
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

Black-box Fuzzing Approaches to Secure Web
Applications: Survey

Aseel Alsaedi1, Abeer Alhuzali2, Omaimah Bamasag3
Computer Science Department, Faculty of Computing and Information Technology

King Abdulaziz University, Jeddah, Saudi Arabia

Abstract—Web applications are increasingly important tools
in our modern daily lives, such as in education, business transac-
tions, and social media. Because of their prevalence, they are
becoming more susceptible to different types of attacks that
exploit security vulnerabilities. Exploiting these vulnerabilities
may cause damage to the web applications as well as the end-
users. Thus, web apps’ developers should identify vulnerabilities
and fix them before an attacker exploits them. Using black-
box fuzzing techniques for vulnerability identification is very
popular during the web apps’ development life cycle. These
techniques pledge to find vulnerabilities in web applications by
constructing attacks without accessing their source codes. This
survey explores the research that has been done in the black-box
vulnerability finding and exploits construction in web applications
and proposes future directions.

Keywords—Black-box fuzzing; web application security; vulner-
ability scanning; automatic web app testing; vulnerability detection;
survey

I. INTRODUCTION

Web applications are significant components in various
fields: commercial, banking, entertainment, education, health-
care, and social networking. To reach international markets,
organizations have utilized web applications to promote their
products/goals and provide end-user services. In recent years,
web applications have evolved rapidly. This rapid development
has led to the use of different technologies and libraries, which
results in more complex and feature-full applications. Many
application developers do not have the necessary security skills
that prevent them from writing buggy code. That, in turn,
allows attackers to exploit those vulnerabilities and may cause
damage. Thus, the security of web applications is of paramount
concern.

Verizon’s 2019 report [1] stated that most data breaches
occurred due to attacks on web applications. Two out of three
of all the examined data breaches were in web applications.
Another report on web application vulnerability [2] analyzed
nearly 5,000 different web apps from March 2019 until
February 2020 and found that 26% of these applications have
critical vulnerabilities. The remaining apps had medium-level
vulnerabilities. All these studies indicate that vulnerabilities
are prevalent in web applications.

Typically, security staffs use manual analysis to identify
vulnerabilities to fix. This process is time-consuming and error-
prone, as it depends on the expertise level of the analyst,
and it is challenging because of the increasing complexities
of web applications. Additionally, manual analysis is difficult
to perform in each new update on applications that can lead
an attacker to exploit vulnerabilities.

Many automated techniques for vulnerability analysis and
exploit constructions have been proposed. These approaches
aim to reduce the cost, time, effort, and precision during
testing. Due to these benefits, these types of approaches
have become a hot topic in recent years, especially when
applications tend to be complex. Broadly, these approaches
can be categorized into white-box, and black-box fuzzing
approaches. The white-box testing is based on examining the
source code and the behavior of a web application to find
security vulnerabilities. Several studies utilized this technique
to identify critical vulnerabilities in web applications such as
[3], [4], [5], [6], [7], [8], and [9]. Unfortunately, this type of
approach cannot apply to a wide range of web apps; many
times, it is specialized for a particular programming language.
Additionally, the source code of the web app is not available
at each time. On the other hand, the black-box fuzzing is a
vulnerability-analysis and exploits construction approach that
automatically discovers vulnerabilities and generates exploits
without accessing the source code. Compared with white-box,
the major benefit of using black-box fuzzing is that it is fast and
efficient, and it can find security bugs in any web application,
regardless of its implementation details. Thus, this technique
applies to a wide range of web applications. Additionally, the
black-box fuzzing approach is helpful for developers who have
little or no experience in writing secure source code.

As a result of the pressing need to protect web applica-
tions without accessing the source code, a significant research
effort has been geared towards developing many techniques
for detecting web applications using the black-box fuzzing
approach. Much of this research addresses a specific class of
vulnerabilities or delivers fewer false positives, such as [10]
and [11].

