. Robotic Flexible
Manufacturing Systems can be used in many fields such as:
medicine [12, 13], thermodynamic domain [14], optimal
numerisation [15], motion [16], assembly system [17],
automotive [18], fuzzy system [19].

The Robotic Flexible Manufacturing Systems can be based
on either customisation or design. Robotic Flexible
Manufacturing Systems based on customisation means satisfy
the customers’ needs during the design process of
manufacturing systems leading to more time and effort before
completing it [20].

Robotic Flexible Manufacturing Systems based on design
means the ability of the change to obtain new robotic
manufacturing systems based on existing ones as required,
simply and economically [21]. The flexibility in design permits
generating new manufacturing systems effortlessly by ensuring
the required modifications from the existing ones, and the
development cost can be significantly decreased [22].

In this paper, the architecture as well as the behaviour of
intelligent flexible robots are presented. Therefore, the
contributions are based on the following operations: (1) Firstly,
design of flexible software architecture especially for a flexible
robot. (2) Secondly, specification of the planning model
ensured by the flexible robot. (3) Thirdly, the different levels of
flexibility in Robotic Flexible Manufacturing System. To
approve these contributions, the proposed methodology is
applied to a benchmarking system.

Step 1: Define the high-level architecture of the RFMS.

On the basis of the control and flexibility objectives, the
multi-robot control system is designed till the single controlled
device and the related automation tasks. It is important for the
system to be designed in a way ensuring capabilities such as
flexibility. To do so, the multi-robot control system is
conceived to incorporate several self-flexible levels to respond
quickly to any changes occurring in the environment.

Step 2: Define the planning ability.

In the Multi-Robot Based Control System, the planning
ability is considered as a very important point to study that’s
why it is defined how it is implemented. In fact, a plan is
considered as a state-transition model.

Step 3: Define the flexibility ability.

In the Multi-Robot Based Control System, a Flexible Robot
is defined what means. After that, a study on how the Flexible
Robot ensures the flexibility. In order to cover a wide range of
the production policies, the flexible robot must ensure several
flexibility levels that can be categorized in the following ways:
the product family, the product variant, the plan, the task, the

258 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

skill, the failure, the production control, the adaptation and the
configuration. These different levels of flexibility will be
detailed later in the paper.

The remainder of this paper is organized as follows:
Section 2 introduces the state of art. Section 3 presents the
production system benchmark used as running example.
Section 4 describes the Multi-Robot based Control
Architecture. Section 5 defines the planning model. The
Section 6 presents the different levels of flexibility in RFMS.
Finally, the conclusion and future work are summarized in the
last section.

II. STATE OF THE ART
To define well a robot control system, a special attention is

given to its architecture. A huge number of research papers was
presented to define it. The first classification is based on
Knowledge Utilisation based on the way the robot uses its
knowledge to perform action. In this first classification, there
are Competitive approach and Collective approach. The
competitive approach is based on the use of a single criterion to
take decision [23]. The Collective approach enables to take in
consideration many criteria to make decision [24]. The
competitive approach can be categorized into five types,
namely lookup-based [25], finite state machine [26-27],
priority-based or hierarchical-based [28], goal-based [29] and
utility-based competitive approaches [30].

The second classification is based on Knowledge Design.
The intelligent robot can be represented through a defined
architecture that can be deliberative, reactive or hybrid. The
deliberative architecture (called also hierarchal architecture,
top-down, knowledge-based approach, or explicit-based
approach) is the most used in the artificial intelligence [31].
The deliberative architecture consists of vertical layers where
each layer is based on the data sent by the previous one. In
general, a robot senses the environment, plans and executes to
achieve a goal.

The reactive architecture (called also bottom-up, behaviour-
based architecture or implicit-based approach) is based on a
mapping between perception (provided by sensors) and action.
The reactive architecture is considered as horizontal
architecture where the different behaviors can be executed in
parallel [32].

The hybrid architecture is more commonly used especially
to control robot as the reactive aspect permits to take action in
real-time to the perception of the dynamic environment and the
deliberative aspect enables to plan future actions to satisfy a
goal [33].

Each architecture has its own strengths and weaknesses.
The deliberative architecture is likely to have higher
computational cost than the reactive approach due to data sent
between vertical layers. In addition, the deliberative approach
is more complicated due to a complete knowledge has to be
provided. However, the reactive architecture is less flexible
than the deliberative one because behaviors cannot be modified
as much as in the deliberative architecture (although it is
considered easy to implement). Therefore, purely deliberative
and reactive architecture are not considered suitable for a
complex system. In this context, the hybrid architecture gets

strengths as well as weaknesses of the two approaches, thus
why we focus on how to balance the two approaches in this
paper.

III. PRODUCTION SYSTEM BENCHMARK
As much as possible, the contribution will be illustrated

with a simple current example called RARM [34]. It is
described informally, but it will be used as an example of the
various formalisms presented in this article. The production
system benchmark RARM is depicted in Fig. 1.

