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Abstract—Driving is one of the most common activities in
our modern lives. Every day, millions drive to and from their
schools or workplaces. Even though this activity seems simple
and everyone knows how to drive on roads, it actually requires
drivers’ complete attention to keep their eyes on the road and
surrounding cars for safe driving. However, most of the research
focused on either keeping improving the configurations of active
safety systems with high-cost components like Lidar, night vision
cameras, and radar sensor array, or finding the optimal way
of fusing and interpreting sensor information without consid-
ering the impact of drivers’ continuous attention and focus.
We notice that effective safety technologies and systems are
greatly affected by drivers’ attention and focus. In this paper, we
design, implement and evaluate DFaep, a deep learning network
for automatically examining, estimating, and predicting driver’s
focus of attention in a real-time manner with dual low-cost
dash cameras for driver-centric and car-centric views. Based
on the raw stream data captured by the dash cameras during
driving, we first detect the driver’s face and eye and generate
augmented face images to extract facial features and enable
real-time head movement tracking. We then parse the driver’s
attention behaviors and gaze focus together with the road scene
data captured by one front-facing dash camera faced towards
the roads. Facial features, augmented face images, and gaze focus
data are then inputted to our deep learning network for modeling
drivers’ driving and attention behaviors. Experiments are then
conducted on the large dataset, DR(eye)VE, and our own dataset
under realistic driving conditions. The findings of this study
indicated that the distribution of driver’s attention and focus
is highly skewed. Results show that DFaep can quickly detect
and predict the driver’s attention and focus, and the average
accuracy of prediction is 99.38%. This will provide a basis and
feasible solution with a computational learnt model for capturing
and understanding driver’s attention and focus to help avoid fatal
collisions and eliminate the probability of potential unsafe driving
behavior in the future.
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I. INTRODUCTION

While being a basic enabler of our modern society, road
vehicle transportation has become a major source of societal
concerns. In 2016 alone, over 330, 655 people [1]–[3] were
killed in vehicle accidents in the world, which is far greater
than the number of US Soldiers killed in action in Vietnam
(58,220 fatalities). Comparing to 19 high-income countries [3]
including Canada, Germany, France, Spain, United Kingdom,
and other 14 countries, the United States has highest vehicle
accident death rate, where about 90 people die each day

in vehicle accidents. The U.S. National Security Council
(USNSC) reports that vehicle accidents cause estimated 40,200
fatalities, a 6% rise from 2015 (i.e., a 14% rise from 2014),
which makes 2016 the deadliest year on American roads in
nearly a decade. To prevent vehicle accidents, injuries, and
deaths [4], we have enforced the use of seat belts, car seats
and booster seats for children through at least age 8, restricted
alcohol-impaired driving [5] and speeding, and suggested to
avoid distracted driving (such as texting, talking on the phone,
eating or doing something else that occupies the senses you
need to drive). In reality, those are far from enough for safe
driving.

A wide variety of approaches [6]–[8], systems [9]–[11],
and self-driving cars [12]–[15] have been developed for vehicle
surrounding environment perception, including object detec-
tion, tracking, localization, navigation. In the market, most of
automotive companies like Tesla, Mercede-benz, Audi, BMW,
Rolls-Royc, GM, Ford, and Honda have offered diverse ad-
vanced driver-assistance systems (ADASs) with various high-
cost components including Lidar, high resolution cameras,
radar sensor array, sonar, GPS, odometry, and inertial measure-
ment unit. ADASs are electronic systems that assist the human
driver while driving or during parking and have significantly
improved comfort and safety in nowadays driving.Waymo [13],
[14] originated by Google’s self-driving car, Navya automated
bus driving system [16], Uber driverless car [17], and Apple
car [15] are promising autonomous driving vehicle projects to
promote fully personal self-driving vehicle and related tech-
nology development. Since there are still many technological
difficulties and regulatory issues that are need to be addressed,
it would be close to a decade before self-driving cars are ready
to use safely in a large number [18].

The emergence of artificial intelligence and rapid devel-
opment of computer vision technology provide more oppor-
tunities to improve driving safety without strongly relying on
the high-cost components or external information surrounding
vehicles. We observe that driver’s attention and focus have
significant impact on driving safety and can lead to vehicle
accidents or even terrible disasters. It, therefore, is extremely
important to investigate and understand driver’s attention and
focus taking into consideration the complexity and dynamics of
driver’s behaviors under realistic driving conditions. Unfortu-
nately, this topic is under-investigated and the lack of realistic
experimental system does not help.

