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Abstract—A software imperfection is a shortcoming, virus, 
defect, mistake, breakdown or glitch in software that initiates it 
to establish an unsuitable or unanticipated result. The foremost 
hazardous components connected with a software imperfection 
that is not identified at an initial stage of software expansion are 
time, characteristic, expenditure, determination and wastage of 
resources. Faults appear in any stage of software expansion. 
Thriving software businesses emphasize on software excellence, 
predominantly in the early stage of the software advancement. In 
succession to disable this setback, investigators have formulated 
various bug estimation methodologies till now. Though, emerging 
vigorous bug estimation prototype is a demanding assignment 
and several practices have been anticipated in the text. This 
paper exhibits a software fault estimation prototype grounded on 
Machine Learning (ML) Algorithms. The simulation in the paper 
directs to envisage the existence or non-existence of a fault, 
employing machine learning classification models. Five 
supervised ML algorithms are utilized to envisage upcoming 
software defects established on historical information. The 
classifiers are Naïve Bayes (NB), Support Vector Machine 
(SVM), K- Nearest Neighbors (KNN), Decision Tree (DT) and 
Random Forest (RF). The assessment procedure indicated that 
ML algorithms can be manipulated efficiently with high accuracy 
rate. Moreover, an association measure is employed to evaluate 
the propositioned extrapolation model with other methods. The 
accumulated conclusions indicated that the ML methodology has 
an improved functioning. 

Keywords—Software bug prediction; prediction model; data 
mining; machine learning; Naïve Bayes (NB); support vector 
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I. INTRODUCTION 
From the time of establishment of software expansion, 

defect restoration is studied as the most monotonous tasks, 
primarily for its in-built vagueness. Furthermore, the 
procedure of repairing bugs is gradual. The procedure of bug-
restoration has a chief involvement in the software 
advancement. In order to lessen the concern of fault 
correction, bug estimation is examined significantly by the 
investigators. Numerous machine learning directed estimation 
prototypes are constructed and verified on several arguments. 

The continuation of software faults influences 
considerably on software consistency, feature and upholding 
expense. Attaining errorless software is laborious, when the 
software utilized meticulously as largely there are unknown 
defects. Furthermore, extending software fault estimation 

prototype which can estimate the imperfect components in an 
initial stage is an actual test. 

Contemporary developments rotate about the information 
that defects can be envisaged, widely beforehand they are 
identified. Significant corpuses of preceding fault information 
are fundamental to be proficient to envisage defects with 
sufficient precision. Software analytics has initiated 
continuous opportunities for tapping data analytics and 
rationalizing to enhance the feature of software. Functional 
analytics applies the outcomes of the software evaluation as 
real time data, to create valuable extrapolations. 

Software defect estimation is an indispensable action in 
software expansion as envisaging the defects components 
earlier to software implementation attains the operator 
contentment and corrects the complete software functioning. 
Besides, envisaging the software fault initially increases 
software alteration to distinctive situations and enlarges the 
resource consumption. 

Several methods are recommended to undertake Software 
fault estimation obstruction. The utmost comprehended 
procedures are Machine Learning procedures. Machine 
learning is effectively employed to build extrapolations in 
numerous database. Provided the enormous amount of fault 
database accessible currently, envisaging the occurrence of 
faults can be completed employing several machine learning 
procedures. 

The application of machine learning to establish an 
exclusively mechanised technique of determining the act to be 
acquired by a business when a fault is testified was initially 
propositioned through Cubranic and Murphy [1]. The 
technique implemented helps text classification to envisage 
defect rigorousness. This technique functions accurately on 
30% of the defects testified to creators. Sharma, Sharma and 
Gujral [2] apply feature selection to enhance the precision of 
the fault estimation prototype. 

In this communication, supervised Machine Learning 
(ML) classifiers are employed to assess the ML potentials in 
Software fault estimation. The analysis examined Naïve Bayes 
(NB), Support Vector Machine (SVM), K- Nearest Neighbors 
(KNN), Decision Tree (DT) and Random Forest (RF) 
classifier. The considered ML classifiers are directed to three 
distinctive database acquired from [3] and [4] mechanisms. 