A

C1

A
B

C3

BC2

p1

p2

p3 p4

p5

p6

Robot R2

M2

MC2

A

C1

A
B

C3

BC2

p1

p2

p3 p4

p5

p6

Robot R1

M2

MC1

A

C1

A
B

C3

BC2

p1

p2

p3 p4

p5

p6

Robot R3

M2

MC3

A

C1

A
B

C3

BC2

p1

p2

p3 p4

p5

p6

Robot R4

M2

MC4

Input

Output

Assembly
Line
(AL)

Fig. 1. The Production System Benchmark RARM.

The whole manufacturing system is divided into two main
parts (Fig. 1): Assembly Line (AL) and Manufacturing Cell
(MC). The Manufacturing Cell named as MC1, MC2, MC3
and MC4 are connected through the Assembly Line (AL) to
enable the flexible robots moving from one MC to another.

Each Working Place contains three conveyors (C1, C2 and
C3), a processing–assembling unit (machine M), a flexible
robot R and additional sensors. Workpieces to be treated as
they come irregularly one by one. The workpieces of Type A
are carried via the conveyor C1, and the workpieces of Type B,
via the conveyor C2. Only one workpiece can be on the input
conveyor. The flexible robot is used to load and unload
workpieces between the processing–assembling unit and the
storage equipment (Input/Output). Firstly, the flexible robot
carries a workpiece from the Input storage to the processing–
assembling unit, which is processed by the machine M. After
processing, the flexible robot transports the finished workpiece
to the Output storage.

IV. HIGH-LEVEL ROBOT-BASED CONTROL ARCHITECTURE
The traditional methodology in designing robots has been

to design the hardware and the software according to what it
should do. Traditional robots can execute specific tasks, but
they are not flexible, and therefore applications assigned to
them depend on their physical structure and their controller
abilities. Creating Flexible Robotic Manufacturing System is
facing hardware and software challenges.

While existing survey papers on Flexible Robotic
Manufacturing System have studied the architecture and
hardware feature of robots, in this paper, a special attention is

259 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

given to the challenging issues emerged when developing
flexible robots. Thus, the main problem to resolve is arising
when the flexible robot perform tasks through some flexibility
abilities.

To react rapidly to the quickly changing environment, it is
basic for the framework to have such capacities as adaptability
and flexibility. The Multi-Robot based control framework is
designed to meet these needs. To ease the system flexibility,
robots would be itself flexible. To do so, every Flexible Robot
belonging to the Multi-Robot system has its own Goal to
achieve and can generate a plan associated to this goal. This
policy helps the Flexible Robot to select an appropriate plan of
tasks to be executed.

In Fig. 2, a Flexible Manufacturing System Meta-Model is
presented. Each Product is assumed to have its own Family. A
Product_Variant is considered as a specific case of
Product_Family. To ensure a Product_Variant, a list of Plan
has to be executed and is composed of Task_Manager. Each
Task_Manager has some inputs which are Events and uses
some Resources, perceive data through Receptors and execute
commands by Effectors. The flexible robot needs to have some
specific Skill_Manager to execute well a task.

Product_Variant

Product_Family

Task_Manager

Plan

Choose

Event

input registerEvent()
unregisterEvent()
updateEvents()
checkEvent()
createTask()

getEvent()
setEvent()
publishTask()
unpublishTask()
subscribeTask()
unsubscribeTask()
getUtility()
isConsistentWith()
setPriority()
executeTask()
scheduleTask()
removeTask()

listTask()
getTask()
selectTask()
getUtility()
isConsistentWith()

initialize()
getProductFamilyID()
describeProductFamily()
requirementProductFamily()
listProductVariant()

initialize()
getProductVariantID()
describeProductVariant()
requirementProductVariant()
listProduct()
getPlan()
setPlan()
getStateExecution()

Effector

Done()
Execute()

Execute

Skill_Manager

publishSkill()
unpublishSkill()
addSkill()
removeSkill()
modifySkill()

Receptors

getData()
setData()

Perceive

Required

Task

setTaskID()
getTaskID()
execute()
getUtility()
isConsistentWith()

Resource

getResourceID()
getName()
getLocation()
getType()
getProperties()

Allocate

Fig. 2. Conceptual Meta-Model for a Flexible Manufacturing System.

Where

• Product_Family: It is a set of similar products having
common tasks. In the production system RARM, it is
possible to produce two potential product families
simultaneously. To produce these product families,
three types of machines need to be installed: Drill,
Load, and Assembly. All of these machine types have a
modular structure that allows adding/removing services.
Based on these services, each machine type can have
different configurations with different abilities and/or
skills. Therefore, the flexible robot chooses the right
machine configuration and decides the best production
policy based on the machine availability and their cost
structures.

Running example: In the benchmarking production
system, two types of product families are defined: product
family type and product family type. It is possible to process
the two potential product families simultaneously. The product
family type is treated firstly by RMC1 and then by RMC2. The
product family type is handled firstly by RMC2 and then by
RMC3. As for RMC1 (resp. RMC2, RMC3), it consists of a
drilling machine (resp. milling machine, assembling machine).
The buffer can store the finished workpieces and workpieces
waiting to be processed.

• Product_Variant: is the same product but having
different size, color, materials.

