
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 5, 2021

370 | P a g e

www.ijacsa.thesai.org

Efficient Rain Simulation based on

Constrained View Frustum

JinGi Im
1

Dept. of Computer Engineering, Graduate School

Keimyung University, Daegu, Republic of Korea

Mankyu Sung
2
*

Dept. of Game and Mobile Engineering

Keimyung University, Daegu, Republic of Korea

Abstract—Realistic real-time rain streaks rendering has been

treated as a very difficult problem because of various natural

phenomena. Also, for creating and managing many particles in a

rain streak, many resources had to be used. This paper propose

am efficient real-time rain streaks simulation algorithm by

generating view-dependent rain particles, which can express a

large amount of rain streaks even with a small number of

particles. By creating a ‘constrained view frustum’ depending on

the camera moving in real time, particles are rendered only in

that space. Accordingly, particles rendered well even if the

camera keep moving or rotating rapidly. And a small number of

particles are used, since the simulation is performed in a user-

viewed limited space, an effect of simulation many particles can

be obtained. This enables very efficient real-time simulation of

rain streaks.

Keywords—View-dependent rendering; realistic real-time

simulation; view frustum

I. INTRODUCTION

When a digital content is produced for a specific weather
from among various weather conditions, the audience or user
who encounters the medium can immerge to the content more
easily. There are many types of weather conditions such as
sunny, cloudy, rainy, and snowy days. There are two main
methods of rendering them: off-line rendering and on-line
rendering. In the case of movies, since it is a medium that does
not communicate with the audience in real-time, so even if it
takes a lot of time, it pursues realistic rendering results so that
the results naturally melt into the filming scene. On the
contrary, in content such as games, even if the factual point is
relatively less important, it emphasizes real-time, so it pursues
somewhat lower quality rendering results compared to that of
movies.

This paper proposes a real-time simulation algorithm for
rainy scene. When it rains, complicated and diverse
phenomena should be considered, such as droplets, splashes,
rainbows, and clouds. Although the graphics hardware has
been improved drastically in recent years, real-time simulation
of rains is still very difficult problem considering the various
conditions and the governing physical law to simulate them.
Moreover, considering the physical properties of raindrops or
water, the entire simulation process becomes very complicated.
Therefore, most of real-time rain simulation focuses only on
specific phenomena among various phenomena in rainy
weather, and many different technical methods have been
proposed to obtain real-time simulation performance by
approximating the required parameters. Many of them have

presented for modeling realistic raindrops based on the
physical properties [1]. This enables realistic rain simulation as
well as raindrop modeling. Also, they could present various
phenomena including collision detection between raindrops
and objects but gave the disadvantage of inefficiency because
calculations related to raindrops became heavy due to
unnecessary invisible rendering on the screen [2]. To fix it,
various studies have been proposed such as defining and
rendering only specific region for efficient simulation, but
when the camera is moving outside of the region, there are
awkward discontinuities where raindrops are not visible or
rendered outside of the space [3, 4, 5].

This paper proposes an algorithm that complements the
aforementioned shortcomings by mapping rain streaks textures
to particles and creating a particle system that depends on the
position and FOV (field of view) of the camera. Also present a
method of interaction between rain and light sources, which is
a simple light scattering technique for changing color of rain
streaks. In this work, the particles are rendered even when the
camera is moving and rotating. Therefore, it can avoid
awkward rendering where rain can be rendered only in certain
spaces, which requires only a small number of particles, but
appearing to be rendered in very large quantities. This enables
more efficient real-time rain-streaks simulation in a 3D space.

II. RELATED WORK

Many research methods have been proposed in realistic rain
simulation, and most of them focus on certain parts of the
phenomenon of rain. There are two main types of rain
simulation: rendering rain streaks with translucent white quads.
The other method is to map precomputed rain streak textures to
quads. The rain streaks texture rendering model proposed by
Garg et al. presents a vibration model for raindrops. The rain
streaks texture rendering model proposed by Garg et al.
presents a vibration model for raindrops. As a result, they made
a database of high-quality renders for many values of the
illumination parameters [1]. Then, they used simple image-
based algorithms from the depth map, camera parameters, and
user input for viewpoints to synthesize the final images. This
method showed the performance of 10 sec/frame, which was
unsuitable for real-time simulation. This study used their
database but implement rain simulation in real-time. Also, for
randomness of the rain streaks, hundreds of textures are used to
randomly map to the particles.