Further, the manuscript evaluated among Naïve Bayes 
(NB) classifier, Support Vector Machine (SVM) classifier, K- 

747 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 12, No. 5, 2021 

Nearest Neighbors (KNN) classifier, Decision Tree (DT) 
classifier and Random Forest (RF) classifier and compared 
then on the basis of distinct assessment quantities for instance 
accuracy, precision, recall, F-measures and the ROC curves of 
the classifiers. 

The manuscript is structured as per the following 
sequence. An examination of the associated work in Software 
fault estimation is exhibited in the Literature Review. An 
outline of the designated ML algorithms is exhibited in the 
Proposed Model. The database and the assessment technique 
is explained in the Evaluation Methodology. Investigational 
outcomes are depicted in Results accompanied by inferences 
and future works. 

II. LITERATURE REVIEW 
Formerly, various efforts in the subjects of fault estimation 

have been achieved. Peng He et al. performed a practical 
analysis on software fault estimation with a basic metric set 
[5]. Investigation has been performed on 34 announcements of 
10 open source assignments accessible at PROMISE 
repository. The outcome signifies the outcome of uppermost-k 
metrics or minimum metric subset gives satisfactory result in 
comparison with standard forecasters. 

Anuradha Chug et al. [6] employed three supervised and 
unsupervised learning algorithms for envisaging faults in 
software. NASA MDP database were administered by 
utilizing Weka tool. Various quantities such as recall and f-
measure were applied to estimate the functioning of 
classification and clustering algorithms. Through examining 
distinct classification algorithms Random Forest has the 
maximum accuracy of MC1 database and gives maximum rate 
in recall, f-measure and receiver operating characteristic 
[ROC] curve and it specifies least amount of root mean square 
errors in all conditions. In an unsupervised algorithm k-means 
gave the smallest amount of inaccurate clustered examples and 
it considers least period for envisaging defects. Hammouri, A. 
et al [7] proposed software defect estimation prototype 
established on Machine Learning Techniques to envisage 
impending software defects created on past database and 
exhibited that Machine Learning techniques can be applied 
successfully with high precision. 

Logan Perreault et al. [8] employed classification 
algorithm for instance naïve bayes, neural networks, support 
vector machine, linear regression, K-nearest neighbor to 
discover and envisage faults. The investigators manipulated 
NASA and tera PROMISE database. To compute the 
accomplishment, they tapped accuracy and f1 measure with 
noticeably distinct metrics. 

R. Malhotra in [9] exhibited a valuable methodical 
evaluation for software fault estimation procedures applying 
Machine Learning. The article encompassed an evaluation of 
all the findings concerning the interval of 1991 and 2013, 
examined the Machine Learning methods for software fault 
estimation prototypes, and evaluated their functioning, 
matched among Machine Learning and statistic methods, 
evaluated among distinct Machine Learning methods and 
reviewed the power and the limitation of the Machine 
Learning methods. 

Singh and Chug [10] examined widespread Machine 
Learning algorithms tapped for software fault estimation. The 
analysis exhibited significant outcomes comprising that the 
Artificial Neural Network has least inaccuracy amount, but the 
linear classifier is advanced than auxiliary algorithms in term 
of fault estimation precision. 

Malhotra and Singh [11] indicated that the Area Under 
Curve is constructive metric and utilised to envisage the 
defects in initial stages of software expansion and to increase 
the validity of Machine Learning methods. 

This article examines established machine learning 
techniques Naïve Bayes (NB), Support Vector Machine 
(SVM), K- Nearest Neighbors (KNN), Decision Tree (DT) 
and Random Forest (RF). The communication estimates the 
Machine Learning classifiers by means of different 
performance quantities. Three known database are employed 
to assess the Machine Learning classifiers. 

Alternatively, maximum cited assignments examined new 
Machine Learning techniques and distinct database. Few of 
the earlier investigations primarily concentrated on the metrics 
that generate the Software fault estimation as feasible as 
imaginable, though earlier investigations suggested distinctive 
approaches to estimate software faults in place of Machine 
Learning methods. 