Running example: For the product family type , there are
three possible product variant (i) the first production variant
consists of inserting an A-work piece (through the conveyor
C1) into the processing center M to be treated, then it is
evacuated by the robot to the output conveyor C3; (ii) the
second production variant consists of inserting a B-work piece
(through the conveyor C2) into the processing center M to be
treated, then it is evacuated by the robot to the output conveyor
C3; (iii) the third production variant consists of inserting an A-
work piece into the processing center M to be treated, then a B-
work piece is added in the center and the two work pieces are
finally assembled.

• Plan: The Flexible robot may have many tasks which
are inconsistent. Therefore, the plan is composed of
consistent tasks. The plan is composed of a set of tasks
for a given product variant that can be either fixed or
variable. The aim is to regroup as much as possible of
tasks to be included in the same plan. Thus, the
selectTask method is used to add a task in the Plan and
the getTask method permits to return all the tasks
related to the same Plan. Similar to Task, the
isConsistentWith method is used to verify the
consistency between two plans and the getUtility
method enables to choose a plan among many
concurrent existing Plans. If a plan has been chosen, the
commitGoal method is used to create a new Goal
instance.

• Task: In general the task objects are associated to the
event object. There is a relation one-to-many between
task and event. The methods setEvent and getEvent are
used to set a link between task and associated events.
To check the consistency between two tasks, the

260 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

isConsistentWith method is used. The Flexible robot
has to choose between several tasks existing at the same
time (which some of them can be inconsistent) based on
the task’s utility through the getUtility method. In some
circumstance, the Flexible robot decides to select one or
several consistent tasks to constitute a Plan with the use
of selectAsPlan method. For each task, all exceptions
are enumerated and trigger events are determined.

Running example: The set of actions is {Ci1_left,
Ci1_right, Ri1_left, Ri1_right, Ci2_left, Ci2_right, Ri2_left,
Ri2_right, Ci3_left, Ci3_right, Ri3_left, Ri3_right, takei1,
takei2, takei3, loadi1, loadi2, loadi3, puti1, puti2, puti3,
processi1, processi2}

Where:

• Ci1_left (resp. Ci1_right) means a workpiece of type A
 is moved to the left of conveyor Ci1 from position p1
(resp. p2) to position p2 (resp. p1).

• Ri1_left (resp. Ri1_right) means the Robot ri taking a
workpiece of type A is moving to the left (resp.
to the right) from the position p2 of conveyor
Ci1 (resp. the processing unit Mi) to the processing unit
Mi (resp. the position} p2 of conveyor Ci1).

• takei1 (resp. takei2, takei3) means the Robot ri is
currently taking a workpiece of type A (resp. B , AB).

• loadi1 (resp. loadi2, loadi3) meansthe fact of loading a
workpiece of type A (resp. B , AB).

• puti1 (resp. puti2, puti3) means the Robot ri is currently
putting the workpiece of type A (resp. B , AB).

• processi1 (resp. processi2) means the fact of processing
a workpiece of type A (resp. B).

• Event: the Flexible robot can update its knowledge
about the environment through sensors. The Flexible
robot can register to a specific event (this is done by the
registerEvent method) or unregister (through the
unregisterEvent method). The events associated to the
robot are considered independent. Whenever the
Flexible robot receives a new event, it checks firstly if
there is a need to create a new task (this is done by the
checkEvent method). If the condition is satisfied, a new
task is created (this is ensured by the createTask
method). All tasks arise from the Flexible robot’s
perception.

• Resource: Each manufacturing system is composed of a
set of resources (e.g., machines, tools, grippers,
conveyors, transport devices, etc.). Each resource
performs a distinct function. It is possible to find a pool
of more than one resource that has the same function.

• Receptor: the flexible robot knows its environment
through sensors. Thus, the data provided by the sensors
present the robot’s vision of its environment. The
perception parameters have to be defined and the robot
must know how to interpret the data.

Running example

• The sensor sens1 (respectively sens2) is used to verify if
there is a workpiece at the position p1 (respectively the
position p2) on the conveyor C1;

• The sensor sens3 (respectively sens4) checks for the
existence of a workpiece at the position p3 (respectively
the position p4) on the conveyor C2.

• Effector: the flexible robot can execute the task using
the effector. For each effector, a behavior is proposed to
judge the requests to it.

Running example

• The effector act1 (respectively act2, act3) ensures the
movement of the conveyor C1 (respectively C2, C3);

• The effector act4 rotates a robotic agent;

• The effector act5 elevates the robotic agent arm
vertically.

V. PLANNING MODEL
The planning model means how the flexible robot should

act to decompose the problems into subproblems to obtain the
whole solution that the flexible robot must apply. The planning
model of the flexible robot leads to a very huge number of
possibilities which the flexible robot will have to take in
consideration again in order to retain only the valid
possibilities that should be kept.

Planning Model

Executing Plan

EffectorsReceptors

The world in which
the robot navigates

A

Conveyor
C1

A
B

Conveyor

C3

B

Conveyor
C2

Processing
unit M

Flexible Robot
controlling the system

Fig. 3. The Conceptual Planning Model.

