
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

A Machine Learning based Analytical Approach for
Envisaging Bugs

Dr. Anjali Munde
Amity College of Commerce and Finance

Amity University Uttar Pradesh
Noida, India

Abstract—A software imperfection is a shortcoming, virus,
defect, mistake, breakdown or glitch in software that initiates it
to establish an unsuitable or unanticipated result. The foremost
hazardous components connected with a software imperfection
that is not identified at an initial stage of software expansion are
time, characteristic, expenditure, determination and wastage of
resources. Faults appear in any stage of software expansion.
Thriving software businesses emphasize on software excellence,
predominantly in the early stage of the software advancement. In
succession to disable this setback, investigators have formulated
various bug estimation methodologies till now. Though, emerging
vigorous bug estimation prototype is a demanding assignment
and several practices have been anticipated in the text. This
paper exhibits a software fault estimation prototype grounded on
Machine Learning (ML) Algorithms. The simulation in the paper
directs to envisage the existence or non-existence of a fault,
employing machine learning classification models. Five
supervised ML algorithms are utilized to envisage upcoming
software defects established on historical information. The
classifiers are Naïve Bayes (NB), Support Vector Machine
(SVM), K- Nearest Neighbors (KNN), Decision Tree (DT) and
Random Forest (RF). The assessment procedure indicated that
ML algorithms can be manipulated efficiently with high accuracy
rate. Moreover, an association measure is employed to evaluate
the propositioned extrapolation model with other methods. The
accumulated conclusions indicated that the ML methodology has
an improved functioning.

Keywords—Software bug prediction; prediction model; data
mining; machine learning; Naïve Bayes (NB); support vector
machine (SVM); k-nearest neighbors (KNN); decision tree (DT);
random forest (RF); python programming

I. INTRODUCTION
From the time of establishment of software expansion,

defect restoration is studied as the most monotonous tasks,
primarily for its in-built vagueness. Furthermore, the
procedure of repairing bugs is gradual. The procedure of bug-
restoration has a chief involvement in the software
advancement. In order to lessen the concern of fault
correction, bug estimation is examined significantly by the
investigators. Numerous machine learning directed estimation
prototypes are constructed and verified on several arguments.

The continuation of software faults influences
considerably on software consistency, feature and upholding
expense. Attaining errorless software is laborious, when the
software utilized meticulously as largely there are unknown
defects. Furthermore, extending software fault estimation

prototype which can estimate the imperfect components in an
initial stage is an actual test.

Contemporary developments rotate about the information
that defects can be envisaged, widely beforehand they are
identified. Significant corpuses of preceding fault information
are fundamental to be proficient to envisage defects with
sufficient precision. Software analytics has initiated
continuous opportunities for tapping data analytics and
rationalizing to enhance the feature of software. Functional
analytics applies the outcomes of the software evaluation as
real time data, to create valuable extrapolations.

Software defect estimation is an indispensable action in
software expansion as envisaging the defects components
earlier to software implementation attains the operator
contentment and corrects the complete software functioning.
Besides, envisaging the software fault initially increases
software alteration to distinctive situations and enlarges the
resource consumption.

Several methods are recommended to undertake Software
fault estimation obstruction. The utmost comprehended
procedures are Machine Learning procedures. Machine
learning is effectively employed to build extrapolations in
numerous database. Provided the enormous amount of fault
database accessible currently, envisaging the occurrence of
faults can be completed employing several machine learning
procedures.

The application of machine learning to establish an
exclusively mechanised technique of determining the act to be
acquired by a business when a fault is testified was initially
propositioned through Cubranic and Murphy [1]. The
technique implemented helps text classification to envisage
defect rigorousness. This technique functions accurately on
30% of the defects testified to creators. Sharma, Sharma and
Gujral [2] apply feature selection to enhance the precision of
the fault estimation prototype.