Motivated by the fact that driver’s attention and focus
are always changing over time in an uncertain, dynamic, and
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continuous environment, we propose to capture and examine
driver attention and focus using two low-cost dash cameras
in real-time. Instead of using expensive, commercial eye
tracker/tracking devices, dual dash cameras are placed on the
windshield inside the vehicle. One camera is facing front for
car-centric view and the other is facing towards the driver for
driver-centric view. Based on the raw streaming data from
the dash cameras, we provide an approach to extract facial
features with face and eye detection, augment face images,
track and predicate gaze focus zones during driving. Our first
contribution is to build our drive attention database by driving
from/to our campus to/from Dallas, Texas. The underlaying
ideas is to travel different types of roads including campus
road, rural road, suburban road, highways, and metropolitan
roadways to collect enough driver-centric and car-centric data
under various driving circumstances.

The second contribution is to extract the driver’s facial
features and generate augmented face images using open
source toolkit, Openface [19], [20]. The main visual cues that
we are analyzing are head and eye directions that are selected
based on the insights that drivers who are paying attention on
driving will have a tendency to look forward and keep eyes
on roads. To enable to locate the driver’s focus, the driver’s
view is grided into 11 grids within 5 gaze zones. The a feature
vector can be formed with the facial features and gaze zone to
label the data. The third contribution is the introduction of a
data-driven deep learning network called DFaep. This network
uses the detected features and augmented face images as the
input and output accurate the focus of driver’s attention. If the
focus is not within the main zones, a warning alert will be
issued to bring it to the driver attention. We evaluate DFaep
on two datasets, DR(eye)VE [6] and our own dataset. On
DR(eye)VE, we substantially improve the predictions of the
driver’s focus with accurate gaze data on the real road scene.
On our dataset, we test the trained model and compare our
DFaep with other deep learning networks with the same set of
images and extracted features in terms of accuracy, loss, and
network complexity to identify the network that is best for
real-time systems and applications. We outperform all other
networks and show the results that DFaep can achieve highest
prediction accuracy, 99.38% with lowest validation loss, 0.018.

The paper is organized as follows: Section II provides a
brief literature review about computer vision systems and artifi-
cial intelligence relate to driver attention behaviors; Section III
details the design and structure of the proposed deep learning
network DFaep for modeling the driver attention behaviors
and tracking focus; Section IV presents the datasets used in
experiments. The numerical performance evaluation results and
our finding are then reported; and Section V concludes the
paper and describes our future research plan.

II. LITERATURE

In this section, we review the existing technologies and
studies used to capture and detect driver’s attention and focus,
which can be classified based on eye/gaze tracking to capture
humans attention and detection and prediction methods driven
by sensing data.

A. Eye Tracking

Eye tracking data is widely held to be a good window into
attention or non-attentive states for learners or people working
on tasks [21], [22]. Eye tracking refers to the careful mea-
surement of the movements of the eyes and/or body when the
participants are either positively or negatively interacting with
the learning environments in a time-varying manner. The mea-
surement devices, hardware platforms, and systems are com-
monly known as eye trackers. Based on the hardware setup,
we classify the existing eye tracking systems into four main
types: tower-mounted eye-tracker [23]–[25], screen-based eye
tracker [26], [27], head mounted/wearable eye tracker [28]–
[30], and mobile eye tracker [31]–[33]. An detailed discussion
on those four types of eye tracking devices and platforms
can be found in our papers [34]–[36]. Eye trackers can be
either well-established commercial devices/systems or low-
cost, portable systems designed by educators or researchers.
For commercial eye trackers, they are still expensive in the
current market, but well developed and maintained by com-
panies like Tobii, SMI, ISCAN, LC Technologies, EyeTech,
Oculus, Ergoneers, SmartEye, and Mirametriz [36]. With the
requirements of necessary purchasing, only authorized users
can use the purchased hardware and software with warranties,
documentations, reachable technical support. Comparing to the
commercial eye trackers, open source eye tracking devices and
systems [29], [30], [37]–[39] have unique abilities to support
both and low-cost eye trackers, easily alter experiments to
specific scenarios, quickly prototype ideas and enable eye
tracking research and applications without major restrictions.
Given that, in this study, we propose an active safe driving
behavior detection system with two low-cost car dash cameras,
ZEdge-Z3 in $100.