261 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

The planning model is based on two necessary elements:
the receptors (i.e. a set of sensors to get data about the external
environment in which the flexible robot is existing) and the
effectors (i.e. a set of actuators to realize the flexible robot’s
tasks) [35]. Fig. 3 shows a conceptual model of the flexible
robot including two components: the planning model, and the
executing plan [36, 37]).

To be more specific, the planning model is based on state-
transition model where Σ representing the world is a finite
state-transition system, i.e., a triple Σ = (S; A; γ), where S is
a finite set of states, A is a finite set of actions, γ : S × A
→ 2S is a state-transition function. If (s, a) = ∅ ; then it is
said that a is not applicable to s or not executable in s.

Given a state transition system Σ , the aim of planning is
to determine which actions to execute to which states in order
to realize some objectives when starting from a given situation.
A plan is a solution that determines the appropriate actions to
reach the goal. The objective can be specified by a goal state sg
or a set of goal states Sg. The objective can be obtained by any
sequence of state transitions that ends at one of the goal states.
The planning model necessitates the descriptions of , the initial
state before applying the plan, and the desired objectives (e.g.,
to reach a set of states that satisfies a given goal condition).
Therefore, the planning model's objective is to produce a plan
(i.e., an ordered finite sequence of actions) that puts Σ into
any one of some finite set of states Sg.

More formally, the plan π is any sequence of actions π
= (a1 , … , ak), where k ≥ 0.

The length of the plan is |π | = k is equal to the the
number of actions. If π 1 = (a1 , … , ak) and π 2 = (a'1, … ,
a'j) are plans, then their concatenation is the plan π 1. π 2 = (
a1 , … , ak, a'1, … ,a'j). The state produced by applying π to
a state s is the state that is produced by applying the actions of
π in the order given.

The plan π is executable in a state s0 if there is a
sequence of states (s0; s1; … ; sn) such that for i = 1; … ; n,

si = γ (si-1 , a2). In this case it is said that (s0; s1; … ; sn) is
π 's execution trace from s0, and γ (s0 , π) = sn is defined. If
sn satisfies the goal g, then it is said that π is a solution for
the planning problem P = (O; s0; g).

The quality of a plan is measured by length, where the
shorter of two plans is better under the same satisfaction
degrees.

An action or a plan posts a set of goals G = {g1; g2; ...;
gn}. This invokes the following process:

1) Loop over each goal gi:
a) Determine the set of plans filling the goal gi.
b) Keep only the plans which pre-conditions are

satisfied.
c) For each remaining plan, check its mandatory

resources.
2) Order the different goals gi according to its priority.

3) For every goal gi in order of priority.
a) If only one plan P realizes gi

then apply P

else // several plans

b) order each plan achieving the goal gi based on the
length of the plan and how many resources it uses.

c) Choose the plan having the highest scoring.

Running example

Giving (S, A, Gs) where S = {si , i=1...n } is a set of states,
A= {Ci1_left, Ci1_right, Ri1_left, Ri1_right, Ci2_left,
Ci2_right, Ri2_left, Ri2_right, Ci3_left, Ci3_right, Ri3_left,
Ri3_right, takei1, takei2, takei3, loadi1, loadi2, loadi3, puti1,
puti2, puti3, processi1, processi2 i=1...n } is a set of actions,
and Gs is the problem goal.

If the goal g = {workpiece in the processing unit} and the
robot is at the initial position s1. Let:

• π 0 = (Ci1_left, takei1).

• π 1 = (load_i1, put_i1, process_i1, Ci1_right).

• π 2 = (Ci1_left, take_i1, load_i1, put_i1, process_i1,
Ci1_right).

Then

π 0 is not considered as a solution because the final state is
not a goal state;

π 1 is not a solution because it is not applicable to s1;

π 3 is the only solution because it is applicable to s1 and
the final state is a goal state.

VI. HOW DOES THE RFMS ENSURE FLEXIBILITY?
The flexible robot controls the system through an event-

triggering policy which means whenever an event related to the
system (for example a resource failure), the flexible robot
decides to take the right decision. In order to cover a wide
range of the production policies, the flexible robot must ensure
several flexibility levels that can be categorized in the
following ways:

• Product Family flexibility means that the flexible robot
is able to change-over production families to produce a
new Product family which is feasible in terms of
requirements (that means manufacturing facility
procedure to ensure the production of each product
family). In fact, Flexible Manufacturing Systems are
designed to achieve several operations on many
products grouped in families according to their
operational requirements.

As it is illustrated in Fig. 4, each Flexible Robot has some
Product to achieve. To do so, it determines the appropriate
production plan and the tasks that can be executed. The internal
behaviour of the Robot is defined as follow: firstly, the
Flexible Robot evaluates the feasibility of the new product. If it
is not feasible, then the Flexible Robot generates error, else it
determines the list of tasks to be executed. Each task needs

262 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

some resources. If the Flexible Robot fails in achieving this
task due to some missing resources, it can ask help from other
robots able to provide the requested resources which are
considered as Helping Robots.

Running example the flexible robot can switch from the
product family type α to the product family type β .