As such, the primary goal for this survey is to analyze
the last ten years of existing bug-finding techniques in web
applications , focusing on the black-box fuzzing approach.
Further, this survey contributes towards identifying the chal-
lenges of the black-box fuzzing approaches, which aids the
research community in determining where further research can
be performed and provides valuable insights for improving the
crawling module. Because of our goal, this survey intends to
answer the following questions:

1) What are the techniques utilized by the approach?
2) Is the approach applicable to be used in modern web

applications?
3) How does the approach construct benign inputs

needed by web applications to explore further and
test the application?

www.ijacsa.thesai.org 849 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

This paper is organized as follows. Section 2 provides an
overview of the web application and its common vulnerabil-
ities. Section 2 describes a black-box fuzzing approach, and
Section 4 analyzes and compares existing approaches. Section
5 discusses the results by identifying current techniques’
main weaknesses and then identifying potential research areas.
Finally, Section 6 concludes our review.

II. WEB APPLICATIONS’ ARCHITECTURE AND COMMON
VULNERABILITIES

A. Web Application Architecture and Characteristics

The traditional web applications have a three-tier archi-
tecture: client-side, server-side, and back-end databases that
provide and store the web application data. The client-side
part is executed on the user’s web browser, allowing the user
to interact and communicate with the web application via
user inputs, links, etc. The client-side code is written using
different technologies such as HTML, JavaScript, and CSS.
On the other hand, the server-side is executed on the web
server, responding to the client messages and managing the
business logic. Server-side code is commonly written in PHP,
Java, and so on. The client-side and server-side communicate
with each other through messages, which are HTTP requests
and responses. To demonstrate how a web application works,
Fig. 1 shows a high-level view of how a typical web application
works when communicating with the server-side to register a
new user. It can be summarized as follows:

1) The user opens the web page, which its browser can
render, and fills out all the necessary inputs to com-
plete the registration. Filling out inputs on web forms
provides interactions between users and browsers that
enable users to deal with different input types, such
as numeric and text. Once the user has completed the
fill-in and submitted the form (usually by clicking the
submit button), the inputs are encapsulated into an
HTTP request and sent to the server.

2) The server-side receives the client request and then
processes it.

3) The server-side sends the web form data to the
database as a query to add the user to the web
application list.

4) The server-side replies to the user as an HTTP
response to the present result.

Today, web applications are getting more complex and
dynamic because of the adaptation of different technologies
such as AJAX (Asynchronous JavaScript And XML). The web
form in our example, as shown in Fig. 2 can dynamically
update part of the page to prevent unwanted requests when
the data involves errors. It can also change the page’s display
contents dynamically without waiting for the server-side to
deliver a new HTML page.

B. Web Applications’ Vulnerabilities

Web applications play critical roles in our lives and are used
in various activities and services. Typically, web applications
deal with private or sensitive data, which becomes a valuable
target for attackers. As shown in Fig. 2, a web application
accepts potentiality dangerous inputs since the entered user

inputs may include malicious code that harms the application.
There are many types of vulnerabilities; in the following, we
will focus solely on the most common vulnerabilities.

1) Cross-Site Scripting: XSS is a vulnerability executed
on the client-side of the web application. The XSS is a code
injection that enables the attacker to execute a malicious script
(e.g., JavaScript code) in the victim’s browser. The exploitation
of XSS vulnerability is very dangerous, according to OWASP
[12], because the XSS enables the attacker to modify web
pages and steal sensitive information such as cookies, session
tokens, and users’ credentials. There are two classes of XSS
attacks: reflected and stored.

• Reflected XSS occurs when the attacker successfully
injects a malicious script into an HTTP request. The
victim browser receives an HTTP response, including
a malicious script, and executes it.

• Stored XSS occurs when an attacker injects a ma-
licious script in content such as post comments and
store permanently, often on the database. Suppose
that malicious content is retrieved from the database
without filtering. In that case, the malicious code will
be executed on the victim’s browser at all times when
any user visits the infected page.