B. Attention Detection and Prediction

There are existing studies have been conducted with the
eye tracking or camera data to detect and predicate driver’s
attention. For instance, Tran et al. [40] proposed an assisted-
driving testbed with a driving simulator in a laboratory to
simulate the driving environment and control the simulator’s
behavior using a script. Ten distracted driving behaviors like
drinking, operation the radio, talking, texting, reaching behind,
and making-up were defined. Based on the definition, four deep
learning models, CNN, VGG-16, AlexNet, and GoogleNet
are trained and tested on the simulator for driving distraction
detection by distinguishing the defined distracted behaviors.
The results showed that the VGG-16 achieved fastest frequency
(14 Hz) while the ResNet model yielded highest accuracy of
92% with highest complexity which needed to have longest
time for data processing and model calculation.

In [41], a CNN(Convolution Neural Network) is proposed
and trained to mimic the driver based on training data from
human driver’s driving, it builds a model which takes as
an input raw data and map it directly to a decision, using
minimum training data and minimum computation, the car
learns to drive on roads with or without human-design features.
The idea of end to end self-driving car were implemented by
NVIDIA [42]. They trained CNN to map raw pixels from one
single front camera directly to steering commands. The net-
work architecture is shown in Fig. 2. that consists nine layers
which includes five convolutional layers, one normalization

www.ijacsa.thesai.org 2 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 6, 2021

Fig. 1. Flowchart of Driver Attention System.

(a) 11 Grids of windshield (b) Internal dual cameras (c) 5 Main gaze zones

Fig. 2. Internal Setting of our Experimental Vehicle.

(a) Face detection

(b) Eye detection

Fig. 3. Driver Facial Detection.

layer and three fully connected layers, they used NVIDIA
DevBox, Torch 7 and NVIDIA DRIVETM PX self-driving
car computer for training and determining the steering angle.
However, in their work, they did not consider about the throttle
factor into training, they only focus on steering angle control,
Therefore, based on their work, adding speed throttle factor
and implementing it with RC car, can pose new challenges.

In this study, we compare the internal and external envi-
ronment of the vehicle and propose a method that leverages
deep learning network to predict the driver’s attention in the
environment inside and outside the vehicle. For the driver
warning part, we have added scenes outside the vehicle as
warning auxiliary factors to determine whether the driver is
distracted by the driving of the vehicle.

III. PROPOSED SYSTEM AND METHODOLOGY

A. Overview of Our Driver Attention Database

The overview of this research is shown in Fig. 1. We use
a camera to capture the raw images of the the driver’s frontal
view based on the corresponding windshield inside the vehicle,
each zone for 1 minute. Then, the driver’s facial features in
raw images are extracted through the OpenFace [19], [20].
After that, each image of driver facial feature is cropped to
112×112 pixels for input DNN for training. We divide the
data into training set, validation set and testing set. Here,
our driver attention system will classify the driver’s attention
zone based on probability score of DNN model for each zone
on the windshield. In DR(eye)VE database [6], we leverage
saliency maps in the DR(eye)VE database to simulate our
driving scene and label each frame of images, then we perform
a synchronous comparison between the estimation zone of our
driver attention detection classification system and attention
zone of the DR(eye)VE database for evaluating the method
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that we proposed. Finally, the synchronous comparison result
is obtained, the system will give a warning to driver if the final
label comparison result is not matched.

B. Detecting Facial Landmarks

The experimental environment with 11 grids within five
gaze zones on the windshield of internal vehicle in this
research is shown in Fig. 2. The reason we divided it into
five gaze zones is to obtain more realistic driving scenarios. In
this research we leverage a standard web camera to accomplish
this task. A camera sensor is mounted in front of the driver.
Since the size of the web camera is moderate (8 cm × 5
cm × 1.5 cm), it could be mounted in the vicinity of the
windshield, and can continuously capture the driver’s facial.
Power to the web camera was supplied by the car using a
universal serial bus (USB) line, connecting to the camera. The
captured images by web camera is successively transmitted to
the computer with graphics processing unit (GPU) for training
via memory card of the web camera. The configuration of the
web camera and the gaze zone on the windshield are shown
in Fig. 2. We simulate driver’s driving attention to different
zone of windshield and their driving habits as if driving in
real world, and save the videos recorded by the web camera,
for each videos save the correspondent zone area performed
by the driver. The dataset consists of 9,000 frames divided in
five gaze zones, each of which is 1 minutes long, as shown in
Fig. 4. The frames resolution size is 1920 × 1080 pixels.

