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Abstract—Realistic real-time rain streaks rendering has been 

treated as a very difficult problem because of various natural 

phenomena. Also, for creating and managing many particles in a 

rain streak, many resources had to be used. This paper propose 

am efficient real-time rain streaks simulation algorithm by 

generating view-dependent rain particles, which can express a 

large amount of rain streaks even with a small number of 

particles. By creating a ‘constrained view frustum’ depending on 

the camera moving in real time, particles are rendered only in 

that space. Accordingly, particles rendered well even if the 

camera keep moving or rotating rapidly. And a small number of 

particles are used, since the simulation is performed in a user-

viewed limited space, an effect of simulation many particles can 

be obtained. This enables very efficient real-time simulation of 

rain streaks. 

Keywords—View-dependent rendering; realistic real-time 

simulation; view frustum 

I. INTRODUCTION 

When a digital content is produced for a specific weather 
from among various weather conditions, the audience or user 
who encounters the medium can immerge to the content more 
easily. There are many types of weather conditions such as 
sunny, cloudy, rainy, and snowy days. There are two main 
methods of rendering them: off-line rendering and on-line 
rendering. In the case of movies, since it is a medium that does 
not communicate with the audience in real-time, so even if it 
takes a lot of time, it pursues realistic rendering results so that 
the results naturally melt into the filming scene. On the 
contrary, in content such as games, even if the factual point is 
relatively less important, it emphasizes real-time, so it pursues 
somewhat lower quality rendering results compared to that of 
movies. 

This paper proposes a real-time simulation algorithm for 
rainy scene. When it rains, complicated and diverse 
phenomena should be considered, such as droplets, splashes, 
rainbows, and clouds. Although the graphics hardware has 
been improved drastically in recent years, real-time simulation 
of rains is still very difficult problem considering the various 
conditions and the governing physical law to simulate them. 
Moreover, considering the physical properties of raindrops or 
water, the entire simulation process becomes very complicated. 
Therefore, most of real-time rain simulation focuses only on 
specific phenomena among various phenomena in rainy 
weather, and many different technical methods have been 
proposed to obtain real-time simulation performance by 
approximating the required parameters. Many of them have 

presented for modeling realistic raindrops based on the 
physical properties [1]. This enables realistic rain simulation as 
well as raindrop modeling. Also, they could present various 
phenomena including collision detection between raindrops 
and objects but gave the disadvantage of inefficiency because 
calculations related to raindrops became heavy due to 
unnecessary invisible rendering on the screen [2]. To fix it, 
various studies have been proposed such as defining and 
rendering only specific region for efficient simulation, but 
when the camera is moving outside of the region, there are 
awkward discontinuities where raindrops are not visible or 
rendered outside of the space [3, 4, 5]. 

This paper proposes an algorithm that complements the 
aforementioned shortcomings by mapping rain streaks textures 
to particles and creating a particle system that depends on the 
position and FOV (field of view) of the camera. Also present a 
method of interaction between rain and light sources, which is 
a simple light scattering technique for changing color of rain 
streaks. In this work, the particles are rendered even when the 
camera is moving and rotating. Therefore, it can avoid 
awkward rendering where rain can be rendered only in certain 
spaces, which requires only a small number of particles, but 
appearing to be rendered in very large quantities. This enables 
more efficient real-time rain-streaks simulation in a 3D space. 

II. RELATED WORK 

Many research methods have been proposed in realistic rain 
simulation, and most of them focus on certain parts of the 
phenomenon of rain. There are two main types of rain 
simulation: rendering rain streaks with translucent white quads. 
The other method is to map precomputed rain streak textures to 
quads. The rain streaks texture rendering model proposed by 
Garg et al. presents a vibration model for raindrops. The rain 
streaks texture rendering model proposed by Garg et al. 
presents a vibration model for raindrops. As a result, they made 
a database of high-quality renders for many values of the 
illumination parameters [1]. Then, they used simple image-
based algorithms from the depth map, camera parameters, and 
user input for viewpoints to synthesize the final images. This 
method showed the performance of 10 sec/frame, which was 
unsuitable for real-time simulation. This study used their 
database but implement rain simulation in real-time. Also, for 
randomness of the rain streaks, hundreds of textures are used to 
randomly map to the particles. 