2) SQL Injection: SQLI is ranked as the most common in-
jection vulnerability on web applications according to OWASP
[12]. It occurs when an attacker manipulates the original
logic, semantic, or syntax of an SQL query by using specially
designed inputs such as SQL keywords or operators into
original queries, which aims to control the back-end databases
of the web application. There are two types of SQLI attacks:
first-order SQLI and second-order SQLI.

• First-order SQLI The malicious queries are loaded
and executed directly on the database.

• Second-order SQLI The crafted input is inserted
into the database without sensitization. After that,
that malicious content is retrieved without sanitization,
which will allow the execution of malicious content.

III. BLACK-BOX FUZZING APPROACH AS DEFENSIVE
TECHNIQUE FOR PROTECTING WEB APPLICATIONS

A. Typical Scenario

The black-box scanner consists of three primary modules:
the crawling module, attack module, and analysis module.
Crawling is a fundamental component in web application scan-
ners which explores the applications that determine the scan-
ner’s capability to identify vulnerabilities. If a vulnerability
scanner can discover subtle vulnerabilities on the application’s
deep locations, this indicates that the scanner has an effective
crawling component. To understand how black-box fuzzing
works, we will use the following example.

Envision a simple web application with a home page,
registration page, and course-view page. As shown in Fig. 3,
the user can access the course-view page only after complet-
ing the registration process. The crawler starts with a seed
URL and extracts all reachable pages. The crawler identifies
entry points and analyzes web forms to assign input values

www.ijacsa.thesai.org 850 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

Fig. 1. Web Applications Architecture.

Fig. 2. Web form Input Validation.

to discover several links on the application [13]. Then, the
attack module fuzzes the application using information learned
from the crawler. In other words, the attack module produces
attack strings for each input or entry points to fuzz the web
application. Finally, the analysis module analyzes the response
page after launching the attack to determine where the attack
string is reflected in the web application and reports the
vulnerabilities [13]. In Fig. 4, the analysis module checks if
the script code of the XSS attack is executed.

B. Automated Tools

Many black-box vulnerability scanners, commercial and
open-source, are available, all of which have unique charac-
teristics. Here, we review some black-box scanners.

Fig. 3. Describes the Navigation Graph of the Example.

Fig. 4. Black-box Fuzzing Approach.

Acunetix [14] is a commercial tool for automatic scan-
ning web applications. It crawls web applications, even the
AJAX-heavy ones. It provides different technologies, such as
AcuSensor, to increase coverage and obtain higher accuracy
for some vulnerabilities, such as accessing the application’s
source code. It discovers a wide range of vulnerabilities, such
as XSS, SQLI, and so on.

AppSpider [15] is a commercial tool to find security bugs
automatically. It complies with sophisticated technologies of
modern web applications such as AJAX. It has discovered
more than 95 attacks, including the OWASP Top 10 vulnera-
bilities [12]. It can construct values for web forms based on
test cases and modify them to belong to different languages
and more values.

www.ijacsa.thesai.org 851 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

Burp Suite Professional [16] is a commercial tool that
web application scanners provide as part of their features. The
scanner covers the most vulnerabilities on OWASP [12], such
as XSS, SQLI, XPath, and so on. It has an advanced crawler
that discovers vulnerabilities behind advanced JavaScript and
dynamic features. It also constructs inputs for forms randomly
and uses an intelligent manner to determine what fields are
encountered on the page. It provides the ability to tune the
configuration of the security test.

Nessus Professional [17] is a commercial vulnerabilities
scanner. It can identify vulnerabilities accurately because of
its high crawling coverage adapting different technologies to
support modern web applications, including Ajax. Addition-
ally, it scans at high speed and has very low false positives.