III. PROPOSED MODEL 
The research directs to examine and assess supervised 

Machine Learning algorithms. The investigation exhibits the 
performance correctness and competency of the Machine 
Learning algorithms in software fault estimation and 
postulates a comparative study of the designated Machine 
Learning algorithms. 

The supervised machine learning algorithms attempt to 
create an extrapolating function through deducing associations 
and needs among the identified feed in and outturn of the 
categorized training data, thus we can envisage the outturn 
amounts for recent feed in data created on the resulting 
extrapolating function. Subsequently are encapsulated 
explanations of the designated supervised Machine Learning 
algorithms: 

• Naïve Bayes (NB): Naïve Bayes classifier functions on 
the theory of probability. The notion of naïve bayes 
classifier is established on the effort of Thomas Bayes 
(1702-1761) of Bayes Theorem for conditional 
probability. Naïve Baye’s Classifier performs on the 
notion of baye’s theorem through a naïve theory that an 
existence of a specific feature in a class is entirely 
discrete to the existence of additional features. 

• Support Vector Machine (SVM): SVM is most 
widespread supervised machine learning technique 
which is equivalently tapped for classification and 
regression, however SVM is typically utilised for 
classification. The notion of SVM is to obtain a 
hyperplane that categorizes the training data points in 
order to obtain marked classes. The feed in of SVM is 
the training data and it functions the training sample 
feature to envisage category of test feature. 
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• K Nearest Neighbour (KNN): KNN algorithm well -
known by K-Nearest Neighbours Algorithm is tapped 
to elucidate the difficulties of classification together 
with regression. The theory of algorithm is primarily 
established upon feature comparison in two of them, 
classification and regression. KNN classifier is distinct 
from previous probabilistic classifiers as the simulation 
encompasses a discovering phase of calculating 
probabilities from a training experiment and employ 
them for impending estimation of a test experiment. In 
probability established prototype when the prototype is 
proficient the training experiment could be dropped 
and classification is completed by means of the 
calculated probabilities. 

• Decision Tree (DT): DT is a familiar investigation 
technique utilised in data mining. Decision Tree 
signifies a hierarchal and extrapolative prototype that 
utilises the elements examination as branches to access 
the elements target amount in the leaf. Decision Tree is 
a tree with decision nodes, that have several branches 
and leaf nodes that characterise the conclusion. 

• Random Forest (RF): Random Forest comprises of a 
substantial quantity of distinct decision trees that 
function as an ensemble. Individual tree in the random 
forest separate out a class estimation. The class that has 
the highest votes turns out to be prototypes estimation. 
A big quantity of comparatively disjointed prototypes 
(trees) functioning as a group will outshine any of the 
specific prototypes. 

IV. EVALUATION METHODOLOGY 
The database used in the study are three different 

databases, specifically DB1, DB2 and DB3. All databases 
comprise of two measures; the amount of defects (Bi) and the 
amount of test workers (Wi) for respective day (Ti) in a 
section of software launches period. The DB1 database has 46 
quantities that were included in the examining procedure 
exhibited in [4]. DB2, captured from [4], computed a 
technique where defects for the period of 111 consecutive 
days of examining the software technique. DB3 includes 109 
quantities. DB3 is established in [3], that comprises actual 
calculated records for a restoration plan of a real time control 
utilization exhibited in [12]. Tables I to III show DB1, DB2 
and DB3, respectively. 

TABLE I. THE FIRST SOFTWARE DEFECTS DATABASE 

The first 
software 
defects 
database 

DB1 

Ti Bi Wi 

 1 2 75 
 2 0 31 
 3 30 63 
 4 13 128 
 5 13 122 
 6 3 27 
 7 17 136 

The first 
software 
defects 
database 

DB1 

Ti Bi Wi 

 8 2 49 
 9 2 26 
 10 20 102 
 11 13 53 
 12 3 26 
 13 3 78 
 14 4 48 
 15 4 75 
 16 0 14 
 17 0 4 
 18 0 14 
 19 0 22 
 20 0 5 
 21 0 9 
 22 30 33 
 23 15 118 
 24 2 8 
 25 1 15 
 26 7 31 
 27 0 1 
 28 22 57 
 29 2 27 
 30 5 35 
 31 12 26 
 32 14 36 
 33 5 28 
 34 2 22 
 35 0 4 
 36 7 8 
 37 3 5 
 38 0 27 
 39 0 6 
 40 0 6 
 41 0 4 
 42 5 0 
 43 2 6 
 44 3 5 
 45 0 8 
 46 0 2 