Weber et al. focused on the relationship between raindrops 
and trees. In their techniques, through-fall simulation is 
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analyzed phenomenologically, and rendering is done based on 
the amount of water stored in the tree canopy and leaves [2]. 
Furthermore, in the study of Nanko et al., the distribution of 
dripping through-fall was considered temporally and spatially 
[6]. The through-fall was largely divided into two different 
water. The first water was the raindrops in the natural state. 
This was a free through-falling without hitting anything other 
objects. The second one was the water splashes stored by 
hitting the canopy and leaves and then re-appeared in 
phenomenological and hydrological condition. In their study, 
through-fall was implemented very similar to the actual 
phenomenon. But there was no explanation for the calculation 
of raindrops occurring outside the camera‟s FOV. 

Rousseau et al. proposed a model representing the 
refraction of light occurring inside the raindrop [7]. For 
completion, the reflections should also have been considered 
when designing raindrops. However, since they thought the 
reflection was negligible enough, they implemented only 
refraction [8]. In their approach, rain streak textures extracted 
from the video were modified to match the camera of a scene 
and then blended into the image to make the artist‟s intention 
for the scene more effective. But, real-time performance was 
not guaranteed. In addition to this, dynamic scenes were not 
suitable for these methods because the texture must be 
transformed to fit the resulting screen. 

Tariq further simplified Garg‟s rain textures and map them 
to the quads [3]. This processing was done on the GPU using 
DirectX, and each particle was rendered using a geometric 
shader at each frame over times. Tariq also made lights glow to 
show more realistic simulation of rain under the lights, but the 
relationship with the light source and rains was not described 
mathematically, therefore rain was not rendered properly as the 
camera moved or rotated. 

Puig-Centelles et al. proposed a new real-time rain 
simulation technique in which a rain area was defined as an 
ellipse and all rain simulation was limited to a semi-cylindrical 
sub-volume [4]. Due to observer‟s movement, the update of 
new particle position was forced to inside the sub-volume, 
while their density was adapted to reduce the number of 
particles needed. Furthermore, they separated the close rain and 
far rain and added a transition area in between for a natural and 
realistic change [9]. The switch was made depending on 
whether the observer is in a rain area or not. If the camera is 
located in the rainy area from a very long distance, awkward 
scene could be rendered, with certain area raining and others 
not raining. 

Unlike the above studies, the model proposed in this paper 
checks the position of the camera and then create a rain space 
for the camera in which particles are generated inside. This 
ensures that even if the camera keep moving or rotating rapidly, 
it makes illusion that rain is rendering over the entire scene. 
Other benefit is that can use only small number of particles to 
create heavy raining, which improves the rendering 
performance. On the top of that, this study presents a model for 
the interaction between particles and the light source, which 
can represent the light scattering effect. 

Fig. 1 is a captured scene of the proposed model. The four 
red lines indicate the volume of view-frustum, and the 

intersection point where four lines meet together represents the 
actual camera position. In the Fig. 1, particles are generated 
only in the frustum of the FOV and when the camera rotates or 
moves, the location where the particles are generated is also 
moved according to the camera. 

 

Fig. 1. Particles Rendered only in the Constrained Area. 

III. ALGORITHM 

In this study, we propose a real-time rain simulation 
method that creates a constrained rain space depending on the 
current camera so that particles representing the rain streaks are 
generated only in the camera frustum. Because of this, even 
when a small number of particles are used, suggested algorithm 
is able to synthesize seemingly heavy rain for users. 

This chapter describes the detailed algorithm of the 
proposed model. The overall algorithm is briefly described in 
Fig. 2. Each procedure is as follows: 

1) Scene configuration: Compose the overall scene such 

as background and model loading(street lamp, plane). 

2) Particles initialize and configuration: In this model, 

the KTX(Khronos Texture) format is applied. More details in 

in Sec. 3.D, and the particle system was constructed using 

transform feedback from openGL [10, 11]. 

3) Create constrained rain area: Under the perspective 

projection, to make area for the rain fall, this method compute 

the 8 vertex positions of the truncated pyramid shape of the 

view frustum and the normal vectors of 6 faces. At the same 

time, it creates a virtual sphere in the frustum for enforcing a 

constraint to limit the area for generating particles. 

4) Set the initial particle positions in the rain area: Set 

the initial positions of the particles in a constrained rain area. 

Particles are updated in position from top to bottom(-y). 

5) Set the rain streak colors by calculating the scattering 

of particles with the light source: Depending on the relative 

position between particles and light soruce, the method of  

handling scattering from particles is different. In this paper, 

only spotlight is considered among the types of light sources. 