C. Driver’s Data Pre-processing

In our research, in order to improve the training efficiency
and reduce unnecessary interference factors, our measures are
to capture the driver’s facial information and reduce the size
of the original input image. In here, we leverage Openface
to implement this goal. Openface was proposed by Tadas
Baltrušaitis et al. [19], [20]. There are a lot of tools that
can implement the face feature detection in images or videos.
However, most of them did not provide the source code which
makes it very difficult to reproduce experiments on different
datasets. In Openface, it includes facial landmarks, head pose
estimation, eye gaze estimation and the most importantly it is
opens source, free and a tool that provides source code.

In our experiment, the facial feature of driver was captured
based on Openface [19], [20]. Openface is a tool designed for
computer vision and machine learning researchers, it leveraged
Multi-task Convolutional Neural Network (MTCNN) facial
feature tracker [43] to capture 68 face landmarks, eyelids,
the iris, eyelids and the pupil are detected by a Constrained
Local Neural Field (CLNF) landmark detector [44], and the
head pose is extracted through 3D representation of facial
landmarks of Convolutional Experts Constrained Local Model
(CE-CLM) [45]. In the end, we obtained the appearance
extraction face alignment images and cropped to 112×112
pixels for input to DFaep as shown in Fig. 5.

D. Network Structure

In this research, we propose a deep learning network
for driver’s focus of attention extraction and prediction
(DFaep)(including six layers) as shown in Table I. The model
used in this research is a simple stack of of four convolutional

(a) Zone 1

(b) Zone 2

(c) Zone 3

(d) Zone 4

(e) Zone 5

Fig. 4. Example Images of Driver’s Face Landmark (left), after OpenFace
Capture Driver’s Attention (middle), and Driver’s Facial Feature Image

(right) while Looking at Distinct Zones of Fig. 2. Cases of Looking at (a)
Zone 1; (b) Zone 2; (c) Zone 3; (d) Zone 4; (e) Zone 5.

Fig. 5. The Example of Augmented Images.

layers (with ReLU activation [46]), four max pooling layers
(with ReLU activation) and two fully connected layers (with
ReLU and Softmax [47] activation). This model is modified
from the LeNet [48]. We try to develop a DNN model with
high accuracy and low parameter computation. Today we have
far better models than this model, but this is the lightest one in
terms of computation, and it is also the most suitable one for
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Fig. 6. Network Architecture used for Extracting Driver Gaze Features and
Predicating Attention Focus.

TABLE I. STRUCTURE OF DFAEP MODEL

Layers # Filters Size Kernel Stride Padding

Input layer - 112 × 112 × 3 - - -

Group 1
1st Conv 32 110 × 110 × 32 3 × 3 1 × 1 0 x 0
ReLU-1 - 110 × 110 × 32 - - -
Pool-1 1 55 × 55 × 32 2 × 2 2 × 2 0 × 0

Group 2
2nd Conv 32 53 × 53 × 32 3 × 3 1 × 1 0 × 0
ReLU-2 - 53 × 53 × 32 - - -
Pool-2 1 26 × 26 × 32 2 × 2 2 × 2 0 × 0

Group 3
3rd Conv 64 24 × 24 × 64 3 × 3 1 × 1 0 × 0
ReLU-3 - 24 × 24 × 64 - - -
Pool-3 1 12 × 12 × 64 2 × 2 2 × 2 0 × 0

Group 4
4th Conv 64 10 × 10 × 64 3 × 3 1 × 1 0 × 0
ReLU-4 - 10 × 10 × 64 - - -
Pool-4 1 5 × 5 × 64 2 × 2 2 × 2 0 × 0
1st FC - 400 × 1 - - -

ReLU-5 - 400 × 1 - - -
Output layer - 400 × 1 - - -

2nd FC - 400 × 1 - - -
Softmax - 400 × 1 - - -

Output layer - 400 × 1 - - -

our research. The performance comparison of different DNN
models will be discussed in Section 4. In this model of DFaep,
we executed the data augmentation in our training dataset.
After extracting five features of last fully connected layer, the
final attention zone of driver was estimated based on softmax
function [47] of our DNN model.