In this communication, supervised Machine Learning
(ML) classifiers are employed to assess the ML potentials in
Software fault estimation. The analysis examined Naïve Bayes
(NB), Support Vector Machine (SVM), K- Nearest Neighbors
(KNN), Decision Tree (DT) and Random Forest (RF)
classifier. The considered ML classifiers are directed to three
distinctive database acquired from [3] and [4] mechanisms.

Further, the manuscript evaluated among Naïve Bayes
(NB) classifier, Support Vector Machine (SVM) classifier, K-

747 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

Nearest Neighbors (KNN) classifier, Decision Tree (DT)
classifier and Random Forest (RF) classifier and compared
then on the basis of distinct assessment quantities for instance
accuracy, precision, recall, F-measures and the ROC curves of
the classifiers.

The manuscript is structured as per the following
sequence. An examination of the associated work in Software
fault estimation is exhibited in the Literature Review. An
outline of the designated ML algorithms is exhibited in the
Proposed Model. The database and the assessment technique
is explained in the Evaluation Methodology. Investigational
outcomes are depicted in Results accompanied by inferences
and future works.

II. LITERATURE REVIEW
Formerly, various efforts in the subjects of fault estimation

have been achieved. Peng He et al. performed a practical
analysis on software fault estimation with a basic metric set
[5]. Investigation has been performed on 34 announcements of
10 open source assignments accessible at PROMISE
repository. The outcome signifies the outcome of uppermost-k
metrics or minimum metric subset gives satisfactory result in
comparison with standard forecasters.

Anuradha Chug et al. [6] employed three supervised and
unsupervised learning algorithms for envisaging faults in
software. NASA MDP database were administered by
utilizing Weka tool. Various quantities such as recall and f-
measure were applied to estimate the functioning of
classification and clustering algorithms. Through examining
distinct classification algorithms Random Forest has the
maximum accuracy of MC1 database and gives maximum rate
in recall, f-measure and receiver operating characteristic
[ROC] curve and it specifies least amount of root mean square
errors in all conditions. In an unsupervised algorithm k-means
gave the smallest amount of inaccurate clustered examples and
it considers least period for envisaging defects. Hammouri, A.
et al [7] proposed software defect estimation prototype
established on Machine Learning Techniques to envisage
impending software defects created on past database and
exhibited that Machine Learning techniques can be applied
successfully with high precision.

Logan Perreault et al. [8] employed classification
algorithm for instance naïve bayes, neural networks, support
vector machine, linear regression, K-nearest neighbor to
discover and envisage faults. The investigators manipulated
NASA and tera PROMISE database. To compute the
accomplishment, they tapped accuracy and f1 measure with
noticeably distinct metrics.

R. Malhotra in [9] exhibited a valuable methodical
evaluation for software fault estimation procedures applying
Machine Learning. The article encompassed an evaluation of
all the findings concerning the interval of 1991 and 2013,
examined the Machine Learning methods for software fault
estimation prototypes, and evaluated their functioning,
matched among Machine Learning and statistic methods,
evaluated among distinct Machine Learning methods and
reviewed the power and the limitation of the Machine
Learning methods.

Singh and Chug [10] examined widespread Machine
Learning algorithms tapped for software fault estimation. The
analysis exhibited significant outcomes comprising that the
Artificial Neural Network has least inaccuracy amount, but the
linear classifier is advanced than auxiliary algorithms in term
of fault estimation precision.

Malhotra and Singh [11] indicated that the Area Under
Curve is constructive metric and utilised to envisage the
defects in initial stages of software expansion and to increase
the validity of Machine Learning methods.

This article examines established machine learning
techniques Naïve Bayes (NB), Support Vector Machine
(SVM), K- Nearest Neighbors (KNN), Decision Tree (DT)
and Random Forest (RF). The communication estimates the
Machine Learning classifiers by means of different
performance quantities. Three known database are employed
to assess the Machine Learning classifiers.

Alternatively, maximum cited assignments examined new
Machine Learning techniques and distinct database. Few of
the earlier investigations primarily concentrated on the metrics
that generate the Software fault estimation as feasible as
imaginable, though earlier investigations suggested distinctive
approaches to estimate software faults in place of Machine
Learning methods.