In [38], the authors present a methodology to group
products into families depending on similarities through a
modified Jaccard similarity index.

mn
m i n j

ij
i j

S
S

N N
∈ ∈=
∑∑

 (1)

Where

i,j families,

m (resp. n) products of family i (respectively j)

Sij degree of similarity between families i and j

Smn degree of similarity between products m and
n

Ni (resp. Nj) number of products in the family i (resp. j)

Is Feasible?

Precise the
production plan

Asking help from
other Robots

Yes

Yes

Feasability study

No Is task
executed?

No

Execute the
following task

Refuse

Yes

Is Plan
finished?

Yes

No

Missing
resource?

Yes
Getting help

No

No

Market Demand: New
Product Family

Determine the
Product variant

Fig. 4. Flexible Robot Behavior.

• Product Variant flexibility means that the flexible robot
is capable to define the different possible configurations
for the same product family (i.e. alternative
configurations for each product family).

Running example the flexible robot can switch from the
first production variant to the second product variant in case of
shortage of workpiece A.

To measure the similarity degree between two products m
and n, the Jaccard similarity coefficient Smn [38] is used which
is defined.

,0 1mn mn
aS S

a b c
= ≤ ≤

+ +
 (2)

Where a represents the number of common machines used
to produce both the products m and n; b defines the number of
machines used to produce the product m; and c represents the
number of machines used to produce the product n.

• Plan flexibility means that the flexible robot is able to
define the order of execution of the tasks to ensure the
same plan.

Running example the flexible robot can switch from the
following plan {C2 left, take2, load2, process2} to a new plan
{load1, put1, process1, C1 right}. The following algorithm
obtains a valid plan constituted by a task sequence (T1, .., Ti,
Tj, .., Tn) where Ti.post-condition = Tj.pre-condition.

Algorithm Graph_generation()

Input: Node t(acti, pre-condi, post-condi), Precedence
Graph G = (T, R)

Output: Precedence Graph G = (T, R)

Add t into T

For j in 1 to length(T) do

If (post-condj = post-condi)

 Add r = (actj , acti) into R

End if

End for

• Task flexibility means that the flexible robot has the
ability to manage the task switching with minimal
effort.

A Task Precedence Graph G = (T, R) is used to provide a
simple visual representation of a complex system by modelling
the interactions and precedence relations among the different
tasks where T is the set of tasks and R is the relationship
between Tasks (precedence order).

Fig. 5 shows Task Precedence Graph composed of night
Tasks (from T1 to T9), and illustrates how is the final
production system configuration.

263 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

T1

T2

T3

T4

T5

T6

T7

T8 T9

Fig. 5. Task Precedence Graph.

The list of tasks that can be executed is determined through
the following algorithm.

Algorithm Task_Choice()

Input: Precedence Graph G = (T, R)

// T is the whole tasks

// R is the relationship between Tasks (precedence order)

Output: set of tasks can be executed by end actuators

Repeat

For each t in T do

If (indegree(t)=0) & (t. actuator = available) then

 Return t

End if

End for

If (t.state = executed) then

 t.actuator available

 T T – {t} //Remove t from the whole tasks T

R R – t.outgoingEdge //remove its outgoing edges
from R

End if

Until all tasks are executed

• Skill flexibility means that the flexible robot has the
ability to change its different skills i.e. adding new
skills, removing others, and modifying of several
services composition, e.g., redesigning the services by
adding a new one and eliminate others to be more
flexible with the environment evolution.

Running example the flexible robot has the moving skill
(forward/backward), it is possible to add on it the new skill
turning (left/right).

• Failure flexibility describes the aptitude of flexible
robot to deal with breakdowns and consequently
guaranteeing continuation of production.

Running Example. The flexible Robot controlling the
production system RARM consider many scenario in case of
faults happen to physical components such as actuators,
conveyors or machines.

• The first scenario involves a single conveyor C1 that
transports A-work pieces to be processed by the
machine unit.

• The second scenario involves a single conveyor C2 that
transports B-work pieces to be processed by the
machine unit.

• The third scenario involves two conveyors C1 and C2
that transports A and B-work pieces to be processed by
the machine unit.

If the conveyor C1 is broken in the RARM Production
System, then the flexible Robot has to apply the second
scenario. If the conveyor C2 is broken in the RARM
Production System, then the flexible Robot has to follow the
first scenario. If the conveyor C1 and C2 are functioning well,
then the flexible robot can apply the third scenario (Fig. 6).

1 2

3

C2C1

C1 & C2

¬C1 & C2

Key
C1: conveyor C1 is working
C2: conveyor C2 is working
¬C1: conveyor C1 is broken
¬C2: conveyor C2 is broken

C1
 &

 C
2

¬C2 & C1

¬C
1

&
C2

¬C2 & C1

C1 & C2

Fig. 6. Flexible Robot Behaviour in Case of Failure.

• Adaptation flexibility: Fig. 7(a), represents the normal
case where there are: (i) two flexible robots, each one is
existing in a station, (ii) Robot repository to help other
robot facing problems and (iii) Gripper repository
which permit robot to accommodate the product family
(depending on the form and the geometry of the
workpiece to be handled). This normal case is
considered as the starting point upon which all
adaptation scenarios are based.