The structure of our DFaep that is presented in Fig. 6 and
will be illustrated in Table I. Our DFaep model is constructed
of four convolutional layers (with ReLU activation [46]), 4
max pooling layers (with ReLU activation) and two fully
connected layers. In the first convolutional layer, there are 32
filters of size 3 x 3 are applied to the input of 112 x 112 x
3. Here, 112 x 112 x 3 stands for width, height, and channel
number, separately.Thus, a feature map of 112 x 112 x 32
is acquired. It can be computed according to the following
standard:(output height = (input height - filter height + 2 x
number of padding)/number of stride + 1) [49]. As shown in
Table I, the height of input, height of filter, number of padding,
and number of stride are 112, 3, 0, and 1 separately. From that
the height of output of the feature map was obtained by the
convolution is computed as 110 = ((112 - 3 + 2 x 0)/1 + 1).
If the value is positive, it can be valid output used in the next
layer. If the value is negative, the output is 0.

E. Activation

The Rectified linear unit (ReLU) activation function [46].

ReLU = max(0, x) (1)

The ReLU function is not differentiable across the entire
interval, but the non-differentiable part can be performed
using Sub-gradient. Instead, ReLU is the most frequently used
excitation function in recent years. Because of its following
characteristics, including: solving the problem of gradient
explosions, calculating quite quickly, and converging quickly,
it will be analyzed in detail below.

For neural networks such as error back transfer operation
(BN), gradient calculation considerations are most important
when updating weights. Sigmoid function [50] is prone to
vanishing gradient problems. When the input value approaches
the saturation region (sigmoid function). When the excitation
is performed outside [-4, +4], the first-order differential value
approaches 0, and the problem of gradient disappearance
occurs, which makes the backward transfer of the error calcu-
lation impossible, and the weight update cannot be performed
effectively, and the neural network layer is deepened. The time
is more obvious. Therefore, it is a difficulty encountered in
deep neural network training, and the piecewise linear nature
of ReLU can effectively overcome the problem of gradient
disappearance. In our research, each convolutional layer is
followed by one ReLU activation and one max pooling layer in
Table I. The size of filter and stride within each max pooling
layer is 2 × 2 and 1 × 1, respectively. As shown in Fig. 6,
the size of each feature map is reduced by a pooling layer,
ReLU-1 (110 × 110 × 32) is decreased to Pool-1 (55 × 55 ×
32), ReLU-2 (55 × 55 × 32) to Pool-2 (24 × 24 × 32), ReLU-3
(24 × 24 × 32) to Pool-3 (10 × 10 × 64) and ReLU-4 (10 ×
10 × 64) to Pool-4 (5 × 5 × 64).

After the four convolutional layers (with ReLU activa-
tion [46]), and 4 max pooling layers (with ReLU activation),
we obtained the final feature map size of 5 × 5 × 64 pixels.
And final feature map would be processed by the additional
two fully connected layers. For each fully connected layers,
the feature maps are separately of 400 × 1 and 5 ×1 as shown
in Table I. In our driver attention classification system, the
driver’s attention zone is classified by . And the gaze zones
of the vehicle are five as shown in Fig.6, hence after the
softmax function‘ [47] in the last fully connected layer, we
will determine which classification among these five is our
final result according to the maximum probability calculated
by the softmax function. In the last fully connected layer, the
softmax activation is adopted as presented in Equation (1).
Here, Vi is the output of the classifier’s previous output unit; i
is the category index; The total number of categories is C. Si
stands for the ratio of the index of the current element to the
sum of the indices of all elements. (1) From the observation
during the deep learning process that the accuracy of training
set is very high, but the prediction accuracy is extremely low
of validation set. This is due to the over-fitting issue. The over-
fitting means that the learning is performed too thoroughly, and
all the features of the training set have been learned, so the
machine has learned too many local features, and too many
fake features due to noise, which caused the model to fail.