Weber et al. focused on the relationship between raindrops
and trees. In their techniques, through-fall simulation is

*Corresponding Author

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 5, 2021

371 | P a g e

www.ijacsa.thesai.org

analyzed phenomenologically, and rendering is done based on
the amount of water stored in the tree canopy and leaves [2].
Furthermore, in the study of Nanko et al., the distribution of
dripping through-fall was considered temporally and spatially
[6]. The through-fall was largely divided into two different
water. The first water was the raindrops in the natural state.
This was a free through-falling without hitting anything other
objects. The second one was the water splashes stored by
hitting the canopy and leaves and then re-appeared in
phenomenological and hydrological condition. In their study,
through-fall was implemented very similar to the actual
phenomenon. But there was no explanation for the calculation
of raindrops occurring outside the camera‟s FOV.

Rousseau et al. proposed a model representing the
refraction of light occurring inside the raindrop [7]. For
completion, the reflections should also have been considered
when designing raindrops. However, since they thought the
reflection was negligible enough, they implemented only
refraction [8]. In their approach, rain streak textures extracted
from the video were modified to match the camera of a scene
and then blended into the image to make the artist‟s intention
for the scene more effective. But, real-time performance was
not guaranteed. In addition to this, dynamic scenes were not
suitable for these methods because the texture must be
transformed to fit the resulting screen.

Tariq further simplified Garg‟s rain textures and map them
to the quads [3]. This processing was done on the GPU using
DirectX, and each particle was rendered using a geometric
shader at each frame over times. Tariq also made lights glow to
show more realistic simulation of rain under the lights, but the
relationship with the light source and rains was not described
mathematically, therefore rain was not rendered properly as the
camera moved or rotated.

Puig-Centelles et al. proposed a new real-time rain
simulation technique in which a rain area was defined as an
ellipse and all rain simulation was limited to a semi-cylindrical
sub-volume [4]. Due to observer‟s movement, the update of
new particle position was forced to inside the sub-volume,
while their density was adapted to reduce the number of
particles needed. Furthermore, they separated the close rain and
far rain and added a transition area in between for a natural and
realistic change [9]. The switch was made depending on
whether the observer is in a rain area or not. If the camera is
located in the rainy area from a very long distance, awkward
scene could be rendered, with certain area raining and others
not raining.

Unlike the above studies, the model proposed in this paper
checks the position of the camera and then create a rain space
for the camera in which particles are generated inside. This
ensures that even if the camera keep moving or rotating rapidly,
it makes illusion that rain is rendering over the entire scene.
Other benefit is that can use only small number of particles to
create heavy raining, which improves the rendering
performance. On the top of that, this study presents a model for
the interaction between particles and the light source, which
can represent the light scattering effect.

Fig. 1 is a captured scene of the proposed model. The four
red lines indicate the volume of view-frustum, and the

intersection point where four lines meet together represents the
actual camera position. In the Fig. 1, particles are generated
only in the frustum of the FOV and when the camera rotates or
moves, the location where the particles are generated is also
moved according to the camera.

Fig. 1. Particles Rendered only in the Constrained Area.

III. ALGORITHM

In this study, we propose a real-time rain simulation
method that creates a constrained rain space depending on the
current camera so that particles representing the rain streaks are
generated only in the camera frustum. Because of this, even
when a small number of particles are used, suggested algorithm
is able to synthesize seemingly heavy rain for users.

This chapter describes the detailed algorithm of the
proposed model. The overall algorithm is briefly described in
Fig. 2. Each procedure is as follows:

1) Scene configuration: Compose the overall scene such

as background and model loading(street lamp, plane).

2) Particles initialize and configuration: In this model,

the KTX(Khronos Texture) format is applied. More details in

in Sec. 3.D, and the particle system was constructed using

transform feedback from openGL [10, 11].

3) Create constrained rain area: Under the perspective

projection, to make area for the rain fall, this method compute

the 8 vertex positions of the truncated pyramid shape of the

view frustum and the normal vectors of 6 faces. At the same

time, it creates a virtual sphere in the frustum for enforcing a

constraint to limit the area for generating particles.

4) Set the initial particle positions in the rain area: Set

the initial positions of the particles in a constrained rain area.