In Fig. 7(b), rather than stopping the manufacturing system
to repair the broken robot, the robot facing a problem can be
substituted by another one. In Fig. 7(c), if the robot is broken
and there is no other available robot, then the workpiece can be
transferred to the second workstation to be processed.

In Fig. 7(d), a new suitable gripper is used to be convenient
with the form of workpiece. The use of new grippers for the
transfer of the workpiece facilitates the adaptation flexibility.

264 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

Robot
repository

Workstation 1

(a) Normal case

Workstation 2

Workstation 1

(b) Robot broken

Workstation 2

Gripper
repository

Workstation 1

(c) Robot broken
And workpiece
moved to the

next work
station

Workstation 2

Robot
repository Workstation 1

(d) Gripper
changed

Workstation 2
Gripper

repository

Gripper
repository

Robot
repository

Gripper
repository

Robot
repository

Fig. 7. Adaptation Scenarios.

• Configuration flexibility: Fig. 8 illustrates a decision
graph representing all the set of possible configurations
that can be executed by the flexible robot. It comprises
six levels: (i) the first level represents the different
product families (for example here, there are only two);
(ii) the second level defines whether the Product Family
is possible or not, (for each product family, there are
two alternatives Possible or Not Possible); (iii) the third
level specifies the different product variants that can be
executed related to a specific Product Family if it is
possible of course; (iv) the fourth level defines the
availability to execute a product variant (for each
product variant, the input indicates if is available or
not); (v) the fifth level represents the different plans that
can be executed for each product variant if it is
available; (vi) the sixth level represents the different
tasks to be executed for each plan. Each node of the tree
graph is a decision point.

X

R
1

P3

Robot
Not possible

Possible

Product
variant 1

Product
variant 3

Product
variant 2

Available

Not available

Plan 1

Plan 2

P3

P2

Task 2

Task 3

P3

P2

X

R
1

Product Family 2

Product Family 1

Task 1

Task 2

P3
Task 1

Fig. 8. Intelligent Robot Control Decision Making..

The total number of alternative solutions for each
intelligent robot can be represented as:

, , , , ,i s j a p t
ti s j a p

R R= ∑∏∏∏∏∏ (3)

Where

• R is the total number of possible configurations for the
intelligent robot,

• i, is the product family index,

• s, Boolean parameter to indicate if the product family is
possible (true or false),

• j, is the product variant index,

• a, Boolean parameter to indicate if the product variant is
available (true or false),

• p, is the product variant plan,

• t, is the task index.

• Ri,s,j,a,p,t, is the complete configuration that the
intelligent robot can choose. Based on the above
analysis for each Product family, Product variant, Plan
and the identification of suitable tasks to be executed in
order.

265 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

VII. CONCLUSION
Robotic Flexible Manufacturing Systems (RFMS) is a

suitable solution to accommodate changes and meet customers’
needs such as autonomous decision, control, and flexibility to
react rapidly to the quickly changing environment.

Through this paper, we consider the challenge how to
implement RFMS, the proposed approach presents the
following contributions: (i) firstly, the general approach is
designed to define the basic architecture of RFMS by
presenting in details the main components and methods,
(ii) secondly, the control robot is defined how to deal with the
planning, (iii) thirdly, the different manners in which the
flexible robot can adapt the system are proposed. The robots
behave more like they are thinking, by making a decision about
action selection and predicting the effects of actions. Therefore,
the problem is divided into three parts: the robot-based
architecture, the planning model and the flexible robot
behaviour.

The future work will be as the following. The methodology
can be expended to include human-computer interaction. The
Multi-Robot based control system can be ameliorated to allow
robots to participate in multiple collaboration at the same time.

ACKNOWLEDGMENT
The authors gratefully acknowledge the approval and the

support of this research study by the grant no -7436-CIT-2017-
1-8-F- from the Deanship of Scientific Research at Northern
Border University, Arar, K.S.A.

REFERENCES
[1] Silva, A.; Ribeiro, R.; Teixeira, M. Modeling and control of flexible

context-dependent manufacturing systems, Information Sciences,
Volume 421, 2017, Pages 1-14, ISSN 0020-0255,
https://doi.org/10.1016/j.ins.2017.08.084.

[2] Liu, H.; Wu, W.; Su, H.; Zhang, Z. Design of optimal Petri-net
controllers for a class of flexible manufacturing systems with key
resources, Information Sciences, Volume 363, 2016, Pages 221-234,
ISSN 0020-0255, https://doi.org/10.1016/j.ins.2015.11.021.

[3] Gao, G.; Wang, J.; Yue, W.; Ou, W. Structural-vulnerability assessment
of reconfigurable manufacturing system based on universal generating
function, Reliability Engineering & System Safety, Volume 203, 2020,
107101, ISSN 0951-8320, https://doi.org/10.1016/j.ress.2020.107101.