Netsparker [18] is a commercial web-vulnerability scanner
that aims to identify different types of vulnerabilities such
as XSS, SQLI, and so on. The crawler can handle different
technologies, regardless of their complexity, platform, or ar-
chitecture. Hence, it can be used for scanning modern web
applications. The power of the tool is developed to identify
vulnerabilities and gain nearly zero false positives precisely.

Grabber [19] is a free and open-source web-application-
vulnerability scanner. It discovers security bugs involving XSS,
SQLI, file inclusion, backup files, simple Ajax, and JS source-
code analyzer. It scans the web application automatically by
identifying the application’s entry points into which the data
can be injected. It is suitable to use for scanning small web
applications.

Vega [20] is a free and open-source web-application scan-
ner. It discovers many vulnerabilities, including SQLI, XSS,
remote file inclusion, shell injection, and so on. The Vega
crawler can extract URLs and forms and automatically con-
structs inputs for web applications. Further, it gives the user an
additional feature to work as a proxy and be semi-automated
to maximize the crawling coverage of web applications.

W3AF (Web Application Attack and Audit Framework)
[21] is a free and open-source vulnerability scanner. It dis-
covers different types of vulnerabilities, including XSS and
SQLI. Further, the crawler module extracts URLs and forms,
and it uses an intelligent manner to give a fake value based
on developers’ knowledge of the tool.

Wapiti [22] is a free and open-source web-vulnerability
scanner. It identifies various vulnerabilities, such as XSS,
XXE, XPath, SQLI, and so on. The tool works in this way: the
crawler extracts the URLs and forms from HTML, Flash, and
basic JavaScript. After that, it launches a payload of attacks
on the scripts and forms gained from the crawler to determine
vulnerable locations. Finally, it generates reports to show the
vulnerabilities and their locations. The crawler support fills
form through some placeholder values that are consistent with
most policies for web applications.

WFuzz (the Web Fuzzer) [23] is a free and open-source
web-application-vulnerability scanner. It is designed to per-
form brute-force attacks against web applications. It can find
the essential web pages that are difficult to reach through
normal browsing. It also discovers XSS, SQLI, and XXE
attacks on GET and POST parameters. Table I shows an

overview of the existing web application scanners in the black-
box fashion.

TABLE I. SUMMARY OF THE CHARACTERISTICS OF BLACK-BOX WEB
APPLICATION SCANNERS

Name License Price starts at Dynamic features
Acunetix [14] commercial $4,500 X
AppSpider [15] commercial $2000 X
Burp Suite Pro. [16] commercial $399 X
Nessus Pro. [17] commercial $3,438.50 X
Netsparker [18] commercial • X
Grabber [19] open-source N/A ?
Vega [20] open-source N/A ×
w3af [21] open-source N/A ×
Wapiti [22] open-source N/A ×
WFuzz [23] open-source N/A ×
• Not Provided by the Vendor
? Partially Support

IV. BLACK-BOX FUZZING RESEARCH APPROACHES

To develop an effective black-box fuzzing approach, the
increase in crawling coverage has become significant. Thus,
this section analyzes the existing primary research in this
domain and answers the previously mentioned questions.

Question 1: What are the techniques utilized by the
approach?

Many approaches have been used to improve the coverage
of the crawler to detect web applications in a black-box fash-
ion. By answering this question, it will be possible to identify
the approach and determine if there are any contributions or
limitations of these approaches, as the following:

Bisht et al. [24] proposed an approach to detect server-
side parameter tampering vulnerabilities in web applications.
It is based on extracting constraints from the web forms (i.e.,
client-side) and uses constraint solving technology to generate
test cases that expose the parameter tampering opportunities.

Doupé et al. [25], these authors proposed an approach
that aimed to enhance the crawling of black-box scanners
to discover a wide range of vulnerabilities. Their approach
is based on capturing the changes in the application states
and using the changes discovered to enhance the crawling
coverage. However, their approach does not handle dynamic
contents implemented by AJAX. Additionally, it does not
support enhanced form submission.