III. PROPOSED MODEL
The research directs to examine and assess supervised

Machine Learning algorithms. The investigation exhibits the
performance correctness and competency of the Machine
Learning algorithms in software fault estimation and
postulates a comparative study of the designated Machine
Learning algorithms.

The supervised machine learning algorithms attempt to
create an extrapolating function through deducing associations
and needs among the identified feed in and outturn of the
categorized training data, thus we can envisage the outturn
amounts for recent feed in data created on the resulting
extrapolating function. Subsequently are encapsulated
explanations of the designated supervised Machine Learning
algorithms:

• Naïve Bayes (NB): Naïve Bayes classifier functions on
the theory of probability. The notion of naïve bayes
classifier is established on the effort of Thomas Bayes
(1702-1761) of Bayes Theorem for conditional
probability. Naïve Baye’s Classifier performs on the
notion of baye’s theorem through a naïve theory that an
existence of a specific feature in a class is entirely
discrete to the existence of additional features.

• Support Vector Machine (SVM): SVM is most
widespread supervised machine learning technique
which is equivalently tapped for classification and
regression, however SVM is typically utilised for
classification. The notion of SVM is to obtain a
hyperplane that categorizes the training data points in
order to obtain marked classes. The feed in of SVM is
the training data and it functions the training sample
feature to envisage category of test feature.

748 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

• K Nearest Neighbour (KNN): KNN algorithm well -
known by K-Nearest Neighbours Algorithm is tapped
to elucidate the difficulties of classification together
with regression. The theory of algorithm is primarily
established upon feature comparison in two of them,
classification and regression. KNN classifier is distinct
from previous probabilistic classifiers as the simulation
encompasses a discovering phase of calculating
probabilities from a training experiment and employ
them for impending estimation of a test experiment. In
probability established prototype when the prototype is
proficient the training experiment could be dropped
and classification is completed by means of the
calculated probabilities.

• Decision Tree (DT): DT is a familiar investigation
technique utilised in data mining. Decision Tree
signifies a hierarchal and extrapolative prototype that
utilises the elements examination as branches to access
the elements target amount in the leaf. Decision Tree is
a tree with decision nodes, that have several branches
and leaf nodes that characterise the conclusion.

• Random Forest (RF): Random Forest comprises of a
substantial quantity of distinct decision trees that
function as an ensemble. Individual tree in the random
forest separate out a class estimation. The class that has
the highest votes turns out to be prototypes estimation.
A big quantity of comparatively disjointed prototypes
(trees) functioning as a group will outshine any of the
specific prototypes.

IV. EVALUATION METHODOLOGY
The database used in the study are three different

databases, specifically DB1, DB2 and DB3. All databases
comprise of two measures; the amount of defects (Bi) and the
amount of test workers (Wi) for respective day (Ti) in a
section of software launches period. The DB1 database has 46
quantities that were included in the examining procedure
exhibited in [4]. DB2, captured from [4], computed a
technique where defects for the period of 111 consecutive
days of examining the software technique. DB3 includes 109
quantities. DB3 is established in [3], that comprises actual
calculated records for a restoration plan of a real time control
utilization exhibited in [12]. Tables I to III show DB1, DB2
and DB3, respectively.

TABLE I. THE FIRST SOFTWARE DEFECTS DATABASE

The first
software
defects
database

DB1

Ti Bi Wi

 1 2 75
 2 0 31
 3 30 63
 4 13 128
 5 13 122
 6 3 27
 7 17 136

The first
software
defects
database

DB1

Ti Bi Wi

 8 2 49
 9 2 26
 10 20 102
 11 13 53
 12 3 26
 13 3 78
 14 4 48
 15 4 75
 16 0 14
 17 0 4
 18 0 14
 19 0 22
 20 0 5
 21 0 9
 22 30 33
 23 15 118
 24 2 8
 25 1 15
 26 7 31
 27 0 1
 28 22 57
 29 2 27
 30 5 35
 31 12 26
 32 14 36
 33 5 28
 34 2 22
 35 0 4
 36 7 8
 37 3 5
 38 0 27
 39 0 6
 40 0 6
 41 0 4
 42 5 0
 43 2 6
 44 3 5
 45 0 8
 46 0 2