TABLE II. THE SECOND SOFTWARE DEFECTS DATABASE 

The second 
software 
defects 
database 

DB2 

Ti Bi Wi 

 1 5 4 
 2 5 4 
 3 5 4 
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The second 
software 
defects 
database 

DB2 

Ti Bi Wi 

 4 5 4 
 5 6 4 
 6 8 5 
 7 2 5 
 8 7 5 
 9 4 5 
 10 2 5 
 11 31 5 
 12 4 5 
 13 24 5 
 14 49 5 
 15 14 5 
 16 12 5 
 17 8 5 
 18 9 5 
 19 4 5 
 20 7 5 
 21 6 5 
 22 9 5 
 23 4 5 
 24 4 5 
 25 2 5 
 26 4 5 
 27 3 5 
 28 9 6 
 29 2 6 
 30 5 6 
 31 4 6 
 32 1 6 
 33 4 6 
 34 3 6 
 35 6 6 
 36 13 6 
 37 19 8 
 38 15 8 
 39 7 8 
 40 15 8 
 41 21 8 
 42 8 8 
 43 6 8 
 44 20 8 
 45 10 8 
 46 3 8 
 47 3 8 
 48 8 4 
 49 5 4 
 50 1 4 
 51 2 4 

The second 
software 
defects 
database 

DB2 

Ti Bi Wi 

 52 2 4 
 53 2 4 
 54 7 4 
 55 2 4 
 56 0 4 
 57 2 4 
 58 3 4 
 59 2 4 
 60 7 4 
 61 3 4 
 62 0 4 
 63 1 4 
 64 0 4 
 65 1 4 
 66 0 4 
 67 0 4 
 68 1 3 
 69 1 3 
 70 0 3 
 71 0 3 
 72 1 3 
 73 1 4 
 74 0 4 
 75 0 4 
 76 0 4 
 77 1 4 
 78 2 2 
 79 0 2 
 80 1 2 
 81 0 2 
 82 0 2 
 83 0 2 
 84 0 2 
 85 0 2 
 86 0 2 
 87 2 2 
 88 0 2 
 89 0 2 
 90 0 2 
 91 0 2 
 92 0 2 
 93 0 2 
 94 0 2 
 95 0 2 
 96 1 2 
 97 0 2 
 98 0 2 
 99 0 2 
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The second 
software 
defects 
database 

DB2 

Ti Bi Wi 

 100 1 2 
 101 0 1 
 102 0 1 
 103 1 1 
 104 2 1 
 105 0 1 
 106 1 2 
 107 0 2 
 108 0 1 
 109 1 1 
 110 0 1 
 111 1 1 

TABLE III. THE THIRD SOFTWARE DEFECTS DATABASE 

The Third 
Software 
Defects 
Database 

DS3 

Ti Bi Wi 

  1 4 1 
 2 0 1 
 3 7 1 
 4 10 1 
 5 13 1 
 6 8 1 
 7 13 1 
 8 4 1 
 9 7 1 
 10 8 1 
 11 1 1 
 12 6 1 
 13 13 1 
 14 7 1 
 15 9 1 
 16 8 2 
 17 5 2 
 18 10 2 
 19 7 2 
 20 11 2 
 21 5 2 
 22 8 2 
 23 13 2 
 24 9 2 
 25 7 2 
 26 7 2 
 27 5 2 
 28 7 2 
 29 6 1 
 30 6 1 