[4] Zhang, Y.; Zhao, M.; Zhang, Y.; Pan, R.; Cai, J. Dynamic and steady-
state performance analysis for multi-state repairable reconfigurable
manufacturing systems with buffers, European Journal of Operational
Research, Volume 283, Issue 2, 2020, Pages 491-510, ISSN 0377-2217,
https://doi.org/10.1016/j.ejor.2019.11.013.

[5] Mpofu, K.; Tlale, N.S. Multi-level decision making in reconfigurable
machining systems using fuzzy logic, Journal of Manufacturing
Systems, Volume 31, Issue 2, 2012, Pages 103-112, ISSN 0278-6125,
https://doi.org/10.1016/j.jmsy.2011.08.006.

[6] Chen Zheng, Xiansheng Qin, Benoît Eynard, Jing Bai, Jing Li, Yicha
Zhang, SME-oriented flexible design approach for robotic
manufacturing systems, Journal of Manufacturing Systems, Volume 53,
2019, Pages 62-74, ISSN 0278-6125,
https://doi.org/10.1016/j.jmsy.2019.09.010.

[7] Saliba, M. A.; Zammit, D.; Azzopardi, S. Towards practical, high-level
guidelines to promote company strategy for the use of reconfigurable
manufacturing automation, Robotics and Computer-Integrated
Manufacturing, Volume 47, 2017, Pages 53-60, ISSN 0736-5845,
https://doi.org/10.1016/j.rcim.2016.12.002.

[8] Ferreras-Higuero, E.; Leal-Muñoz, E.; García de Jalón, J.; Chacón, E.;
Vizán, A. Robot-process precision modelling for the improvement of

productivity in flexible manufacturing cells, Robotics and Computer-
Integrated Manufacturing, Volume 65, 2020, 101966, ISSN 0736-5845,
https://doi.org/10.1016/j.rcim.2020.101966.

[9] Kontovourkis, O.; Phocas, M. C.; Katsambas, C. Digital to physical
development of a reconfigurable modular formwork for concrete casting
and assembling of a shell structure, Automation in Construction,
Volume 106, 2019, 102855, ISSN 0926-5805,
https://doi.org/10.1016/j.autcon.2019.102855.

[10] Björnsson,A.; Jonsson,M.; Johansen,K. Automated material handling in
composite manufacturing using pick-and-place systems – a review,
Robotics and Computer-Integrated Manufacturing, Volume 51, 2018,
Pages 222-229, ISSN 0736-5845,
https://doi.org/10.1016/j.rcim.2017.12.003.

[11] M.G. Abou-Ali, M.A. Shouman, Effect of dynamic and static
dispatching strategies on dynamically planned and unplanned FMS,
Journal of Materials Processing Technology, Volume 148, Issue 1, 2004,
Pages 132-138, ISSN 0924-0136,
https://doi.org/10.1016/j.jmatprotec.2004.01.054.

[12] Jason Y.K. Chan, et Al. Prospective clinical trial to evaluate safety and
feasibility of using a single port flexible robotic system for transoral
head and neck surgery, Oral Oncology, Volume 94, 2019, Pages 101-
105, ISSN 1368-8375,
https://doi.org/10.1016/j.oraloncology.2019.05.018.

[13] Michael Z. Lerner, Michael Tricoli, Marshall Strome, Abrasion and
blunt tissue trauma study of a novel flexible robotic system in the
porcine model, American Journal of Otolaryngology, Volume 38, Issue
4, 2017, Pages 447-451, ISSN 0196-0709,
https://doi.org/10.1016/j.amjoto.2017.04.002.

[14] Jair Carlos Dutra, et Al. Development of a flexible robotic welding
system for weld overlay cladding of thermoelectrical plants’ boiler tube
walls, Mechatronics, Volume 24, Issue 5, 2014, Pages 416-425, ISSN
0957-4158, https://doi.org/10.1016/j.mechatronics.2014.03.002.

[15] Forbes, J.; Damaren, C. Design of optimal strictly positive real
controllers using numerical optimization for the control of flexible
robotic systems, Journal of the Franklin Institute, Volume 348, Issue 8,
2011, Pages 2191-2215, ISSN 0016-0032,
https://doi.org/10.1016/j.jfranklin.2011.06.013.

[16] Gabriel G. Kost, Ryszard Zdanowicz, Modeling of manufacturing
systems and robot motions, Journal of Materials Processing Technology,
Volumes 164–165, 2005, Pages 1369-1378, ISSN 0924-0136,
https://doi.org/10.1016/j.jmatprotec.2005.02.186.

[17] Giulio Rosati, Simone Minto, Fabio Oscari, Design and construction of
a variable-aperture gripper for flexible automated assembly, Robotics
and Computer-Integrated Manufacturing, Volume 48, 2017, Pages 157-
166, ISSN 0736-5845, https://doi.org/10.1016/j.rcim.2017.03.010.

[18] Yin, G. et Al. Flexible punching system using industrial robots for
automotive panels, Robotics and Computer-Integrated Manufacturing,
Volume 52, 2018, Pages 92-99, ISSN 0736-5845,
https://doi.org/10.1016/j.rcim.2017.11.002.

