
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

895 | P a g e

www.ijacsa.thesai.org

Design and Implementation of a Most Secure

Cryptographic Scheme for Lightweight Environment

using Elliptic Curve and Trigonohash Technique

BhaskarPrakash Kosta1, Dr. PasalaSanyasi Naidu2

Computer Science and Engineering Department

GIT, GITAM Deemed to be University

Vishakhapatnam, AP, India

Abstract—The Internet of Things (IoT) is a rising

development and is an organization of all gadgets that can be

gotten to through the web. As a central advancement of the IoT,

wireless sensor networks (WSN) can be used to accumulate the

vital environment parameters for express applications. In light of

the resource limitation of sensor devices and the open idea of

remote channel, security has become an enormous test in WSN.

Validation as an essential security service can be used to

guarantee the authenticity of data access in WSN. The proposed

three factor system using one way hash function is depicted by

low computational cost, and limit overhead, while achieving all

other benefits. Keys are made from secret key for meeting for

improving the security. We differentiated the arrangement's

security and execution with some lightweight plans. As shown by

the examination, the proposed plan can give more prominent

security incorporates low overhead of correspondence.

Encryption and unscrambling is done using numerical thoughts

and by using the possibility of hash function. Mathematical

thoughts are lightweight and update the security up by a

staggering degree by diminishing the chances of cryptanalysis.

When contrasted with different calculations, the proposed

calculation gives better execution results.

Keywords—Internet of Things (IoT); authentication; one way

hash function; lightweight environment; secret key

I. INTRODUCTION

As far off correspondence headway has made, brilliant
world individuals can work by utilizing impending Internet of
Thing (IoT) paradigm[1]. The fundamental contemplated the
Internet of things, or IoT, is a strategy of interrelated getting
ready contraptions, mechanical and automated machines,
things, creatures or individuals that are given great identifiers
(UIDs) and the capacity to move information over an
association without expecting that human should human or
human-to-PC facilitated exertion. Numerous splendid
application can be made by using the data delivered by radio-
frequency identification(RFID) and remote sensor
organization. A comparable idea can be applied in various
mechanical field[2] where canny application can be made
using IoT devices. For example in healthcare[3] some
distinguishing devices or sensors are embedded or attached to
customer which assemble some basic information about
customer, for instance, ECG, pulse , temperature and blood
oxygen. these fundamental information is then shipped off
affirmed clinical master with the help of a section encouraged

by the affiliation who runs the center, taking into account
which the treatment is overseen without the actual presence of
clinical master (This technique can be used to perceive
COVID-19 patient among the people who are in separate so
the spread of sickness can be avoided).

Using WSN biological data can be accumulated. WSN are
regularly involved customers, passages(gateway server) and
sensors centers. By and large sensor centers have limited
energy, computational force and limit power moreover it has
been seen that the energy usage of sensor center depends upon
correspondence detachment [4][28], the energy usage for
sending or tolerating a message of -bits over or from a
distance (d) are assessed by Eqs. 1 and 2, independently. Here
the free space model is used if (d) isn't by and large a cutoff
d0; something different, multi-way model is used.

 () {

 ()

whereEelecis the energy required by the electronic circuit,
εfsandεmpare the energy required by the amplifier in free space
and multi-path model, respectively. One of the plan for
correspondence in WSN is showed up in Fig. 1

In Fig. 1, the customer can start the correspondence by
sending login message to the gateway(the customer is
currently enrolled with the portal the passage(server)
moreover keeps up its correspondence with different sensors),
as of now the server examinations the sales of customer and
makes correspondence with remarkable sensor to make the
correspondence possible among customer and sensor. Using
this philosophy the power use of sensor center point can be
decreased and the life of WSN can be extended. Considering
limited security highlight of remote channel and confined
resources of IoT devices, IoT faces veritable security and
assurance challenges [5].

Fig. 1. Architecture for Communication.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

896 | P a g e

www.ijacsa.thesai.org

·

Das in 2009 Das arranged a check scheme[6] for WSN,
this arrangement was found having issue with inside attack,
impersonation attack and server(gateway) center bypassing
attack. In 2012 A.K Das [7] arranged powerful customer
approval for progressive WSN using light weight calculation,
for instance, hash work and symmetric cryptography, in any
case it moreover had issues, for instance, inside attack, server
primary key revelation attack[8]. In 2013, Xue et al. [9]
proposed a lightweight client validation for WSN, and just
hash activities are used to ensure the computational
effectiveness. They asserted that their plan is secure against
identity/secret key speculating assault and taken smart card
assault. Be that as it may, their plan was discovered uncertain
against stolen smart card assault, insider assault, following
assault, and personality speculating assault [10].