The Third 
Software 
Defects 
Database 

DS3 

Ti Bi Wi 

 31 4 1 
 32 12 2 
 33 6 2 
 34 7 2 
 35 8 2 
 36 11 2 
 37 6 2 
 38 9 2 
 39 7 2 
 40 12 2 
 41 12 2 
 42 15 2 
 43 14 2 
 44 7 2 
 45 9 2 
 46 11 2 
 47 5 2 
 48 7 2 
 49 7 2 
 50 14 2 
 51 13 2 
 52 14 2 
 53 11 2 
 54 2 1 
 55 4 1 
 56 4 2 
 57 3 2 
 58 6 2 
 59 6 2 
 60 2 2 
 61 0 1 
 62 0 1 
 63 3 1 
 64 0 1 
 65 4 1 
 66 0 1 
 67 1 1 
 68 2 1 
 69 0 2 
 70 1 2 
 71 2 2 
 72 5 2 
 73 3 2 
 74 2 2 
 75 1 2 
 76 11 2 
 77 1 2 
 78 0 2 
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The Third 
Software 
Defects 
Database 

DS3 

Ti Bi Wi 

 79 2 2 
 80 2 2 
 81 4 2 
 82 1 2 
 83 0 2 
 84 4 2 
 85 1 1 
 86 1 1 
 87 0 1 
 88 2 3 
 89 0 1 
 90 0 2 
 91 1 1 
 92 1 1 
 93 0 1 
 94 0 2 
 95 0 1 
 96 0 1 
 97 1 2 
 98 0 1 
 99 1 1 
 100 0 1 
 101 0 1 
 102 0 2 
 103 0 1 
 104 2 1 
 105 0 1 
 106 1 2 
 107 0 2 
 108 2 2 
 109 0 2 

The database was subjected to pre-treatment through a 
recommended clustering method. The recommended 
clustering method indicates the data with class labels. The 
labels are fixed to categorize the amount of defects into six 
distinct classes; A, B, C, D, E and F (Table IV). 

TABLE IV. AMOUNT OF EVERY CLASS AND QUANTITY OF OCCURENCES 

Amount of Every Class and Quantity of 
Occurrences   

Fault Class Number of 
Faults DB1 DB2 DB3 

A 0-4 30 77 57 
B 5-9 5 22 33 
C 10-14 5 4 18 
D 15-19 2 3 1 
E 20-24 2 3 0 
F More than 25 2 2 0 

To estimate the functioning of utilising Machine Learning 
algorithms in software fault extrapolation, we tapped an array 
of prominent quantities [13] established on the created 
confusion matrices. The subsequent subdivisions explain the 
confusion matrix and the tapped estimation quantities. 

a) Confusion Matrix: The confusion matrix is an 
explicit table employed to determine the functioning of 
Machine Learning algorithms. Fig. 1 to 6 exhibits an 
illustration of a standard confusion matrix. Every row of the 
matrix signifies the occurrences in an actual class, although 
every column signifies the occurrences in a forecasted class. 
Confusion matrix recapitulates the outcomes of the examining 
algorithm and specifies a description of the amount of True 
Positive (TP), False Positives (FP), True Negatives (TN), and 
False Negatives (FN). 
Confusion Matrix for the Training Data - Decision Tree. 

 
Fig. 1. Confusion Matrix of Training Data for DB1. 

 
Fig. 2. Confusion Matrix of Training Data for DB2. 
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Fig. 3. Confusion Matrix of Training Data for DB3. 

Confusion Matrix for the Testing Data - Decision Tree. 

 
Fig. 4. Confusion Matrix of Testing Data for DB1. 

 
Fig. 5. Confusion Matrix of Testing Data for DB2. 

 
Fig. 6. Confusion Matrix of Testing Data for DB3. 

b) Accuracy: Accuracy is the quantity of accurate 
outcomes between the total amount of inspected occurrences. 
The highest accuracy is one, while the poorest accuracy is 
zero. Accuracy could be calculated through the subsequent 
rule (Table V): 
ACC = (TP + TN) / (TP + TN+ FP + FN) 