In this research, we leverage data augmentation and
dropout methods [51] for preventing the over-fitting problem.
For data augmentation methods, the details of it will be
discussed. In the dropout methods, we decide to dropout
probability of 50 per cent after the the 1st fully connected layer.
After the four convolutional layers (with ReLU activation),
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(a) 11 Grids of windshield (b) Internal dual cameras

(c) 5 Main gaze zones (d) Internal dual cameras

(e) 5 Main gaze zones

Fig. 7. Example Images of Driver’s Face Landmark (left), after OpenFace
Capture Driver’s Attention (middle), and Driver’s Facial Feature Image

(right) while Looking at Distinct Zones of Fig. 2. Cases of Looking at ( a)
Zone 1; (b) Zone 2; (c) Zone 3; (d) Zone 4; (e) Zone 5.

and four max pooling layers (with ReLU activation), and 2nd
fully connected layers (with ReLU and Softmax activation),
the estimation zone of driver attention is obtained.

F. Model Improvement

We have used the DNN model to estimate the driver’s
gaze zone on the windshield of the vehicle. When the driver
does not pay attention on the area where they should be
focus, we should give a warning. We use the DR(eye)VE
dataset to improve our model based on the attention zones
of a real road driving scene. The DR(eye)VE dataset [6], it
contains six hours of driving data, including 555,000 images,
74 video sequences of five minutes each. Videos were recorded
in various environments, such as highway, downtown and
countryside, sunny, rainy, cloudy, daytime and night. Because
the DR(eye)VE project is currently the largest dataset of
driving scenes with driving attention zones are available, we
leverage its saliency maps dataset to compare to the estimation
zone of driver to ensure whether or not to make the alarm
during the driving.

Here we are using sequence videos in the DR (eye) VE
dataset to simulate real road driving scene. In this work, we

divide at a rate of 5 frames per second to the videos into 1800
frames. In our research, the saliency maps are divided into
the 15 grids. In our case, the driver ’s face landmark on the
windshield is defined as four zones. As shown in the Fig. 7,
the red block is defined as Zone 1, the reason for the larger
proportion of this block is because the driver’s concentration
will usually focus on the front part, so our proportion in this
area will be greater than other blocks. The green part It is
Zone 2, the blue part is Zone 3, and the purple part is Zone
4.

For performing a matching verification action with our
driver’s face concentration, we need to label each saliency map.
For obtaining the label of our saliency maps, the filter of the
size of 1 × 1(stride number is 1) is used for the input of 1920
× 1080 pixels. We divide the 1920 by 5, then obtain a number
384 represents for each zone and then scan each pixel in each
zone. The pixel of width from 1 to 384 is defined as Zone
4 (purple part of Fig. 7 (c)), 385 to 1152 is defined as Zone
1 (red part of Fig. 7 (c)), 1153 to 1536 is defined as Zone 2
(green part of Fig.7 (c)), and 1537 to 1920 is defined as Zone
3 (blue part of Fig. 7 (c)). Since there are only pure black (0)
and white (255) in the saliency map, thus the value of each
pixel will be much unsophisticated. Finally, the attention zone
whose final sum value is largest within 5 zones of Fig. 7 (c)
is defined as the label of this saliency map.

G. Validation of Systems and Algorithms

With the road scene, we have labeled the attention area for
each frame by calculating each pixel of frame. Then, we can
match the prediction gaze zone of our current driver’s facial
image of Fig. 3 and the attention zone label of road scenarios
of Fig. 7(c). After that, the driver prediction zone and road
attention zone were determined whether or not identical based
on label comparison. Finally, the label comparison result is
obtained, the system will give a warning to driver if the final
label comparison result is not matched.

IV. EXPERIMENTS AND RESULTS

A. Experiment Data

In our experiment, our dataset has been collected for the
driver’s attention classification system through a web camera
as presented in Fig. 2. Our database was collected in an
actual car instead of in a lab. There are many databases
on driver concentration in previous research, such as Robust
simultaneous modeling and tracking monitoring video (RS-
DMV) dataset [52], The Chinese Face Database (CAS-PEAL)
database [53] and Berkeley Deep Drive (BDD) [54], etc.
However, these databases may not suitable for the research
method we proposed this time due to the label of ground-
truth attention zone is not defined. Without this key element,
we cannot verify the method that purposed in this research.
Therefore, we recorded our own database. In Fig. 4, 5 zones
were split on the wind shield and designated to gaze at for this
experiment. The size of raw image was 1920 × 1080 × 3. When
the experiment was starting, the driver has to perform normally,
like they were actually driving in the ordinary day. After that,
we cropped the size of images to 112 × 112 pixels of driver
facial through OpenFace for DFaep training and validation as
presented in Fig. 3.
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TABLE II. DESCRIPTION OF TRAINING, VALIDATION AND TESTING DATA
IN OUR DATASET