As [8] reveals that most symmetric cryptography and hash
based protocols are unreliable to user anonymity and smart
card security breach assault, thus public key technique can be
used like elliptic curve cryptography (ECC) which outfit same
security as RSA with more diminutive key size. In 2011, Yeh
et al. [11] considered affirmation convention for WSN reliant
on ECC. This show had the issue customer namelessness
(secrecy) and undetectability. Thereafter, Shi and Gong [12]
presented an improved ECC based check convention for
WSN. Regardless, these two shows can't give the features of
customer namelessness (secrecy) and unrecognizability. In
2016, Jiang et al. [13] proposed an ECC based untraceable
affirmation convention for WSN yet had some security defect
as pointed by Li et al. [14].

In rest of this paper oversee proposed three-factor
customer approval convention using one way hash function
and contrasting encryption using one way hash function and
disentangling calculation are similarly discussed and security
discussion which are showed up in Sections II and III.
Section IV oversees comparison of our show with other
related show and discussion of security blemishes of Chang
and Le's arrangement, Xiong- Li et al. scheme.

II. PROPOSED ANONYMITY AUTHENTICATION PROTOCOL

FOR IIOT

In this part, we work with a three-factor validation
protocol for modern web of things to accomplish client
secrecy and oppose cell phone misfortune assault[15]. Here,
we receive the fuzzy extractor [16] to handle biometrics data.
More noteworthy degrees of safety are accomplished by
biometric secret key, like fingerprints, retina examines.
Notwithstanding, two biometric perusing are infrequently
indistinguishable, despite the fact that they are probably going
to be close. Notation used in full text is shown in Table I. Our
plan contains four stages, for example initiation, registration,
authentication and key agreement, and password change. We
delineate these stages as follows.

TABLE I. NOTATIONS

Notation Description

Um,IDm,PWm The Mobile Device(User), and the identification and secret Key

GN, XGN ThegatewayServeranditsServersecret key

Ss,IDs Thesensorhubanditsidentification

xx, XX Private key and public key Gateway server

bm, Mm Private key and public key of Mobile device(User)

XI Ds -GN Shared secret key between Gateway Serverand Sensor hub

PP A point on the elliptic curve

H1(∙), ,ʘ Thehash,XOR,andXNORoperation

A AnAttacker

A. Initiation Phase

To introduce the framework, Gateway Server picks a
single direction hash work H1(∙) which it imparts to every one
of the clients. Additionally, it chooses an elliptic curve E
dependent on a limited field Fp. From that point forward,
Gateway server picks a subgroup GG of E with request huge
prime n, and the generator is point PP. At that point Gateway
worker produces a private key xx and figures the relating
public key XX, where xx ϵ Z*n and XX = xxPP. Finally,
GWN stores xx furtively and distributes the boundaries
{E(Fp),GG,PP,XX}.

1) The Gateway Server(GN)

a) Gateway server chooses a secret key(XGN) and one

way hash function H1(∙) which it shares with all the users

through secured channel.

b) GN chooses an elliptic curve E dependent on a

limited field Fp. From that point forward, GN picks a

subgroup GG of E(Fp) with request huge prime n, and the

generator is point PP.

c) GN produces a private key xx and figures the

comparing public key XX, where xx ϵ Z*n and XX = xxPP.

d) GWN stores xx covertly and distributes the

boundaries {E(Fp),GG,PP,XX}.

e) Sensing Devise(Ss) RegistrationPhase.

All the sensing hub(Ss) in IoT are registered offline by the
GN as follows.

Step SD1. For each device Ss, the GN chooses a one
way hash function H1(∙) which it shares with all the sensor
nodes in secured manner and a unique identity IDsand
calculates the corresponding shared secret key X IDs -GN
=(IDs XGN).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

897 | P a g e

www.ijacsa.thesai.org

Step SD2. The GN pre-loads { IDs, X IDs -GN, H1(∙) }in
the memory of Ss

The Sensor Node(Ss) The Server(GN)

 Select IDs for Ss

 compute X IDs -GN = XGN IDs

 IDs, X IDs -GN

Store IDs, X IDs –GN , H1(∙)

B. Registration Phase

To be associated with the framework as a legitimate client,
the accompanying advances ought to be performed between
client Um and GN, and afterward Um can get to the sensor
information progressively by utilizing his/her cell phone.