TABLE V. ACCURACY FOR THE DATABASES 

Accuracy for the Databases    

Database NB SVM KNN DT RF 

DB1 1 0.71 0.79 0.93 0.93 

DB2 1 0.85 0.79 1 1 

DB3 1 0.70 0.70 1 1 

Average 1 0.75 0.76 0.98 0.98 

c) Precision: Precision is computed as the amount of 
true positive extrapolations divided with the total amount of 
positive extrapolations. The highest precision is one, while the 
poorest is zero and could be computed through (Table VI):  
Precision = TP / (TP + FP) 

d) Recall: Recall is computed as the amount of positive 
extrapolations divided with the total amount of positives. The 
highest recall is one, while the poorest is zero. Recall is 
evaluated through the subsequent rule (Table VII): 
Recall = TP / (TP + FN) 

TABLE VI. PRECISION FOR THE DATABASES 

Precision for the Databases    

Database NB SVM KNN DT RF 

DB1 1 1 1 1 1 

DB2 1 0.85 0.77 1 1 

DB3 1 0.70 0.78 1 1 

Average 1 0.85 0.85 1 1 
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TABLE VII. RECALL FOR THE DATABASES 

Recall for the Databases    

Database NB SVM KNN DT RF 

DB1 1 0.64 0.73 0.91 0.91 

DB2 1 0.89 0.89 1 1 

DB3 1 1 0.78 1 1 

Average 1 0.84 0.80 0.97 0.97 

e) F-measure: F-measure is described by way of the 
weighted harmonic mean of precision and recall. Generally, it 
is tapped to join the Recall and Precision quantities in one 
quantity so as to evaluate distinct Machine Learning 
algorithms among each other. F-measure rule is evaluated 
through the subsequent rule (Table VIII): 
F- measure= (2* Recall * Precision)/(Recall + Precision) 

TABLE VIII. F-MEASURE FOR THE DATABASES 

F-Measure for the Databases    

Database NB SVM KNN DT RF 

DB1 1 0.78 0.84 0.95 0.95 

DB2 1 0.87 0.83 1 1 

DB3 1 0.82 0.78 1 1 

Average 1 0.82 0.82 0.98 0.98 

f) Root-Mean-Square Error (RMSE): RMSE is a 
quantity for assessing the functioning of an extrapolation 
prototype. The perception is to compute the variation among 
the envisaged and the definite estimates. If the definite 
estimate is X and the envisaged estimate is XP then RMSE is 
computed by the subsequent formula: 

𝑅𝑀𝑆𝐸 =  �
1
𝑛
∗�(𝑋𝑖 − 𝑋𝑃𝑖)2

𝑛

𝑖=1

 

g) Area Under Curve(AUC): AUC exemplifies the 
probability that the classifier would rank an arbitrarily selected 
positive instance greater than an arbitrarily selected negative 
instance. The AUC is established on a chart of the false 
positive value with the true positive value. The highest value 
is one signifies that 100% estimation of the model is accurate, 
while the poorest is zero signifies that 100% estimation of the 
model is inaccurate. Fig. 7 to 12 exhibits an illustration of the 
Area Under Curve. 

h) Receiver Operating Characteristic (ROC): ROC 
Curve is an outstanding technique of calculating the 
functioning of a Classification prototype. The True Positive 
value is plot with False Positive value for the probabilities of a 
classifier estimations. 
AUC and ROC for the Training Data - Decision Tree 

 
Fig. 7. AUC of Training Data for DB1. 

 
Fig. 8. AUC of Training Data for DB2. 

 
Fig. 9. AUC of Training Data for DB3. 

AUC and ROC for the Testing Data - Decision Tree. 

 
Fig. 10. AUC of Testing Data for DB1. 
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Fig. 11. AUC of Testing Data for DB2. 

 
Fig. 12. AUC of Testing Data for DB3. 

Conclusively, to assess the Machine Learning algorithms 
with additional methods, the RMSE value is estimated. The 
composition in [2] anticipated a Linear Regression (LR) 
prototype to envisage the increasing amount of software 
defects utilising past calculated defects. The assessment 
procedure was performed on the similar database that is used 
in this investigation. The lesser the RMSE amount, the reliable 
the model. Table IX exhibits the RMSE values for all the ML 
Algorithms and LR models. 