TABLE II. THE SECOND SOFTWARE DEFECTS DATABASE

The second
software
defects
database

DB2

Ti Bi Wi

 1 5 4
 2 5 4
 3 5 4

749 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

The second
software
defects
database

DB2

Ti Bi Wi

 4 5 4
 5 6 4
 6 8 5
 7 2 5
 8 7 5
 9 4 5
 10 2 5
 11 31 5
 12 4 5
 13 24 5
 14 49 5
 15 14 5
 16 12 5
 17 8 5
 18 9 5
 19 4 5
 20 7 5
 21 6 5
 22 9 5
 23 4 5
 24 4 5
 25 2 5
 26 4 5
 27 3 5
 28 9 6
 29 2 6
 30 5 6
 31 4 6
 32 1 6
 33 4 6
 34 3 6
 35 6 6
 36 13 6
 37 19 8
 38 15 8
 39 7 8
 40 15 8
 41 21 8
 42 8 8
 43 6 8
 44 20 8
 45 10 8
 46 3 8
 47 3 8
 48 8 4
 49 5 4
 50 1 4
 51 2 4

The second
software
defects
database

DB2

Ti Bi Wi

 52 2 4
 53 2 4
 54 7 4
 55 2 4
 56 0 4
 57 2 4
 58 3 4
 59 2 4
 60 7 4
 61 3 4
 62 0 4
 63 1 4
 64 0 4
 65 1 4
 66 0 4
 67 0 4
 68 1 3
 69 1 3
 70 0 3
 71 0 3
 72 1 3
 73 1 4
 74 0 4
 75 0 4
 76 0 4
 77 1 4
 78 2 2
 79 0 2
 80 1 2
 81 0 2
 82 0 2
 83 0 2
 84 0 2
 85 0 2
 86 0 2
 87 2 2
 88 0 2
 89 0 2
 90 0 2
 91 0 2
 92 0 2
 93 0 2
 94 0 2
 95 0 2
 96 1 2
 97 0 2
 98 0 2
 99 0 2

750 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

The second
software
defects
database

DB2

Ti Bi Wi

 100 1 2
 101 0 1
 102 0 1
 103 1 1
 104 2 1
 105 0 1
 106 1 2
 107 0 2
 108 0 1
 109 1 1
 110 0 1
 111 1 1

TABLE III. THE THIRD SOFTWARE DEFECTS DATABASE

The Third
Software
Defects
Database

DS3

Ti Bi Wi

 1 4 1
 2 0 1
 3 7 1
 4 10 1
 5 13 1
 6 8 1
 7 13 1
 8 4 1
 9 7 1
 10 8 1
 11 1 1
 12 6 1
 13 13 1
 14 7 1
 15 9 1
 16 8 2
 17 5 2
 18 10 2
 19 7 2
 20 11 2
 21 5 2
 22 8 2
 23 13 2
 24 9 2
 25 7 2
 26 7 2
 27 5 2
 28 7 2
 29 6 1
 30 6 1

The Third
Software
Defects
Database

DS3

Ti Bi Wi

 31 4 1
 32 12 2
 33 6 2
 34 7 2
 35 8 2
 36 11 2
 37 6 2
 38 9 2
 39 7 2
 40 12 2
 41 12 2
 42 15 2
 43 14 2
 44 7 2
 45 9 2
 46 11 2
 47 5 2
 48 7 2
 49 7 2
 50 14 2
 51 13 2
 52 14 2
 53 11 2
 54 2 1
 55 4 1
 56 4 2
 57 3 2
 58 6 2
 59 6 2
 60 2 2
 61 0 1
 62 0 1
 63 3 1
 64 0 1
 65 4 1
 66 0 1
 67 1 1
 68 2 1
 69 0 2
 70 1 2
 71 2 2
 72 5 2
 73 3 2
 74 2 2
 75 1 2
 76 11 2
 77 1 2
 78 0 2