Stage 1. A character IDm, a secret word PWm and an
irregular number rm are picked by Um. Then, Um engraves
the biometric data Biom on a cell phone with fuzzy extractor
[16] and gets Gen(Biom) = (σm , τm). At that point Um
ascertains the veiled secret key RPWm = PWm rm,(here
stands for XOR operation) and submits {IDm , RPWm, σm }
to GN for enrollment.

Stage 2. While getting the enrollment demand, GN checks
if IDm in the data set. In the event that indeed, Um requested
to present another character. Something else, GN figures Am
= H1(IDm XGN) and Bm = Am (RPWm σm), and sends
{Bm, XX} to Um through a reliable manner.

C. Authentication Phase

When Um wants to access the sensor data of Ss, the
following authentication steps should be performed among
Um, GN and Ss, and a session key is shared among these three
parties at the end of the authentication phase.

Step 1. Um inputs IDm and PWm on the mobile device,
and imprints the biometric information Bio'm on the mobile
device with fuzzy extractor. Then the mobile device
calculates.

σm' = Rep(Bio'm, τm),

RPW ' m = (PWm rm)

A' m = Bm (RPW ' m σm')

checks A ' m ?= Am. Imbalance implies in any event one
of three variables is invalid, and the login demand is rejected
by the cell phone. Or disaster will be imminent, the cell phone
plays out the following stage. The cell phone delivers an
arbitrary numbers bm Z*

n and calculates.

MM1 = bm*PP,

MM2= bm*XX

MM3= IDm MM2

MM4=IDs MM2

MM5= H1(A' m) (1)

Then the mobile device(User) submits the login request {
MM1,MM3, MM4,MM5 } to GN.

Step 2. When receiving the request, GN first retrieves
IDm, IDs and then computes A''m and then it calculates the
hash value of A''mthat is MM'5.

MM'2 = xx*MM1

ID'm =MM3 MM'2

ID's =MM4 MM'2

A''m= (ID'm XGN)

MM'5=H1 (A''m)

GN server checks MM'5=MM5 If yes then the GN Server
get a assurance that the user is genuine then GN server
calculates the shared secret key X' IDs -GN between sensor
node(Ss) (given by user) and itself then it calculates MM6,
MM7 for performing authentication.

X' IDs -GN = (ID's XGN)

MM6 = X' IDs -GN ID'm

MM7= H1(X' IDs -GN) (2)

At last, GWN Server sends { MM6,MM7 } to sensor
Node.

Step 3. After receiving the message from GN Server,
Sensor node(Ss) first computes.

MM'7= H1(X IDs -GN)

Sensor node checks MM'7=MM7, if yes then sensor
node(Ss) gets a assurance that the request came from correct
server, then sensor node(Ss) calculates.

ID''m = MM6 X IDs -GN

MM8 =H1(X IDs -GN ID''m) (3)

The Sensor node also gets the information about the user
who wants to communicate, after that it sends responses
{MM8} to GN Server.

Step 4.After receiving the response from the sensor
node(Ss) the GN Server retrieves computes.

MM'8 = H1(X' IDs -GN ID'm)

if (MM'8 = MM8) , GN Server gets an assurance that
sensor node(Ss) is genuine and generates the session key to
be given to both mobile device(user) and sensor node(Ss):

SKS= ID'm IDs XGN A''m xx (4)

MM9 = X' IDs -GN SKS

MM10 = MM'2 SKS

MMM10 = H1(A''m ID'm)

Then GN Server sends MM9 to sensor node(Ss) and
(MM10,MMM10) to mobile device(user). Otherwise, server
cuts off the communication.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

898 | P a g e

www.ijacsa.thesai.org

Step 5. After receiving the message from GN Server,
mobile device(User) computes MMM'10.

MMM'10=H1(A'm IDm)

If MMM'10 = MMM10 then mobile device(user) gets a
assurance that he is communicating with correct GN server
then mobile device computes secret key(SKm).

SKm = MM10 MM2

MM11= H1(MM10)

Then the mobile device(User) submits MM11 to GN
Server.

Step 6.After receiving the message from GN Server,
Sensor node(Ss) retrieves the secret key.

SKs = MM9 X IDs -GN

MM12= H1(MM9)

Then the Sensor node submits MM12 to GWN Server.

Step 7.After receiving the message from mobile
device(user) MM11 and Sensor nodeMM12, GN Server,
computes the following.