Particles are updated in position from top to bottom(-y).

5) Set the rain streak colors by calculating the scattering

of particles with the light source: Depending on the relative

position between particles and light soruce, the method of

handling scattering from particles is different. In this paper,

only spotlight is considered among the types of light sources.

6) Real-time simulation: Particles are created and

rendered in constrained rain area. Calculating the rain space is

handled by the CPU, but scattering and calculation of particle

is handled by the shader.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 5, 2021

372 | P a g e

www.ijacsa.thesai.org

Fig. 2. Algorithm Overview of Proposed Model.

First, explain the frustum and rain area, apply texture to
particles generated only in space. After that, this paper
discusses methods for light scattering in this section.

A. Create view-dependent Rain Area

To create the rain area from the camera‟s frustum, this
method first need to calculate the height, width, center point of
the far and near planes of the frustum. If the distance from the
camera to the far plane increases, the size of the frustum
increases as well. Therefore, the density of the particle created
in the frustum is very low. In this case, it is different from what
we wanted because algorithm has to make lots of particles to
increase the density. Also, particles generated near to the far
plane are rendered too small or almost invisible. Therefore, the
distance from the camera to the far plane for a particle should
be set as small as possible. In this paper, it was set to 50.0.
After that, we need to find the positions of the 8 vertices that
make up the frustum, which can be got from following formula:

 { ⃗⃗ ()} { ⃗ ()} (1)

 { ⃗⃗ ()} { ⃗ ()}

 { ⃗⃗ ()} { ⃗ ()}

 { ⃗⃗ ()} { ⃗ ()}

 { ⃗⃗ ()} { ⃗ ()}

 { ⃗⃗ ()} { ⃗ ()}

 { ⃗⃗ ()} { ⃗ ()}

 { ⃗⃗ ()} { ⃗ ()}

where, is the center point of far and near face, is the

height and width of each face. ⃗⃗ is up vector of camera, and ⃗

is direction of camera. Also, ⃗ is a cross product and

normalized vector of ⃗⃗ and ⃗ . Each vertex is described in
Fig. 3.

Using the 8 vertices, this paper can find the normalized
vectors for the four faces of the frustum, excluding the near and
far plane. This is given subsequent formula:

 ̂ () () (2)

 ̂ () ()

 ̂ () ()

 ̂ () ()

Where ̂, ̂, ̂, ̂ is a normal vector for the right, left,
bottom and top faces, respectively, and each vector is
normalized. Each face is also described in Fig. 3.

Fig. 3. Vertex and Faces of the view Frustum.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 5, 2021

373 | P a g e

www.ijacsa.thesai.org

B. Virtual Sphere Setting

To constrained create space where particles will be
generated, we need to create a virtual sphere that overlaps the
frustum. So, we need to set the center point = (, ,)
and radius of the sphere. The of the sphere is the
midpoint of the distance between the near and far faces, so that
the sphere and the frustum overlap as much as possible.

As a result, as much space as possible can be defined as
rain space on the frustum. Since the the midpoint between
the near and far face, the radius of virtual sphere is defined as
half the distance between two faces.

Now, algorithm need to decide the initial position =

() where a particle is created. Particle must be

created inside a constrained rain space where the frustum and
virtual sphere overlapped. To find this location, we first use the
equation for converting from the spherical coordinate system to
Cartesian coordinate system to create particles in sphere.
Before this, we should get the and for coordinate system
conversion. means azimuthal angle of spherical coordinate
and means polar angle of spherical coordinate. This is shown
in as follow:

 () (3)

 (())

Where () is a function that return on
random number between a to b. And now, we can get the
and equation is as follow:

 () () () (4)

 () () ()

 () ()

Because of coordinate system conversion, the particles take
the form of a virtual sphere. In other words, the particle is
randomly set the initial position inside the virtual sphere.

So, now we need to limit the position where the particles
are generated to the space where the frustum and the sphere
overlap, that is, the rain area. First, select 2 of the 8 vertices of
the frustum. Then, two normal vector value are got with the
position of the particle as the starting point and the selected
vertex as the endpoint. This normal vector is a normal vector
later value to determine whether the current position of the
particle is inside or outside the frustum. It is obtained as follow:

 ̂ (5)

 ̂

In this paper, algorithm used nll (near lower left) and nur
(near upper right) vertex.