Dataset Amount
Training 7,000 (1,400 × 5) images for each gaze zone on the wind shield

Validation 2,010 (402 × 5) images for each gaze zone on the wind shield
Testing 1,802 images from the real driving scenarios

In our experiment, we performed three different DNN
structures for training and validation. In here, we adopt
AlexNet [55], VGG16 [56] and DFaep model. The model
structure is shown in Fig. 6. For preventing the over-fitting
problem that we adopted some measures for data augmentation
which are as follows. Shifting 2 pixels in vertically and
horizontally and shear angle is 20 degrees in counter-clockwise
direction as presented in Fig. 5. The raw images were used in
validation process whereas the augmented images were used
for training. In here, we used 7,000 augmented images in our
dataset as training set, 2,010 images as validation set, and
used completely independent 1800 images as testing set as
shown in Table II. For the convolution neural network training,
validation and testing, the desktop computer that we used is
Intel i7-8700 CPU at 3.20 GHz and 16 GB memory. And the
graphics card we used NVIDIA GeForce GTX 1070 (CUDA
10.0 and 8 GB memory). The backend was achieved by Keras
(version 2.3.1) [57] with TensorFlow (version 2.1.0) [58].
And the algorithm was achieved by Visual Studio 2013, Dlib
(version 19.19) and OpenCV (version 4.2.0) library.

B. Training of DFaep Model

In this experiment, Adaptive Moment Estima-
tion(Adam) [59] optimizer method was used in our DFaep
training. Adam is distinct to classical optimizer such as
Stochastic gradient descent SGD [60], RMSprop [61]
and Momentum [61], etc. Adam can be considered as
a combination of RMSprop and Momentum, which uses
the first and second moment estimates of the gradient to
dynamically adjust the learning rate of each parameter. The
main advantage of Adam is that after offset correction, the
learning rate of each iteration has a certain range, making the
parameters relatively stable as shown in Equations (2), (3)
and (4).

mt = β1mt−1 + (1− β1)gt
vt = β2vt−1 + (1− β2)g2t (2)

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

(3)

W ←W − η m̂t√
v̂t + ε

(4)

Where mt and vt are the weight to estimate of the first
moment (the mean) and the second moment of the gradients
respectively, g is the weight to gradient on current mini-batch,
β1 is used for decaying the running average of the gradient,
β2 is used for decaying the running average of the square of
gradient, ε is the weight to prevent division from zero error.
In our DFaep training, the experiment was adopted for the

Fig. 8. The Example of Augmented Images.

TABLE III. COMPARISON OF PERFORMANCE IN THREE DIFFERENT
CNNS

Network #Parameters #Layers Model description Accuracy
VGG16 50 M 16 13 conv + 3 fc layers 22 %
AlexNet 24 M 8 5 conv + 3 fc layers 99 %
DFaep 0.7 M 6 4 conv + 2 fc layers 99 %

predefined setting. The β1, β2, and ε of Equations 2, 3 and 4
were set as 0.9, 0.999, and 10−8, respectively.

In this research, we attempted AlexNet, VGG16 and DFaep
model for training and validation, respectively. As shown in
Fig. 8 and Fig. 9, the visualization of the accuracy and loss
during training of VGG16, AlexNet and DFaep, respectively.
The x-axis stands for epoch of training. The y-axis represents
the loss and accuracy of training and validation, respectively. It
can be observed from the results of training, the VGG16 model
with loss 1.60952 and training accuracies 0.2046, the AlexNet
model with loss 0.01979 and training accuracies 0.9934 and
our DFaep model with loss 0.01803 and training accuracies
0.9938.

It can be concluded from the observation that the accuracy
of the VGG16 model is the lowest 0.2046 (20%), and the
accuracy of AlexNet and our DFaep model is very similar,
their accuracy curves close to 1 (100%). However, compared
to DFaep and AlexNet, the depth of the DFaep model structure
is only 6 layers which is shallower than the 8 layers used by
AlexNet. Moreover, the parameter amount of DFaep is less
than one-third of AlexNet and the storage size of DFaep is
only 0.3MB, this makes DFaep’s training efficiency and time
consumption greatly lead AlexNet, and has achieved close
to 100% accuracy as shown in Table III. From observation,
because the rate of accuracy and amount of parameters can be
changed according to the different construction of the DFaep
such as depth, dense and kernel size. Therefore, even the input
data are the identical, the accuracy will not be proportional to
the depth of the model.