Djuric [26] developed a tool called SQLIVDT to generate
SQLI against web applications. His approach uses two types of
crawling, which are automated and manual, to identify all the
gateways to web applications and can be used to execute SQLI.
However, this approach handles dynamic features manually via
proxy.

Li and Xue [27] capture web applications’ behavior as a
finite state machine (FSM) and discover logic-flow vulnera-
bilities from the difference between the FSM of the expected
behavior of an application without bugs and the actual FSM.
However, their approach cannot handle dynamic contents.

Pellegrino et al. [28] proposed a semi-automated scanner
that aims to expand the code coverage of web applications.
It uses dynamic analysis on the client-side code to handle
JavaScript-based web applications. As a result of this work,

www.ijacsa.thesai.org 852 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

the author improved the crawling coverage by more than 86%
compared to other tools. However, this research’s primary
goal is to analyze the client-side of dynamic web applications
without adept form submission. Moreover, this approach is
limited to finding XSS vulnerabilities.

Muñoz et al. [29] proposed a novel approach to maximize
the crawler’s code coverage. Their approach is based on
analyzing web forms to extract fields that fill with appropriate
values from external sources. In general, this approach cannot
guarantee that the application’s server-side will accept the
constructed input values.

Deepa et al. [30] proposed DetLogic to improve the crawler
by discovering the logic vulnerabilities in web applications.
DetLogic acts as a proxy between the client-side and server-
side of the applications that utilizes the information coming
from the server to model web application behavior as a finite
state machine (FSM). Logical constraints are then constructed
from the FSMs to launch attacks. However, their approach is
more applicable to static web applications rather than modern
web applications. Additionally, this approach does not handle
modern web forms that include certain restrictions on the form
inputs.

Deepa et al. [31] proposed an approach to detect XQuery
and parameter-tampering vulnerabilities in XML-database-
based applications. Their approach aims to reduce false alarms
and expand the coverage of crawlers. To achieve more web
exploration, it analyzes the client-side code to handle the
constraints of the web forms. However, their approach is
limited to find few types of vulnerabilities.

Koswara et al. [32] developed W3AF+ that extends their
basic functionality from W3AF[21]. The authors developed a
traditional crawler to adapt their method to handle dynamic
web applications (e.g., Ajax applications). Their method de-
pends on recording changes of the inner states on the appli-
cations. They handle the dynamic application by extending
their crawler via capturing the changes caused by the event
generator and saving the new state of the resulting DOM in
the original state machine when it differs from the current state.
However, their method is restricted to on-click event.

Liu et al. [33] developed a tool to increase the crawler
coverage of the scanner via filling the required information,
such as login forms, through giving correct values by the user
when the crawler gives the user an instruction to complete.
However, this approach cannot guarantee that the application’s
server-side code will accept the constructed input values.

Aliero et al. [34] proposed an SQLIVS tool that aims to
maximize the coverage of crawlers to find subtle vulnerabil-
ities and minimizes false alarms. Their approach is based on
analyzing different HTTP responses to determine the presence
of SQLI vulnerabilities.

Eriksson et al. [35] proposed a tool, Black Widow, to max-
imize the code coverage of black-box-vulnerability scanners
in web applications. Their approach is based on capturing
the application’s inner state to identify the sinks and sources
and enhancing the navigation model to navigate more dynamic
workflows. However, their approach is limited to finding XSS
vulnerability and construct inputs on forms randomly.

Question 2: Is the approach applicable to be used in
modern web applications?

Generally, modern web applications have many dynamic
features that appear when rendering applications at runtime.
These features can generate a change in the pages’ DOM,
which includes generating contents dynamically, such as
forms, links, and so on. Consequently, these DOM changes
can affect the navigation graph of the web application, which
may impact finding the vulnerable path and, therefore, lead
to miss vulnerabilities. Table II shows a comparison of the
approaches regarding the adaptation of dynamic features on
their crawling.