TABLE IX. RMSE VALUES FOR THE ML ALGORITHMS AND LR MODELS 

RMSE Values for the ML Algorithms 
and LR Models     

Database NB SVM KNN DT RF LR 

DB1 0.0 0.53 0.53 0.26 0.26 0.43 

DB2 0.0 0.38 0.38 0.0 0.0 0.38 

DB3 0.0 0.55 0.55 0.0 0.0 0.36 

V. RESULTS 
This inquiry utilised Jupyter Notebook, Python as Machine 

Learning tool, to assess five Machine Learning Algorithms 
Naïve Bayes (NB), Support Vector Machine (SVM), K- 
Nearest Neighbors (KNN), Decision Tree (DT) and Random 
Forest (RF)) in software default estimation. 

The accuracy of Naïve Bayes (NB), Support Vector 
Machine (SVM), K- Nearest Neighbors (KNN), Decision Tree 
(DT) and Random Forest (RF) classifiers for the three 
database are presented in Table VI. As exhibited in Table VI, 
the five Machine Learning algorithms attained a high accuracy 
value. 

The typical estimate for the accuracy value in all database 
for the five classifiers is over 75% on average. Though, the 
lowermost estimate emerges for SVM and KNN algorithm in 
the DS3 database. This is for the reason that the database does 
not have greater than 20 defects and SVM and KNN algorithm 
requires a significant quantity of defects so as to attain a better 
accuracy rate. Thus, SVM and KNN got a greater accuracy 
value in DS2 database that are comparatively larger than the 
DS1 and DS3 database. 

The precision measures for employing NB, SVM, KNN, 
DT and RFs classifiers on DS1, DS2 and DS3 database are 
exhibited in Table VII. Outcomes indicate that the five 
Machine Learning algorithms can be utilised for defect 
extrapolation successfully with a right precision value. The 
typical precision rates for every classifier in the three database 
are greater than 85%. 

The next assessment quantity is the amount of recall. 
Table VIII exhibits the recall rates for the five classifiers on 
the three database. Correspondingly, the Machine Learning 
algorithms attained a suitable recall rate. The highest recall 
rate was attained by NB classifier that is 100% in all database. 
Whereas, the typical recall rates for SVM, KNN, DT and RM 
algorithms are 84%, 80%, 97% and 97%, correspondingly. 

Further, to evaluate the five classifiers concerning recall 
and precision quantities, we employed the F-measure rate. 
Table exhibits the F-measure rates for the utilised Machine 
Learning algorithms in the three database. As presented in the 
table, NB has the maximum F-measure rate in all database 
trailed by DT and RF then SVM and KNN classifiers. 

The outcomes represent that NB, DT and RF classifiers 
have improved rates than LR models. The typical RMSE 
amount for all Machine Learning classifiers in the three 
database is 0.28, whereas the typical RMSE estimates for LR 
model is 0.39. 

VI. CONCLUSIONS AND FUTURE WORK 
Software fault estimation is a procedure in which an 

extrapolation prototype is generated so as to envisage the 
anticipated software defects created on past data. Numerous 
methodologies have been propositioned utilising distinct 
database, distinct metrics and distinct functioning quantities. 
This article assessed the application of Machine Learning 
Algorithms in software defect estimation. Five machine 
learning methods have been employed, Naïve Bayes (NB), 
Support Vector Machine (SVM), K- Nearest Neighbors 
(KNN), Decision Tree (DT) and Random Forest (RF). The 
assessment procedure is applied utilising three database. 
Investigational outcomes are accumulated built on accuracy, 
precision, recall, F-measure, and RMSE quantities. Outcomes 
showed that the Machine Learning procedures are effective 
methods to envisage the impending software faults. The 
evaluation outcomes exhibited that the NB classifier has the 
greatest outcomes in comparison to others. Furthermore, 
investigational outcomes presented that employing Machine 
Learning method imparts an improved functioning for the 
estimation prototype in comparison to other methods, such as 
LR model. For future scope, new Machine Learning 
procedures can be adopted and an extensive assessment 
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between them can be performed. Moreover, inserting 
additional software metrics in the study procedure is a feasible 
method to foster the correctness of the estimation model. 
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