MM'11= H1(MM'2 SKS)

MM'12= H1(X' IDs -GN SKS)

If M'11= M11 and M'12= M12 , GN Server gets a
assurance that Mobile Device(User) and sensor node(Ss)
are is genuine and received the correct secret key and
hence key synchronization ends.

If mutual validation and key exchange phase completes
successfully, both mobile device(user) and Sensor hub(Ss)
will transfer information by using the meeting key which will
be computed by the GN server and given to both mobile
device(user) and the sensor hub(Ss) in secured way. First
source authentication is achieved, for this a one way hash
function is used. The message digest is created for date(Am)
which is available at both mobile device(user) and GN server,
so this message digest will act as a authenticator. In the same
way sensor node(Ss) and GN server mutual authenticate each
other by creating a authenticator using hash function (HA-
160) by using the common data X IDs –GN . The details of hash
function(HA-160) is given below. After all the devices get
assurance about other devices the GN server generates a secret
key and passes it to both sensor hub(Ss) and mobile
device(user) in a secured way.

Fig. 2. Illustration of the Mutual Validation Stage and Key Synchronization Stage.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

899 | P a g e

www.ijacsa.thesai.org

The Secret Key between User(Ui-Mobile) and Server(GN)

The Mobile device(User-Um)

private Key=bm

Public Key = MM1(MM1=bm*PP)

Secret key = bm*XX

 = bm*xx*PP

The Server(GN)

private Key=xx

Public Key = XX(XX=xx*PP)

Secret Key =xx*MM1

 = xx* bm * PP

The secret key for session synchronization is showed in
Fig. 2. Hash algorithm and data encryption phase is described.

III. HASH ALGORITHM(HA-160)

The proposed calculation is named as HA-
160[24][25][26]. This assessment HA-160 (Hash Algorithm)
recognizes a message as responsibility with a most
uncommon length of under 2128 pieces and makes a 160-piece
message digest as yield. First the data message is isolated into
squares of 1024 pieces. This 1024 pieces is taken as
information, by then the information is diminished from
1024-digit squares to 512-cycle blocks. The Hash code
creation work perceives two wellsprings of data which are
1024 pieces square of the message and the instate MD
support (getting variable 160-bits). The cycle includes the
going with advances.

A. Attach Padding Pieces

The message is padded so its length is reliable to 896
modulo 1024 (length = 896 mod 1024). Padding is
continually done, whether or not the message is of needed
length. Subsequently, the amount of padding pieces is in the
extent of 1-1024. The padding contains alone 1 followed by
the significant number of 0's for example 10… ..0.

B. Attach Length

A square of 128 pieces which contains the length of the
message (going before cushioning) is joined to the message.
This square is treated as an unsigned 128-digit number (most
basic byte first).

C. Initialize MD Pad

A 160-piece cushion is utilized to hold impermanent and
eventual outcome of the hash work. The assistance can be
tended to as five 32-digit registers (SS0, SS1, SS2, SS3 and
SS4) .These registers are instated to the going with 32-bit
numbers (Hexadecimal qualities):

SS0 = 67 45 23 01

SS1 = efcdab 89

SS2 = 98 ba dc fe

SS3 = 10 32 54 76

SS4 = c3 d2 e1 f 0

These attributes are same as the secret vector evaluations
of SHA-1 which are normalized by Federal Information
Processing Standards Publications (FIPS PUBS). These
qualities are dealt with in big endian plan, which is the
standard byte of a word in the low-address byte position.

D. Processes Message in 1024-Bitblocks

The message digest age strategy contains five sub
capacity. This part is named (HA-160) in Fig. 1 and its
reasoning is showed up in Fig. 2. Fig. 1 depicts the general
getting ready of message to make a information survey. The
consequence of the underlying two phases (after add padding
pieces and append size) yields a information that is a number
various of 1024-piece long. The all-inclusive information is
addressed as the gathering of 1024-piece blocks XX0,
XX1,XX2 XXL-1, so the total size of the all-inclusive
information is L × 1024 pieces (L = the amount of 1024 bit
hinders), that is the outcome of various of 32-bit blocks. Here
K addresses the real length of the message in pieces, "IV‟" is
the fundamental vector which is used to present the five 32-
cycle registers (SS0, SS1, SS2, SS3 and SS4). VCi, VCii, VCq
and VCL-1 address instate MD(carry vector) which holds
widely appealing and inevitable result of the Hash work,
separately. Each round takes two data sources one 1024-cycle
block (XXq) of the message and a 160 piece pass on vector
(VCq). Close to the completion of the Lth stage produces 160
piece message digest. From the start the given message is
disengaged into 1024-digit blocks, and each square is passed
to Hash Code making capacity (HA) as a commitment close
by the 160-piece vector(as shown in Fig. 3 and Fig. 4).