TABLE II. COMPARISON OF THE APPROACHES REGARDING ADAPTATION
DYNAMIC FEATURES

Approach Dynamic features
[24] ×
[25] ×
[26] X
[27] ×
[28] X
[29] X
[30] ×
[31] ×
[32] X
[33] X
[34] ×
[35] X

Question 3: How does the approach construct benign inputs
needed by web applications to explore further and test the
application?

Traditionally, constructing inputs for web forms that mimic
user interaction with web applications has been done mostly
manually or randomly. Filling forms enable users to deal with
different types of inputs, such as numeric, text, etc. This
variety of input restrictions makes the automatic construction
of the correct inputs challenging. Thus, web application anal-
yses infer the required inputs to be generated to explore the
application’s workflow and find more vulnerabilities. Table III
shows a comparison of the approaches regarding constructing
inputs on their crawling.

TABLE III. COMPARISON OF THE APPROACHES REGARDING
CONSTRUCT INPUTS ON THEIR CRAWLING

Approach Input generation
[24] constraint solver
[25] database (external sources)
[26] user
[27] N/A
[28] N/A
[29] external sources
[30] constraint solver
[31] constraint solver
[32] N/A
[33] user
[34] N/A
[35] random

www.ijacsa.thesai.org 853 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

V. DISCUSSION

Many researchers focus their efforts on discovering security
bugs on the web app before attackers exploit them. In Section
IV, we discussed several research efforts tackling the challenge
of code coverage on the black-box fuzzing approach. We found
that the crawling module of the black-box fuzzing approach is
a significant challenge in modern web applications. The first
limitation is that many existing research systems still suffer
from shallow coverage of the black-box fuzzing approach due
to difficulties in handling the dynamic features of modern web
apps. Unless the crawling module of the black-box fuzzing
approach can support dynamic features such as JavaScript,
it is difficult for that fuzzer to analyze most modern web
applications that may include critical vulnerabilities behind
elements generated on the fly. As shown in Table II, the
results indicate that there are no significant differences between
studies on supporting dynamic features. In fact, most of the
previous studies that handle contents generated dynamically
are limited to specific types of events. The second limitation
that has hampered crawling involves the design of web forms.
Input validation with its restrictions makes it difficult for an
automatic generation to fill inputs correctly and submit them
to the server-side code. Due to this limitation, the scanners
fail to find vulnerabilities in deep locations in web application
structures. As shown in Table III, several techniques used to
construct input on forms, which do not guarantee that the
values will be accepted by the server code, for all previous
techniques except [24], [30] and [31]. To precisely infer valid
inputs, the study [24], [30], [31], [8], and [9] use constraint
solver to construct inputs on the forms by deriving constraints
of HTML form inputs.

As a result, the black-box fuzzing approach can achieve
better performance when considering the inner state of appli-
cations, dynamic features, and input generation. An intrigu-
ing research direction is exploring how to combine existing
techniques to overcome these limitations and produce a fully
automatic scanner in a black-box fashion.

VI. CONCLUSION

This paper reviews recent and existing techniques regard-
ing black-box fuzzing to discover vulnerabilities. Our survey
shows that new technologies and programming capabilities
have accelerated the evolution and the complexity of web
applications. As a result, automatically analyzing web apps
for security purposes becomes more challenging. Additionally,
we found that the crawling module of black-box fuzzing
approaches still suffers from shallow coverage, which affects
identify vulnerabilities on dynamic web applications. Improved
crawling module of the black-box fuzzing approach to include
dynamic features is necessary to assist the crawler in dis-
covering more links and, therefore, find more vulnerabilities.
Further, it is necessary to consider the practical approaches for
input generation that can analyze web forms and infer their
restrictions to generate correct input values automatically.