751 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

The Third
Software
Defects
Database

DS3

Ti Bi Wi

 79 2 2
 80 2 2
 81 4 2
 82 1 2
 83 0 2
 84 4 2
 85 1 1
 86 1 1
 87 0 1
 88 2 3
 89 0 1
 90 0 2
 91 1 1
 92 1 1
 93 0 1
 94 0 2
 95 0 1
 96 0 1
 97 1 2
 98 0 1
 99 1 1
 100 0 1
 101 0 1
 102 0 2
 103 0 1
 104 2 1
 105 0 1
 106 1 2
 107 0 2
 108 2 2
 109 0 2

The database was subjected to pre-treatment through a
recommended clustering method. The recommended
clustering method indicates the data with class labels. The
labels are fixed to categorize the amount of defects into six
distinct classes; A, B, C, D, E and F (Table IV).

TABLE IV. AMOUNT OF EVERY CLASS AND QUANTITY OF OCCURENCES

Amount of Every Class and Quantity of
Occurrences

Fault Class Number of
Faults DB1 DB2 DB3

A 0-4 30 77 57
B 5-9 5 22 33
C 10-14 5 4 18
D 15-19 2 3 1
E 20-24 2 3 0
F More than 25 2 2 0

To estimate the functioning of utilising Machine Learning
algorithms in software fault extrapolation, we tapped an array
of prominent quantities [13] established on the created
confusion matrices. The subsequent subdivisions explain the
confusion matrix and the tapped estimation quantities.

a) Confusion Matrix: The confusion matrix is an
explicit table employed to determine the functioning of
Machine Learning algorithms. Fig. 1 to 6 exhibits an
illustration of a standard confusion matrix. Every row of the
matrix signifies the occurrences in an actual class, although
every column signifies the occurrences in a forecasted class.
Confusion matrix recapitulates the outcomes of the examining
algorithm and specifies a description of the amount of True
Positive (TP), False Positives (FP), True Negatives (TN), and
False Negatives (FN).
Confusion Matrix for the Training Data - Decision Tree.

Fig. 1. Confusion Matrix of Training Data for DB1.

Fig. 2. Confusion Matrix of Training Data for DB2.

752 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

Fig. 3. Confusion Matrix of Training Data for DB3.

Confusion Matrix for the Testing Data - Decision Tree.

Fig. 4. Confusion Matrix of Testing Data for DB1.

Fig. 5. Confusion Matrix of Testing Data for DB2.

Fig. 6. Confusion Matrix of Testing Data for DB3.

b) Accuracy: Accuracy is the quantity of accurate
outcomes between the total amount of inspected occurrences.
The highest accuracy is one, while the poorest accuracy is
zero. Accuracy could be calculated through the subsequent
rule (Table V):
ACC = (TP + TN) / (TP + TN+ FP + FN)

TABLE V. ACCURACY FOR THE DATABASES

Accuracy for the Databases

Database NB SVM KNN DT RF

DB1 1 0.71 0.79 0.93 0.93

DB2 1 0.85 0.79 1 1

DB3 1 0.70 0.70 1 1

Average 1 0.75 0.76 0.98 0.98

c) Precision: Precision is computed as the amount of
true positive extrapolations divided with the total amount of
positive extrapolations. The highest precision is one, while the
poorest is zero and could be computed through (Table VI):
Precision = TP / (TP + FP)

d) Recall: Recall is computed as the amount of positive
extrapolations divided with the total amount of positives. The
highest recall is one, while the poorest is zero. Recall is
evaluated through the subsequent rule (Table VII):
Recall = TP / (TP + FN)