Using results of (5), calculate the dot product of two normal
vectors in (5) and the four faces normal vector of the frustum

besides near and far faces. Note that of ̂ is the
bottom left vertex of near face. So, this normal vector should

be calculated with ̂ and ̂ vectors. Similarly, the normal

vector ̂ works ̂ and ̂ . This is shown in (5) as
follow:

 ̂ ̂ (6)

 ̂ ̂

 ̂ ̂

 ̂ ̂

By checking whether the 4 scalar values resulting from (5)
are greater than or less than 0 or not, it is possible to know that
the position of the particle is inside of the frustum. If the
particles are generated inside the frustum as we wish, the
algorithm keeps the position unadjusted and only updates .

Conversely, if it is created outside of the frustum, then the
position of the particle is moved before rendering so that it is
created inside the frustum.

C. Spotlight Scattering

In order to render the rain more realistically under the
various light condition, we propose a simple light scattering
model between particles and lights. In our approach, we
consider only spotlight because it is the type of light that
affects the rain streak color significantly. For example, a
spotlight such as streetlight can be found easily in real life.
Other lights such as direction light and point lights are hardly
seen in rainy days. Thus, this paper did not consider those
lights in our study.

Fig. 4 shows three different cases when the rain streaks
interact with light source. When we calculate the light
scattering, the position of the particle must be decided as
follows:

 Particles are located above the light source.

 Particles are under the light source but are not affected
by the light.

 Particles are under the light source and are affected by
the light.

Since the range that the spotlight affects has a shape of a
cone, we consider particles that are inside the cone and ignore
all other particles outside. To improve the physical accuracy,
both 1) and 2) cases must be considered because lights may be
reflected from other objects or raindrops, but since this is very
insignificant and unnoticeable by the human eye, so those
cases are not considered in this paper.

Fig. 4. Conditions between Particle and Light Source.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 5, 2021

374 | P a g e

www.ijacsa.thesai.org

1) Particles above the light source: Equation (7) is the

equation for calculating a scalar value which is the dot

product of the normal vector ̂ , which is the normalized

vector from the particle to light source, and normal vector ̂

representing the direction of the light source.

 ̂ ̂ (7)

The is the value that determines whether the

particle‟s current position is above or below the light source. If
this value is higher than the height of spotlight, it means that
the position of the particle is above the light source. So, the
particle is not affected at all. Therefore, there is no change in
particles at this case.

2) Particles under the light source: When the current

particle position is under the light source, there are two cases

as shown 2) and 3) in Fig. 4. Most spotlights have a cone

shape. A cone is a collection of smaller or lager circles based

on a point on an axis. In other words, it can be seen as a

collection of circles that gradually getting smaller from the

radius of the base. If the particles are in circles, they are

scattered under the influence of light source. On the contrary,

if particles are outside the circles, they are not affected. For

this, the radius of the cone at the current position of the

particle along the axis can be obtained using , which

is the result of (7), and , which is height of the cone. It

can be expressed as the following (8), where is

the base radius of the cone:

 (

) () (8)

And we can get the orthogonal distance from the
axis of cone to the . , along with , is an

important to know whether a particle is inside or outside the
cone. To obtain is expressed as (9), where ()
is a function that return the size of a vector as a parameter.

 *() ̂+ (9)

Now, we can compare and to determine
whether the is inside or outside the cone. If is a

larger than , the particle is inside the cone, which is
the case as 3) in Fig. 4. And this case, the color of the particle
becomes the same as the color of the light source. Also,
because it is affected by light, the color of the particle appears
more clearer as the intensity of the light increases.

Contrary, is larger, it is the same as 2) in Fig. 4.
This case, the particle does not change. The process can be
expressed as the following (10) and the contents of each
variable expressed in the Fig. 5.

 () (10)

 ()

Fig. 5. Structure of Cone (Spotlight Area).

D. Texture Mapping

Garg and Nayer released their rain streaks textures as a
PNG files [12]. Since this study used many textures, these files
were put into one KTX file invented by the Khronos group,
and then the Texture Array was used in OpenGL graphics API
[13]. When we use the Texture Array, each texture corresponds
to a single layer of the array. Therefore, when initializing
particles, many particles are created, and they are allocated a
layer for each particle. The condition for assigning a layer is
random.