As far as these issues, the central problem of the black-
box fuzzing approaches is how to deal with these challenges
to enhance performance, which leads us to propose another
area where black-box scanners should be improved.

REFERENCES

[1] Verizon, “White paper: 2019 data breach investigations
report,” Verizon Business, Tech. Rep., 2019. [Online].
Available: https://enterprise.verizon.com/resources/reports/2019-data-
breach-investigations-report.pdf

[2] Acunetix, “White paper: Acunetix web application vulnerability
report 2020,” Acunetix, Tech. Rep., 2020. [Online]. Avail-
able: https://www.acunetix.com/acunetix-web-application-vulnerability-
report/

[3] M. C. Martin and M. S. Lam, “Automatic generation of xss and sql in-
jection attacks with goal-directed model checking.” in 17th {USENIX}
Security Symposium, 2008, pp. 31–44.

[4] G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Inamura, and Z. Su,
“Dynamic test input generation for web applications,” in Proceedings
of the 2008 international symposium on Software testing and analysis,
2008, pp. 249–260.

[5] A. Kieyzun, P. J. Guo, K. Jayaraman, and M. D. Ernst, “Automatic
creation of sql injection and cross-site scripting attacks,” in 2009 IEEE
31st international conference on software engineering. IEEE, 2009,
pp. 199–209.

[6] P. Bisht, T. Hinrichs, N. Skrupsky, and V. N. Venkatakrishnan, “Waptec:
Whitebox analysis of web applications for parameter tampering exploit
construction,” in Proceedings of the 18th ACM Conference on
Computer and Communications Security, ser. CCS ’11. New York,
NY, USA: Association for Computing Machinery, 2011, p. 575–586.
[Online]. Available: https://doi.org/10.1145/2046707.2046774

[7] S.-K. Huang, H.-L. Lu, W.-M. Leong, and H. Liu, “Craxweb: Automatic
web application testing and attack generation,” in 2013 IEEE 7th
International Conference on Software Security and Reliability. IEEE,
2013, pp. 208–217.

[8] A. Alhuzali, B. Eshete, R. Gjomemo, and V. Venkatakrishnan, “Chain-
saw: Chained automated workflow-based exploit generation,” in Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, 2016, pp. 641–652.

[9] A. Alhuzali, R. Gjomemo, B. Eshete, and V. Venkatakrishnan,
“{NAVEX}: Precise and scalable exploit generation for dynamic web
applications,” in 27th {USENIX} Security Symposium ({USENIX}
Security 18), 2018, pp. 377–392.

[10] M. N. khalid, M. Iqbal, M. T. Alam, V. Jain, H. Mirza, and
K. Rasheed, “Web unique method (wum): An open source blackbox
scanner for detecting web vulnerabilities,” International Journal of
Advanced Computer Science and Applications, vol. 8, no. 12, 2017.
[Online]. Available: http://dx.doi.org/10.14569/IJACSA.2017.081254

[11] F. Duchene, S. Rawat, J.-L. Richier, and R. Groz, “Kameleonfuzz:
evolutionary fuzzing for black-box xss detection,” in Proceedings of
the 4th ACM conference on Data and application security and privacy,
2014, pp. 37–48.

[12] OWASP TOP 10, “Owasp top ten web application security risks —
owasp,” 2021. [Online]. Available: https://owasp.org/www-project-top-
ten/

[13] A. Doupé, M. Cova, and G. Vigna, “Why johnny can’t pentest: An
analysis of black-box web vulnerability scanners,” in International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment. Springer, 2010, pp. 111–131.