TABLE VI. PRECISION FOR THE DATABASES

Precision for the Databases

Database NB SVM KNN DT RF

DB1 1 1 1 1 1

DB2 1 0.85 0.77 1 1

DB3 1 0.70 0.78 1 1

Average 1 0.85 0.85 1 1

753 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

TABLE VII. RECALL FOR THE DATABASES

Recall for the Databases

Database NB SVM KNN DT RF

DB1 1 0.64 0.73 0.91 0.91

DB2 1 0.89 0.89 1 1

DB3 1 1 0.78 1 1

Average 1 0.84 0.80 0.97 0.97

e) F-measure: F-measure is described by way of the
weighted harmonic mean of precision and recall. Generally, it
is tapped to join the Recall and Precision quantities in one
quantity so as to evaluate distinct Machine Learning
algorithms among each other. F-measure rule is evaluated
through the subsequent rule (Table VIII):
F- measure= (2* Recall * Precision)/(Recall + Precision)

TABLE VIII. F-MEASURE FOR THE DATABASES

F-Measure for the Databases

Database NB SVM KNN DT RF

DB1 1 0.78 0.84 0.95 0.95

DB2 1 0.87 0.83 1 1

DB3 1 0.82 0.78 1 1

Average 1 0.82 0.82 0.98 0.98

f) Root-Mean-Square Error (RMSE): RMSE is a
quantity for assessing the functioning of an extrapolation
prototype. The perception is to compute the variation among
the envisaged and the definite estimates. If the definite
estimate is X and the envisaged estimate is XP then RMSE is
computed by the subsequent formula:

𝑅𝑀𝑆𝐸 = �
1
𝑛
∗�(𝑋𝑖 − 𝑋𝑃𝑖)2

𝑛

𝑖=1

g) Area Under Curve(AUC): AUC exemplifies the
probability that the classifier would rank an arbitrarily selected
positive instance greater than an arbitrarily selected negative
instance. The AUC is established on a chart of the false
positive value with the true positive value. The highest value
is one signifies that 100% estimation of the model is accurate,
while the poorest is zero signifies that 100% estimation of the
model is inaccurate. Fig. 7 to 12 exhibits an illustration of the
Area Under Curve.

h) Receiver Operating Characteristic (ROC): ROC
Curve is an outstanding technique of calculating the
functioning of a Classification prototype. The True Positive
value is plot with False Positive value for the probabilities of a
classifier estimations.
AUC and ROC for the Training Data - Decision Tree

Fig. 7. AUC of Training Data for DB1.

Fig. 8. AUC of Training Data for DB2.

Fig. 9. AUC of Training Data for DB3.

AUC and ROC for the Testing Data - Decision Tree.

Fig. 10. AUC of Testing Data for DB1.

754 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

Fig. 11. AUC of Testing Data for DB2.

Fig. 12. AUC of Testing Data for DB3.

Conclusively, to assess the Machine Learning algorithms
with additional methods, the RMSE value is estimated. The
composition in [2] anticipated a Linear Regression (LR)
prototype to envisage the increasing amount of software
defects utilising past calculated defects. The assessment
procedure was performed on the similar database that is used
in this investigation. The lesser the RMSE amount, the reliable
the model. Table IX exhibits the RMSE values for all the ML
Algorithms and LR models.

TABLE IX. RMSE VALUES FOR THE ML ALGORITHMS AND LR MODELS

RMSE Values for the ML Algorithms
and LR Models

Database NB SVM KNN DT RF LR

DB1 0.0 0.53 0.53 0.26 0.26 0.43

DB2 0.0 0.38 0.38 0.0 0.0 0.38

DB3 0.0 0.55 0.55 0.0 0.0 0.36

V. RESULTS
This inquiry utilised Jupyter Notebook, Python as Machine

Learning tool, to assess five Machine Learning Algorithms
Naïve Bayes (NB), Support Vector Machine (SVM), K-
Nearest Neighbors (KNN), Decision Tree (DT) and Random
Forest (RF)) in software default estimation.