6) Real-time simulation: Particles are created and 

rendered in constrained rain area. Calculating the rain space is 

handled by the CPU, but scattering and calculation of particle 

is handled by the shader. 
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Fig. 2. Algorithm Overview of Proposed Model. 

First, explain the frustum and rain area, apply texture to 
particles generated only in space. After that, this paper 
discusses methods for light scattering in this section. 

A. Create view-dependent Rain Area 

To create the rain area from the camera‟s frustum, this 
method first need to calculate the height, width, center point of 
the far and near planes of the frustum. If the distance from the 
camera to the far plane increases, the size of the frustum 
increases as well. Therefore, the density of the particle created 
in the frustum is very low. In this case, it is different from what 
we wanted because algorithm has to make lots of particles to 
increase the density. Also, particles generated near to the far 
plane are rendered too small or almost invisible. Therefore, the 
distance from the camera to the far plane for a particle should 
be set as small as possible. In this paper, it was set to 50.0. 
After that, we need to find the positions of the 8 vertices that 
make up the frustum, which can be got from following formula: 

        { ⃗⃗  (      )}  { ⃗  (      )}            (1) 

        { ⃗⃗  (      )}  { ⃗  (      )} 

        { ⃗⃗  (      )}  { ⃗  (      )} 

        { ⃗⃗  (      )}  { ⃗  (      )} 

        { ⃗⃗  (      )}  { ⃗  (      )} 

        { ⃗⃗  (      )}  { ⃗  (      )} 

        { ⃗⃗  (      )}  { ⃗  (      )} 

        { ⃗⃗  (      )}  { ⃗  (      )} 

where,   is the center point of far and near face,     is the 

height and width of each face.  ⃗⃗  is up vector of camera, and  ⃗  

is direction of camera. Also,  ⃗  is a cross product and 

normalized vector of  ⃗⃗  and  ⃗ . Each vertex is described in 
Fig. 3. 

Using the 8 vertices, this paper can find the normalized 
vectors for the four faces of the frustum, excluding the near and 
far plane. This is given subsequent formula: 

  ̂  (       )  (       )              (2) 

  ̂  (       )  (       ) 

  ̂  (       )  (       ) 

  ̂  (       )  (       ) 

Where   ̂,   ̂,   ̂,   ̂ is a normal vector for the right, left, 
bottom and top faces, respectively, and each vector is 
normalized. Each face is also described in Fig. 3. 

 

Fig. 3. Vertex and Faces of the view Frustum. 
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B. Virtual Sphere Setting 

To constrained create space where particles will be 
generated, we need to create a virtual sphere that overlaps the 
frustum. So, we need to set the center point     = (   ,    ,    ) 
and radius     of the sphere. The     of the sphere is the 
midpoint of the distance between the near and far faces, so that 
the sphere and the frustum overlap as much as possible. 

As a result, as much space as possible can be defined as 
rain space on the frustum. Since the     the midpoint between 
the near and far face, the radius of virtual sphere is defined as 
half the distance between two faces. 

Now, algorithm need to decide the initial position      = 

(              ) where a particle is created. Particle must be 

created inside a constrained rain space where the frustum and 
virtual sphere overlapped. To find this location, we first use the 
equation for converting from the spherical coordinate system to 
Cartesian coordinate system to create particles in sphere. 
Before this, we should get the   and   for coordinate system 
conversion.   means azimuthal angle of spherical coordinate 
and   means polar angle of spherical coordinate. This is shown 
in as follow: 

                   (   )              (3) 

         (              (   )   ) 

Where            (   )  is a function that return on 
random number between a to b. And now, we can get the      
and equation is as follow: 

                (        )    ( )    ( )                (4) 

                (        )    ( )    ( )      

                (        )    ( )      

Because of coordinate system conversion, the particles take 
the form of a virtual sphere. In other words, the particle is 
randomly set the initial position inside the virtual sphere. 

So, now we need to limit the position where the particles 
are generated to the space where the frustum and the sphere 
overlap, that is, the rain area. First, select 2 of the 8 vertices of 
the frustum. Then, two normal vector value are got with the 
position of the particle as the starting point and the selected 
vertex as the endpoint. This normal vector is a normal vector 
later value to determine whether the current position of the 
particle is inside or outside the frustum. It is obtained as follow: 

       ̂                         (5) 

       ̂           

In this paper, algorithm used nll (near lower left) and nur 
(near upper right) vertex. 