[19] G. Nagamani, Young Hoon Joo, G. Soundararajan, Reza Mohajerpoor,
Robust event-triggered reliable control for T-S fuzzy uncertain systems
via weighted based inequality, Information Sciences, Volume 512,

[20] 2020, Pages 31-49, ISSN 0020-0255,
https://doi.org/10.1016/j.ins.2019.09.034.

[21] Qiao G, Lu RF, McLean C. Flexible manufacturing systems for mass
customisation manufacturing. International Journal of Mass
Customisation. 2006 Jan 1;1(2-3):374-93.

[22] Zheng, C. et Al. Survey on Design Approaches for Robotic
Manufacturing Systems in SMEs, Procedia CIRP, Volume 84, 2019,
Pages 16-21, ISSN 2212-8271,
https://doi.org/10.1016/j.procir.2019.04.183.

[23] Wilms, M. et Al. Development of a decision logic for the selection of a
flexible robotic system for the automated manufacturing in tooling,
Procedia CIRP, Volume 81, 2019, Pages 435-440, ISSN 2212-8271,
https://doi.org/10.1016/j.procir.2019.03.075.

[24] Ajeil, F. ; et al. Multi-objective path planning of an autonomous mobile
robot using hybrid PSO-MFB optimization algorithm, Applied Soft
Computing 2020, 89, Article 106076

266 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

[25] Seeja, G.; et al. A Survey on Swarm Robotic Modeling, Analysis and
Hardware Architecture. Procedia Computer Science 2018 , 133, 478-485

[26] Erdem, O.; Carus, A.; Erdem, H.; Carus, A.; Le, H .Large-scale SRAM-
based IP lookup architectures using compact trie search structures.
Computers & Electrical Engineering 2014, 40, 1186-1198.

[27] Graaf, B.; Weber, S.; Deursen, A. Model-driven migration of
supervisory machine control architectures. Journal of Systems and
Software 2008, 81, 517-535.

[28] Yulan, H. ; Qisong, Z.; Pengfei, X. Study on Multi-Robot Cooperation
Stalking Using Finite State Machine. Procedia Engineering 2012, 29,
3502-3506.

[29] Dai, Y.; et al. A switching formation strategy for obstacle avoidance of a
multi-robot system based on robot priority model. ISA Transactions
2015 , 56, 123-134

[30] Kuhner, D.; et al. A service assistant combining autonomous robotics,
flexible goal formulation, and deep-learning-based brain–computer
interfacing. Robotics and Autonomous Systems 2019, 116, 98-113

[31] Romero, A.; et al. Simplifying the creation and management of utility
models in continuous domains for cognitive robotics. Neurocomputing
2019, 35311, 106-118.

[32] Lemaignan, S.; Warnier, M. ; Sisbot, E. ; Clodic, A. ; Alami, R.
Artificial cognition for social human–robot interaction: An
implementation Artificial Intelligence 2017, 247, 45-69.

[33] Baklouti, E.; Ben Amor, N.; Jallouli, M. Reactive control architecture
for mobile robot autonomous navigation, Robotics and Autonomous
Systems, Volume 89, 2017, Pages 9-14, ISSN 0921-8890,
https://doi.org/10.1016/j.robot.2016.09.001.

[34] Yu, C.; et al. Onboard system of hybrid underwater robotic vehicles:
Integrated software architecture and control algorithm. Ocean
Engineering 2019, 187, Article 106121.

[35] Gharbi, A. A Social Multi-Agent Cooperation System Based on
Planning and Distributed Task Allocation, Information, 11(5) 271;
doi:10.3390/info11050271 (2020).

[36] Gharbi, A. Five Capabilities Model Applied to Multi-Robot Systems.
International Journal of Advanced Pervasive and Ubiquitous Computing
(IJAPUC), 7(1), pp.57-88, 2015

[37] Gharbi, A.; Gharsellaoui, H.; Ben Ahmed, S. Multi-Agent Control
System, ICSOFT, EA, 2014:117-124.

[38] Au, T.C., Kuter, U. and Nau, D., 2008, May. Planning for interactions
among autonomous agents. In International Workshop on Programming
Multi-Agent Systems (pp. 1-23). Springer, Berlin, Heidelberg.

[39] Anunciene Barbosa Duarte, et al. Genetic diversity between and within
full-sib families of Jatropha using ISSR markers, Industrial Crops and
Products, Volume 124, 2018, Pages 899-905, ISSN 0926-6690,
https://doi.org/10.1016/j.indcrop.2018.08.066.

267 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. State of the Art
	III. Production System Benchmark
	IV. High-Level Robot-based Control Architecture
	V. Planning Model
	1) Loop over each goal gi:
	a) Determine the set of plans filling the goal gi.
	b) Keep only the plans which pre-conditions are satisfied.
	c) For each remaining plan, check its mandatory resources.

	2) Order the different goals gi according to its priority.
	3) For every goal gi in order of priority.
	a) If only one plan P realizes gi
	b) order each plan achieving the goal gi based on the length of the plan and how many resources it uses.
	c) Choose the plan having the highest scoring.

	VI. How does the RFMS Ensure Flexibility?
	VII. Conclusion
	Acknowledgment
	References