The accuracy of Naïve Bayes (NB), Support Vector
Machine (SVM), K- Nearest Neighbors (KNN), Decision Tree
(DT) and Random Forest (RF) classifiers for the three
database are presented in Table VI. As exhibited in Table VI,
the five Machine Learning algorithms attained a high accuracy
value.

The typical estimate for the accuracy value in all database
for the five classifiers is over 75% on average. Though, the
lowermost estimate emerges for SVM and KNN algorithm in
the DS3 database. This is for the reason that the database does
not have greater than 20 defects and SVM and KNN algorithm
requires a significant quantity of defects so as to attain a better
accuracy rate. Thus, SVM and KNN got a greater accuracy
value in DS2 database that are comparatively larger than the
DS1 and DS3 database.

The precision measures for employing NB, SVM, KNN,
DT and RFs classifiers on DS1, DS2 and DS3 database are
exhibited in Table VII. Outcomes indicate that the five
Machine Learning algorithms can be utilised for defect
extrapolation successfully with a right precision value. The
typical precision rates for every classifier in the three database
are greater than 85%.

The next assessment quantity is the amount of recall.
Table VIII exhibits the recall rates for the five classifiers on
the three database. Correspondingly, the Machine Learning
algorithms attained a suitable recall rate. The highest recall
rate was attained by NB classifier that is 100% in all database.
Whereas, the typical recall rates for SVM, KNN, DT and RM
algorithms are 84%, 80%, 97% and 97%, correspondingly.

Further, to evaluate the five classifiers concerning recall
and precision quantities, we employed the F-measure rate.
Table exhibits the F-measure rates for the utilised Machine
Learning algorithms in the three database. As presented in the
table, NB has the maximum F-measure rate in all database
trailed by DT and RF then SVM and KNN classifiers.

The outcomes represent that NB, DT and RF classifiers
have improved rates than LR models. The typical RMSE
amount for all Machine Learning classifiers in the three
database is 0.28, whereas the typical RMSE estimates for LR
model is 0.39.

VI. CONCLUSIONS AND FUTURE WORK
Software fault estimation is a procedure in which an

extrapolation prototype is generated so as to envisage the
anticipated software defects created on past data. Numerous
methodologies have been propositioned utilising distinct
database, distinct metrics and distinct functioning quantities.
This article assessed the application of Machine Learning
Algorithms in software defect estimation. Five machine
learning methods have been employed, Naïve Bayes (NB),
Support Vector Machine (SVM), K- Nearest Neighbors
(KNN), Decision Tree (DT) and Random Forest (RF). The
assessment procedure is applied utilising three database.
Investigational outcomes are accumulated built on accuracy,
precision, recall, F-measure, and RMSE quantities. Outcomes
showed that the Machine Learning procedures are effective
methods to envisage the impending software faults. The
evaluation outcomes exhibited that the NB classifier has the
greatest outcomes in comparison to others. Furthermore,
investigational outcomes presented that employing Machine
Learning method imparts an improved functioning for the
estimation prototype in comparison to other methods, such as
LR model. For future scope, new Machine Learning
procedures can be adopted and an extensive assessment

755 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

between them can be performed. Moreover, inserting
additional software metrics in the study procedure is a feasible
method to foster the correctness of the estimation model.

REFERENCES
[1] D. Cubranic and G.C. Murphy, “Automatic bug triage using text

classification,” Proceedings of Software Engineering and Knowledge
Engineering, pp. 92–97, 2004.

[2] G. Sharma, S. Sharma and S. Gujral, “A Novel Way of Assessing
Software Bug Severity Using Dictionary of Critical Terms;” Procedia
Computer Science, vol 70, pp. 632–639, 2015.

[3] A. Sheta and D. Rine, “Modeling Incremental Faults of Software
Testing Process Using AR Models,” Proceeding of 4th International
Multi-Conferences on Computer Science and Information Technology
(CSIT 2006), Amman, Jordan 3, 2006.