Using results of (5), calculate the dot product of two normal 
vectors in (5) and the four faces normal vector of the frustum 

besides near and far faces. Note that     of        ̂  is the 
bottom left vertex of near face. So, this normal vector should 

be calculated with   ̂  and   ̂  vectors. Similarly, the normal 

vector        ̂  works   ̂  and   ̂ . This is shown in (5) as 
follow: 

              ̂    ̂               (6) 

              ̂    ̂ 

              ̂    ̂ 

              ̂    ̂ 

By checking whether the 4 scalar values resulting from (5) 
are greater than or less than 0 or not, it is possible to know that 
the position of the particle is inside of the frustum. If the 
particles are generated inside the frustum as we wish, the 
algorithm keeps the position unadjusted and only updates     . 

Conversely, if it is created outside of the frustum, then the 
position of the particle is moved before rendering so that it is 
created inside the frustum. 

C. Spotlight Scattering 

In order to render the rain more realistically under the 
various light condition, we propose a simple light scattering 
model between particles and lights. In our approach, we 
consider only spotlight because it is the type of light that 
affects the rain streak color significantly. For example, a 
spotlight such as streetlight can be found easily in real life. 
Other lights such as direction light and point lights are hardly 
seen in rainy days. Thus, this paper did not consider those 
lights in our study. 

Fig. 4 shows three different cases when the rain streaks 
interact with light source. When we calculate the light 
scattering, the position of the particle must be decided as 
follows: 

 Particles are located above the light source. 

 Particles are under the light source but are not affected 
by the light. 

 Particles are under the light source and are affected by 
the light. 

Since the range that the spotlight affects has a shape of a 
cone, we consider particles that are inside the cone and ignore 
all other particles outside. To improve the physical accuracy, 
both 1) and 2) cases must be considered because lights may be 
reflected from other objects or raindrops, but since this is very 
insignificant and unnoticeable by the human eye, so those 
cases are not considered in this paper. 

 

Fig. 4. Conditions between Particle and Light Source. 
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1) Particles above the light source: Equation (7) is the 

equation for calculating a scalar value    which is the dot 

product of the normal vector   ̂  , which is the normalized 

vector from the particle to light source, and normal vector  ̂ 

representing the direction of the light source. 

          ̂   ̂                (7) 

The         is the value that determines whether the 

particle‟s current position is above or below the light source. If 
this value is higher than the height of spotlight, it means that 
the position of the particle is above the light source. So, the 
particle is not affected at all. Therefore, there is no change in 
particles at this case. 

2) Particles under the light source: When the current 

particle position is under the light source, there are two cases 

as shown 2) and 3) in Fig. 4. Most spotlights have a cone 

shape. A cone is a collection of smaller or lager circles based 

on a point on an axis. In other words, it can be seen as a 

collection of circles that gradually getting smaller from the 

radius of the base. If the particles are in circles, they are 

scattered under the influence of light source. On the contrary, 

if particles are outside the circles, they are not affected. For 

this, the radius         of the cone at the current position of the 

particle along the axis can be obtained using       , which 

is the result of (7), and      , which is height of the cone. It 

can be expressed as the following (8), where             is 

the base radius of the cone: 

        (
       

     
)  (     )              (8) 

And we can get the orthogonal distance           from the 
axis of cone to the      .          , along with        , is an 

important to know whether a particle is inside or outside the 
cone.  To obtain           is expressed as (9), where       () 
is a function that return the size of a vector as a parameter. 

                *(          )            ̂+            (9) 

Now, we can compare         and           to determine 
whether the      is inside or outside the cone. If         is a 

larger than          , the particle is inside the cone, which is 
the case as 3) in Fig. 4. And this case, the color of the particle 
becomes the same as the color of the light source. Also, 
because it is affected by light, the color of the particle appears 
more clearer as the intensity of the light increases. 

Contrary,           is larger, it is the same as 2) in Fig. 4. 
This case, the particle does not change. The process can be 
expressed as the following (10) and the contents of each 
variable expressed in the Fig. 5. 

  (                 )             (10) 

                                              

       (                 ) 

                             

 

Fig. 5. Structure of Cone (Spotlight Area). 

D. Texture Mapping 

Garg and Nayer released their rain streaks textures as a 
PNG files [12]. Since this study used many textures, these files 
were put into one KTX file invented by the Khronos group, 
and then the Texture Array was used in OpenGL graphics API 
[13]. When we use the Texture Array, each texture corresponds 
to a single layer of the array. Therefore, when initializing 
particles, many particles are created, and they are allocated a 
layer for each particle. The condition for assigning a layer is 
random. 