[14] acunetix. Acunetix web vulnerability scanner. [Online]. Available:
https://www.acunetix.com/

[15] Rapid7. Appspider - application scanner. [Online]. Available:
https://www.rapid7.com/products/appspider/

[16] PortSwigger. Burp suite - application security testing software.
[Online]. Available: https://portswigger.net/burp

[17] Tenable. Nessus professional vulnerability assessment. [Online].
Available: https://www.tenable.com/products/nessus

[18] Netsparker. Netsparker - web vulnerability scanner. [Online]. Available:
https://www.netsparker.com/

[19] R. Gaucher. Grabber. [Online]. Available:
http://rgaucher.info/beta/grabber/

[20] Subgraph. Vega vulnerability scanner. [Online]. Available:
https://subgraph.com/vega/index.en.html

[21] w3af. w3af - web application attack and audit framework. [Online].
Available: http://w3af.org/

www.ijacsa.thesai.org 854 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

[22] N. Surribas. Wapiti web application scanner. [Online]. Available:
https://wapiti.sourceforge.io/

[23] C. Martorella, C. del ojo, and X. Mendez. Wfuzz - the web fuzzer.
[Online]. Available: https://wfuzz.readthedocs.io/en/latest/index.html

[24] P. Bisht, T. Hinrichs, N. Skrupsky, R. Bobrowicz, and V. Venkatakrish-
nan, “Notamper: automatic blackbox detection of parameter tampering
opportunities in web applications,” in Proceedings of the 17th ACM
conference on Computer and communications security, 2010, pp. 607–
618.

[25] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna, “Enemy of the state:
A state-aware black-box web vulnerability scanner,” in Presented as
part of the 21st {USENIX} Security Symposium ({USENIX} Security
12), 2012, pp. 523–538.

[26] Z. Djuric, “A black-box testing tool for detecting sql injection vulner-
abilities,” in 2013 Second International Conference on Informatics &
Applications (ICIA). IEEE, 2013, pp. 216–221.

[27] X. Li and Y. Xue, “Logicscope: automatic discovery of logic vulnerabil-
ities within web applications,” in Proceedings of the 8th ACM SIGSAC
symposium on Information, computer and communications security,
2013, pp. 481–486.

[28] G. Pellegrino, C. Tschürtz, E. Bodden, and C. Rossow, “jäk: Using
dynamic analysis to crawl and test modern web applications,” in
International Symposium on Recent Advances in Intrusion Detection.
Springer, 2015, pp. 295–316.

[29] F. R. Muñoz and L. J. G. Villalba, “Web from preprocessor for
crawling,” Multimedia Tools and Applications, vol. 74, no. 19, pp. 8559–
8570, 2015.

[30] G. Deepa, P. S. Thilagam, A. Praseed, and A. R. Pais, “Detlogic: A
black-box approach for detecting logic vulnerabilities in web applica-
tions,” Journal of Network and Computer Applications, vol. 109, pp.
89–109, 2018.

[31] G. Deepa, P. S. Thilagam, F. A. Khan, A. Praseed, A. R. Pais, and
N. Palsetia, “Black-box detection of xquery injection and parameter
tampering vulnerabilities in web applications,” International Journal of
Information Security, vol. 17, no. 1, pp. 105–120, 2018.

[32] K. J. Koswara and Y. D. W. Asnar, “Improving vulnerability scanner
performance in detecting ajax application vulnerabilities,” in 2019
International Conference on Data and Software Engineering (ICoDSE).
IEEE, 2019, pp. 1–5.

[33] C.-H. Liu, W.-K. Chen, and C.-C. Sun, “Guide: an interactive and
incremental approach for crawling web applications,” The Journal of
Supercomputing, vol. 76, no. 3, pp. 1562–1584, 2020.

[34] M. S. Aliero, I. Ghani, K. N. Qureshi, and M. F. Rohani, “An algorithm
for detecting sql injection vulnerability using black-box testing,” Jour-
nal of Ambient Intelligence and Humanized Computing, vol. 11, no. 1,
pp. 249–266, 2020.

[35] B. Eriksson, G. Pellegrino, and A. Sabelfeld, “Black widow: Blackbox
data-driven web scanning,” proceedings of IEEE SSP, 2021.

www.ijacsa.thesai.org 855 | P a g e