IV. EXPERIMENT

The proposed view-dependent rain model calculates the
camera position and various parameters continuously. The
experiment compares the performance of proposed model with
other models after generating random numbers with a seed
number. The CPU for the computer in which the experiment
was conducted is Intel i7-8700, and the memory size is DDR4
16Gb * 2, a total of 32Gb. Also, the graphics card uses GTX
GeForce 1080ti. All experiments were conducted in the same
environment.

This study compared our proposed method with two
existing models that Creus and Patow-Tariq proposed. Both
models used Garg‟s rain streaks textures in a same way as the
proposed model [3, 5]. Although the details of each algorithm
may be different, it is enough to compare their FPS because
three models used same rain textures. Two other models and
proposed model in this paper were tested in the same
environment. The changes of FPS according to the number of
particles for three models are shown Fig. 7.

The proposed model in this paper, as the number of
particles increased, decrease its framerate compared to the
other two models. However, in the proposed model, even when
a small number of particles was used, since particles were
generated only in rain space within the camera's field of view,
they were seemingly more than the actual number.

When we compare our result with two other method, the
visual results are obvious as shown in Fig. 6. Although all three
models have a fixed number of particles of 10,000, the
proposed model looked to render larger number of particles
than other models. This means that even with a small number
of particles, we can express a large number of particles.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 5, 2021

375 | P a g e

www.ijacsa.thesai.org

Fig. 6. (a) The Proposed Model (b) Tariq‟s Model (c) Crues and Patow „s Model. Three Models have the Same Number of Particles.

Fig. 7. Graph of Frame Change according to Particle Number.

Tariq‟s model showed very stable performance in terms of
FPS even when we increase the number of particles. In
addition, a very realistic simulation result was obtained
because the glow effect of the light source was considered as
shown in Fig. 8(a). However, when the camera was
continuously moving, at some point, particles were disappeared
as shown in red circle Fig. 8(b).

The algorithm proposed by Creus and Patow, on the other
hand, the FPS drops relatively in stable manner as the number
of particles increases. Although not shown in the graph in
Fig. 7, even when the number of particles was exceeded
10,500, real time performance was still maintained. However,
as shown in Fig. 9, there were empty space in the environment
where no rain was rendered when the camera is moving
around. In addition, particles are keep generating and collisions
are still checked even when the camera is not looking at, which
degrades the overall performance.

The proposed model in this paper, as shown in the graph of
Fig. 6, the FPS looks to drop higher than other two algorithms.
This was caused by heavy computation on updating the
position of constrained rain space, the frustum, the virtual
sphere, and the particle position.

However, as shown in Fig. 10, because our algorithm
makes the constrained rain space depend on the camera, even if

there are a lot of changes in the camera, particles are still
generating in front of the camera. This improves the visual
quality of simulation.

Fig. 11 shows that the color and location of light source are
fixed, and the number of particles is different. The case of (a)
and (b), rendered particles are small, but it seems more than
actual number. In the case of (c), rendered particles are 10,500
and it gives a feeling that it is raining quite a bit. In (d), the
number of particles is the highest, 49500, and it shows that
seems like it is raining a lot.

(a) Before Camera Moving. (b) After Camera Moving.

Fig. 8. Tariq‟s Rendering Results.

Fig. 9. Creus and Patow‟s Rendering Result.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 5, 2021

376 | P a g e

www.ijacsa.thesai.org

(a) Camera Zoom in. (b) Camera Zoom Out. (c) Camera Zoom Out More.

Fig. 10. Proposed Model Rendering Results as Camera Zoom In and Out.

(a) Number of Particles = 3000. (b) Number of Particles = 10000.

(c) Number of Particles = 20000. (b) Number of Particles = 40000.

Fig. 11. Rendering Results of Proposed Model according to the Number of Particles.

V. CONCLUSION

As seen in previous experiment chapter, the proposed
algorithm is somewhat inferior to other algorithms in terms of
performance. However, in other researches, when the camera
position is changing, the particle positions are rarely moving
along the camera. Therefore, a very large number of particles
are required and should be managed, thereby can waste the
computer hardware resources. This study, however, creates a
camera-dependent rain space that allows particles to be
rendered only where the camera is rendered. In addition, it is
possible to obtain the effect of making a large amount of rain
falling even with a small number of particles.