IV. EXPERIMENT 

The proposed view-dependent rain model calculates the 
camera position and various parameters continuously. The 
experiment compares the performance of proposed model with 
other models after generating random numbers with a seed 
number. The CPU for the computer in which the experiment 
was conducted is Intel i7-8700, and the memory size is DDR4 
16Gb * 2, a total of 32Gb. Also, the graphics card uses GTX 
GeForce 1080ti. All experiments were conducted in the same 
environment. 

This study compared our proposed method with two 
existing models that Creus and Patow-Tariq proposed. Both 
models used Garg‟s rain streaks textures in a same way as the 
proposed model [3, 5]. Although the details of each algorithm 
may be different, it is enough to compare their FPS because 
three models used same rain textures. Two other models and 
proposed model in this paper were tested in the same 
environment. The changes of FPS according to the number of 
particles for three models are shown Fig. 7. 

The proposed model in this paper, as the number of 
particles increased, decrease its framerate compared to the 
other two models. However, in the proposed model, even when 
a small number of particles was used, since particles were 
generated only in rain space within the camera's field of view, 
they were seemingly more than the actual number. 

When we compare our result with two other method, the 
visual results are obvious as shown in Fig. 6. Although all three 
models have a fixed number of particles of 10,000, the 
proposed model looked to render larger number of particles 
than other models. This means that even with a small number 
of particles, we can express a large number of particles. 
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Fig. 6.  (a) The Proposed Model (b) Tariq‟s Model (c) Crues and Patow „s Model. Three Models have the Same Number of Particles. 

 

Fig. 7. Graph of Frame Change according to Particle Number. 

Tariq‟s model showed very stable performance in terms of 
FPS even when we increase the number of particles. In 
addition, a very realistic simulation result was obtained 
because the glow effect of the light source was considered as 
shown in Fig. 8(a). However, when the camera was 
continuously moving, at some point, particles were disappeared 
as shown in red circle Fig. 8(b). 

The algorithm proposed by Creus and Patow, on the other 
hand, the FPS drops relatively in stable manner as the number 
of particles increases. Although not shown in the graph in 
Fig. 7, even when the number of particles was exceeded 
10,500, real time performance was still maintained. However, 
as shown in Fig. 9, there were empty space in the environment 
where no rain was rendered when the camera is moving 
around. In addition, particles are keep generating and collisions 
are still checked even when the camera is not looking at, which 
degrades the overall performance. 

The proposed model in this paper, as shown in the graph of 
Fig. 6, the FPS looks to drop higher than other two algorithms. 
This was caused by heavy computation on updating the 
position of constrained rain space, the frustum, the virtual 
sphere, and the particle position. 

However, as shown in Fig. 10, because our algorithm 
makes the constrained rain space depend on the camera, even if 

there are a lot of changes in the camera, particles are still 
generating in front of the camera. This improves the visual 
quality of simulation. 

Fig. 11 shows that the color and location of light source are 
fixed, and the number of particles is different. The case of (a) 
and (b), rendered particles are small, but it seems more than 
actual number. In the case of (c), rendered particles are 10,500 
and it gives a feeling that it is raining quite a bit. In (d), the 
number of particles is the highest, 49500, and it shows that 
seems like it is raining a lot. 

 
(a) Before Camera Moving.                   (b) After Camera Moving. 

Fig. 8. Tariq‟s Rendering Results. 

 

Fig. 9. Creus and Patow‟s Rendering Result. 
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(a) Camera Zoom in.                                                            (b) Camera Zoom Out.                                    (c) Camera Zoom Out More. 

Fig. 10. Proposed Model Rendering Results as Camera Zoom In and Out. 

 
(a) Number of Particles = 3000.                            (b) Number of Particles = 10000. 

 
(c) Number of Particles = 20000.                         (b) Number of Particles = 40000. 

Fig. 11. Rendering Results of Proposed Model according to the Number of Particles. 

V. CONCLUSION 

As seen in previous experiment chapter, the proposed 
algorithm is somewhat inferior to other algorithms in terms of 
performance. However, in other researches, when the camera 
position is changing, the particle positions are rarely moving 
along the camera. Therefore, a very large number of particles 
are required and should be managed, thereby can waste the 
computer hardware resources. This study, however, creates a 
camera-dependent rain space that allows particles to be 
rendered only where the camera is rendered. In addition, it is 
possible to obtain the effect of making a large amount of rain 
falling even with a small number of particles. 