[4] Y. Tohman, K. Tokunaga, K., S. Nagase and M. Y, “Structural approach
to the estimation of the number of residual software faults based on the
hyper-geometric distribution model,” IEEE Trans. on Software
Engineering, pp. 345–355, 1989.

[5] P. He., B. Li, X. Liu, J. Chen and Y. Ma, “An empirical study on
software defect prediction with a simplified metric set,” Information and
Software Technology, vol. 59, pp. 170-190, 2015.

[6] A. Chug and S. Dhall, “Software defect prediction using supervised
learning algorithm and unsupervised learning algorithm,” Confluence

2013: The Next Generation Information Technology Summit, pp. 5-10,
2013.

[7] A. Hammouri, M. Hammad, M. Alnabhan and F. Alsarayrah, “Software
Bug Prediction using Machine Learning Approach,” International
Journal of Advanced Computer Science and Applications, vol. 9(2), pp.
78-83, 2018.

[8] L. Perreault, S. Berardinelli, C. Izurieta and J. Sheppard, “Using
Classifiers for Software Defect Detection,” 26th International
Conference on Software Engineering and Data Engineering, SEDE,
2017.

[9] R. Malhotra, “A systematic review of machine learning techniques for
software fault prediction,” Applied Soft Computing, vol. 27, pp. 504-
518, 2015.

[10] P. Singh and A. Chug, “Software defect prediction analysis using
machine learning algorithms,” 7th International Conference on Cloud
Computing, Data Science & Engineering Confluence, IEEE, 2017.

[11] R. Malhotra and Y. Singh, “On the applicability of machine learning
techniques for object oriented software fault prediction,” Software
Engineering: An International Journal, vol. 1(1), pp. 24-37, 2011.

[12] T. Minohara and Y. Tohma, “Parameter estimation of hyper-geometric
distribution software reliability growth model by genetic algorithms”, in
Proceedings of the 6th International Symposium on Software Reliability
Engineering, pp. 324–329, 1995.

[13] Olsen, L. David and Delen, “Advanced Data Mining Techniques,”
Springer, 1st edition, pp. 138, ISBN 3-540-76016-1, Feb 2008.

756 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Literature Review
	III. Proposed Model
	IV. Evaluation Methodology
	a) Confusion Matrix: The confusion matrix is an explicit table employed to determine the functioning of Machine Learning algorithms. Fig. 1 to 6 exhibits an illustration of a standard confusion matrix. Every row of the matrix signifies the occurrences in a�
	b) Accuracy: Accuracy is the quantity of accurate outcomes between the total amount of inspected occurrences. The highest accuracy is one, while the poorest accuracy is zero. Accuracy could be calculated through the subsequent rule (Table V):
	c) Precision: Precision is computed as the amount of true positive extrapolations divided with the total amount of positive extrapolations. The highest precision is one, while the poorest is zero and could be computed through (Table VI):
	d) Recall: Recall is computed as the amount of positive extrapolations divided with the total amount of positives. The highest recall is one, while the poorest is zero. Recall is evaluated through the subsequent rule (Table VII):
	e) F-measure: F-measure is described by way of the weighted harmonic mean of precision and recall. Generally, it is tapped to join the Recall and Precision quantities in one quantity so as to evaluate distinct Machine Learning algorithms among each other. �
	f) Root-Mean-Square Error (RMSE): RMSE is a quantity for assessing the functioning of an extrapolation prototype. The perception is to compute the variation among the envisaged and the definite estimates. If the definite estimate is X and the envisaged est�
	g) Area Under Curve(AUC): AUC exemplifies the probability that the classifier would rank an arbitrarily selected positive instance greater than an arbitrarily selected negative instance. The AUC is established on a chart of the false positive value with th�
	h) Receiver Operating Characteristic (ROC): ROC Curve is an outstanding technique of calculating the functioning of a Classification prototype. The True Positive value is plot with False Positive value for the probabilities of a classifier estimations.

	V. Results
	VI. Conclusions and Future Work
	References