C. Validation of Proposed Method

In the next experiment, we have made the comparison of
the results of internal and external vehicle driving data as
shown in Table III. We have matched the prediction results
of driver’s gaze zone and the salient point of DR(eye)VE
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(a) VGG’s Accuracy (b) VGG’s Loss

(c) AlexNet’s Accuracy (d) AlexNet’s Loss

(e) DFaep’s Accuracy (f) DFaep’s Loss

Fig. 9. The Diagram of Loss and Accuracy of Training and Validation
According on the Number of Epoch with Three Models of (a-b) VGG; (b-c)

AlexNet; and (e-f) DFaep.

Fig. 10. The Confusion Matrix with the DR(eye)VE Dataset.

database through the confusion matrix (as shown in Fig. 10)
for evaluating whether or not the results are consistently as
shown in Table III. We compared the prediction results of
driver’s facial feature inside the vehicle with using external
vehicle driving data. Table III presents the comparison results
from the data internal and external the vehicle.

“Road” and “Driver” stand for the zone which driver should
be attended to and estimation zone of driver, separately. By
observing the results of the confusion matrix in Fig. 10, almost

TABLE IV. ESTIMATION ZONES AND ATTENTION AREAS OF DRIVER
AND ROAD SCENE

Data Zone 1 Zone 2 Zone 3 Total
Driver 1787 3 0 1800

Road Scene 1642 153 5 1800

Fig. 11. The Synchronous Comparison of Estimation Zones and Attention
Areas.

all the attention zones have concentrated on zone 1. Although
the direction of gaze regions is sparse, the method proposed in
this research has demonstrated is doable. Later, we obtained
the different matched results by confusion matrix for giving
appropriate alert to driver as shown in red block of Table IV.
These matched gaze zone are mostly concentrate in zone
1. Therefore, we found that it is comply to human driving
behaviors in the normal daily driving. In Fig. 11 demonstrates
the synchronous comparison of estimation zones and attention
areas.

V. CONCLUSION

In this paper, we have proposed a deep learning network
to map the driver’s attention zone interior of the vehicle
environment. For driver gaze zone mapping, driver’s face
landmark, head position, eye gaze images are captured by the
dual low-cost dash cameras. We have performed facial feature
tracker with Openface for extracting the images of driver’s
facial landmark. We have extracted the feature of input image
and located the final gaze zone from our network based on the
the final score of fully connected layer. The final score of fully
connected layer is obtained based on all the extracted features
calculated by softmax function to derive the final result. We
have compared the losses and accuracies of our idea with
three different DNN architecture. Based on the performance
of these three models, our DFaep network not only has shown
a high scale of accuracy but also performed low level of
parameters and storage size. We have demonstrated that such
a focus model can detect a large proportion of a driver’s focus
and is even fast with high acceptable accuracy for detecting
distraction and sending a warning or an alert to the driver
whenever it is needed. Additionally, we show evidence that
such a deep learning network and its trained model provide a
feasible way for understanding the driver’s attention and focus
and making it possible to tame the uncertainty and dynamics
of driver’s attention and corresponding behaviors.
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Empowered by the learnt model trained by the DFaep net-
work, we have conducted multiple test driving. By comparing
the estimation zone of driver and the normal attention area
of the road scene, warning is issued when the driver has any
abnormal driving behavior or distraction during driving (see
Fig. 11). From the results, we can see that the method proposed
in this study is feasible and effectiveness. The propose network
and trained model can be used to offer potential reduction of
driving distraction and help drivers be more focus on roads
during driving in such a way that road and driving safety can
be significantly improved. In the future, we need to further
split the zones and improve the accuracy. In our study, we
notice that the distribution of driver’s attention and focus are
highly skewed. To estimate driver attention and focus, the
zones defined in this work are needed to be further splitted or
refined dynamically by road scene. Moreover, it is noteworthy
to introduce road sense semantic segmentation and object
detection into our network to estimate driver’s interests for
better prediction performance.
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