VI. FUTURE WORK 

Some limitations remain in our method, though. Particle 
system made with transform feedback is not intuitive to 
manage individual particles. Compute shader or GPGPU such 
as CUDA would provide much more flexibility in managing 
GPU threads [14, 15]. 

Another limitation is the way of using rain streaks textures. 
In our implementation, the textures did not choose according to 
the particular angle of light and camera conditions, although 
the texture database does have a lot of textures according to 
such parameters. Instead, this study randomly assigned one 
texture layer to one particle. Suggested algorithm ignored them 
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because it turned out that it did not make a big different in 
terms of visual quality, though physical accuracy may be 
downgraded. 

As future works, we have a plan to use GPGPU APIs to 
solve the problem of particle system and heavy computation 
[15, 16]. This allows us to take advantage of the flexibility of 
the GPU and improve the performance. Also, particle systems 
will be more intuitive and easier to manage. In addition, next 
study will consider the angle of light and camera conditions 
when chose the streak textures. We believe that rain simulation 
will be more physically accurated, realistic and effeicent. 

ACKNOWLEDGMENT 

This work was supported by the National Research 
Foundation of Korea(NRF) grant funded by the Korea 
government(2018R1D1A1B07048414 and 2021R1A2C1012 
316). 

REFERENCES 

[1] K. Garg, S. K. Nayer, “Photorealistic Rendering of Rain Streaks,” ACM 
Transactions on Graphics, vol. 25, no. 3, pp. 996-1002, 2006. 

[2] Y. Weber, V. Jolivet, G. Gilet, K. Nanko, and D. Ghazanfarpour, “A 
phenomenological Model for Throughfall Rendering in Real-time,” 
Eurographics Symposium on Rendering, vol. 35, pp. 13-23, 2016. 

[3] S. Tarik, “Rain,” Nvidia White Paper, 2007. 

[4] A. Puig-Centelles, O. Ripolles, and M. Chover, “Creation Control of 
Rain in Virtual Environments,” The Visual Computer, Vol. 25, no. 11, 
pp.1037-1052, 2009. 

[5] C. Creus, G. A. Patow, “R4: Realistic Rain Rendering in Realtime,” 
Computers & Graphics, Vol. 37, pp. 33-40, 2013. 

[6] K. Nanko, Y. Onda, A. Ito, and H. Moriwaki, “Spatial Variability of 
Throughfall under a Single Tree: Experimental Study of Rainfall 
Amount, Raindrops, and Kinetic Energy,” Agricultural and Forest 
Meteorology, 151, pp. 1173-1182, 2011. 

[7] P. Rousseau, V. Jolivet, and D. Ghazanfarpour “Realistic Real-time Rain 
Rendering,” Computer & Graphics, Vol. 30(4), pp. 507-518, 2006. 

[8] L. Wang, Z. Lin, T. Fang, X. Yang, X. Yu, and S. B. Kang, “Real-Time 
Rendering of Realistic Rain,” ACM SIGGARPH Sketches, pp. 156. 

[9] A. Puig-Centelles, O. Ripolles, and M. Chover, “Creation Control of 
Rain in Virtual Environments,” The Visual Computer, Vol. 25, no. 11, 
pp.1037-1052, 2009. 

[10] W. T. Reeves, “Particle System – a Technique for Modeling a Class of 
Fuzzy Objects,” ACM Transactions on Graphics, vol. 2, No. 2, pp. 91-
108, 1983. 

[11] Transform Feedback, Available online: https://www.khronos.org/ 
opengl/wiki/Transform_Feedback (accessed on September 20, 2020). 

[12] Rain Streaks Database, Available online:  https://www1.cs.columbia. 
edu/CAVE/databases/rain_streak_db/rain_streak.php (accessed on 
August 10, 2020). 

[13] OpenGL Array Texture, Availble online: https://www.khronos.org/ 
opengl/wiki/Array_Texture (accessed on August 10, 2020). 

[14] OpenGL Compute Shader, Availble online: https://www.khronos.org/ 
opengl/wiki/Compute_Shader (accessed on December 10, 2020). 

[15] CUDA Toolkit, Availble onlie: https://developer.nvidia.com/cuda-
toolkit (accessed on December 10, 2020). 

[16] OpenCL, Availble online: https://www.khronos.org/opencl (accessed on 
December 10, 2020). 