VI. FUTURE WORK

Some limitations remain in our method, though. Particle
system made with transform feedback is not intuitive to
manage individual particles. Compute shader or GPGPU such
as CUDA would provide much more flexibility in managing
GPU threads [14, 15].

Another limitation is the way of using rain streaks textures.
In our implementation, the textures did not choose according to
the particular angle of light and camera conditions, although
the texture database does have a lot of textures according to
such parameters. Instead, this study randomly assigned one
texture layer to one particle. Suggested algorithm ignored them

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 5, 2021

377 | P a g e

www.ijacsa.thesai.org

because it turned out that it did not make a big different in
terms of visual quality, though physical accuracy may be
downgraded.

As future works, we have a plan to use GPGPU APIs to
solve the problem of particle system and heavy computation
[15, 16]. This allows us to take advantage of the flexibility of
the GPU and improve the performance. Also, particle systems
will be more intuitive and easier to manage. In addition, next
study will consider the angle of light and camera conditions
when chose the streak textures. We believe that rain simulation
will be more physically accurated, realistic and effeicent.

ACKNOWLEDGMENT

This work was supported by the National Research
Foundation of Korea(NRF) grant funded by the Korea
government(2018R1D1A1B07048414 and 2021R1A2C1012
316).

REFERENCES

[1] K. Garg, S. K. Nayer, “Photorealistic Rendering of Rain Streaks,” ACM
Transactions on Graphics, vol. 25, no. 3, pp. 996-1002, 2006.

[2] Y. Weber, V. Jolivet, G. Gilet, K. Nanko, and D. Ghazanfarpour, “A
phenomenological Model for Throughfall Rendering in Real-time,”
Eurographics Symposium on Rendering, vol. 35, pp. 13-23, 2016.

[3] S. Tarik, “Rain,” Nvidia White Paper, 2007.

[4] A. Puig-Centelles, O. Ripolles, and M. Chover, “Creation Control of
Rain in Virtual Environments,” The Visual Computer, Vol. 25, no. 11,
pp.1037-1052, 2009.

[5] C. Creus, G. A. Patow, “R4: Realistic Rain Rendering in Realtime,”
Computers & Graphics, Vol. 37, pp. 33-40, 2013.

[6] K. Nanko, Y. Onda, A. Ito, and H. Moriwaki, “Spatial Variability of
Throughfall under a Single Tree: Experimental Study of Rainfall
Amount, Raindrops, and Kinetic Energy,” Agricultural and Forest
Meteorology, 151, pp. 1173-1182, 2011.

[7] P. Rousseau, V. Jolivet, and D. Ghazanfarpour “Realistic Real-time Rain
Rendering,” Computer & Graphics, Vol. 30(4), pp. 507-518, 2006.

[8] L. Wang, Z. Lin, T. Fang, X. Yang, X. Yu, and S. B. Kang, “Real-Time
Rendering of Realistic Rain,” ACM SIGGARPH Sketches, pp. 156.

[9] A. Puig-Centelles, O. Ripolles, and M. Chover, “Creation Control of
Rain in Virtual Environments,” The Visual Computer, Vol. 25, no. 11,
pp.1037-1052, 2009.

[10] W. T. Reeves, “Particle System – a Technique for Modeling a Class of
Fuzzy Objects,” ACM Transactions on Graphics, vol. 2, No. 2, pp. 91-
108, 1983.

[11] Transform Feedback, Available online: https://www.khronos.org/
opengl/wiki/Transform_Feedback (accessed on September 20, 2020).

[12] Rain Streaks Database, Available online: https://www1.cs.columbia.
edu/CAVE/databases/rain_streak_db/rain_streak.php (accessed on
August 10, 2020).

[13] OpenGL Array Texture, Availble online: https://www.khronos.org/
opengl/wiki/Array_Texture (accessed on August 10, 2020).

[14] OpenGL Compute Shader, Availble online: https://www.khronos.org/
opengl/wiki/Compute_Shader (accessed on December 10, 2020).

[15] CUDA Toolkit, Availble onlie: https://developer.nvidia.com/cuda-
toolkit (accessed on December 10, 2020).

[16] OpenCL, Availble online: https://www.khronos.org/opencl (accessed on
December 10, 2020).