The Hash work (HHA -160) rationale is:

Remouldingtask(Rfn) converts the given 1024-bit block
into adjusted 512-bit block.

Progression task(Pfn) converts the given 160-piece initial
vector into extended 512-bit vector.

32-digit XOR operation(XORop) performs XOR procedure
on each 32-pieces of altered 512-bit block and extended 512-
bit vector.

Fig. 3. Message Digest Creation using HA-160.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

900 | P a g e

www.ijacsa.thesai.org

Fig. 4. The Rationale of Hash Work (Compression Work).

Partition and Modification operation(Pop) disconnects
the 512-cycle block into 16 sub-square of 32-bits each and
afterward each 32 digit block is isolated into four 8-bit block,
after that it changes every eight bit block. This interaction is
rehashed for every one of the 32 bit block.

New Point(on elliptic curve) estimation work (NPfn)
calculates new point on elliptic curve using 4 eight-cycle
block(from each 32-bit block).

Where,

 XXq = the qth 1024-cycle square of the information.

 VCq = mooring variable arranged with the qth square of
the information.

 Rfn = Remoulding task.

 P=(xxx1,yyy1) and Q=(xxx2,yyy2).

 Pfn = Progression task.

 XORop=XOR(Exclusive-OR) development performed
on each 32-cycle square of the adjusted 512-digit block
(XXq) and relating 32-pieces of the comprehensive
512-bit block (VCq).

 Pop = 512-digit square can be withdrawn into 16 sub
squares of 32-bits each and subsequently each 32 cycle
block is confined into four 8-bit block, after that it
changes each eight bit block.

 NPfn = initial 32-cycle square further parceled into 2
sub parts of 16-piece each.

1stsub part = 16 bit, apportioned into two sub part (8-
bits,8-bits) = (xxx1, yyy1).

2nd sub part = 16 bit, divided into two sub part (8-bits, 8-
bits) = (xxx2, yyy2).

The characteristics (xxx1, yyy1, xxx2, and yyy2 as showed
in Fig. 5) are changed over into entire numbers followed by
processing another point on elliptic curve. The above
interaction is revamped for staying fifteen 32-cycle block and
the outcome is 16 sub square every one of 16 pieces. Presently
every one of this 8 sub square every one of 16 digit is
changed, the initial 8-cycle of first square is XOR with a 8-bit
sub square which are each of the zeros, the outcome is put
away in initial 8-bit sub square. The subsequent 8-digit sub
square of first square is added with initial 8-bit sub square and
result is put away in second 8-cycle sub square and the
interaction is rehashed for every one of the 8-piece sub square.
The outcome is arranged 256 cycle block. Presently
neighboring sub square every 16 pieces are added which
brings about a sub square of 32 digit and we get eight 32 piece
sub square. At that point this eight 32-digit sub square are
converted to four 32-bit sub block by added first and fifth,
second and sixth, third and seventh and fourth and eight 32-
digit sub square are added which brings about four 32-cycle
sub square. By playing out some numerical procedure on over
four processed 32 bit sub square and afterward XOR them
brings about the fifth 32 cycle sub square. This five 32 piece
sub square when concatenated adds up to 160 piece and when
summed with introduced MD cradle shapes the hash code.
This 160 piece hash code will be the contribution to next 1024
digit of message i.e it will go about as introduce MD cradle
for next 1024 cycle of the info message. The last 160 piece
code produced from last 1024 cycle of message will be the last
message digest which will go about as confirmation code.

Fig. 5. Elliptic Curve Way to Represent Two Points.

1) Remouldingtask(Rfn):Each 1024-cycle square of data is

isolated into 128 sub-blocks including 8-bits of each sub-

block. One brief show of size 8 (Tempx8) is taken and instated

with zeroes. The adjustment work includes two sub task as

shown as follows.

Sub-work 1. Initially, the first 8-bits of 1024 block is
XORed with Tempx8 variable i.e eight bit starting from least
significant bit in Tempx8 is XORed with first 8-bits of 1024
block. the result is stored in first 8-bit of 1024 block(Modified
Message) and Tempx8 is incremented by one. This extended
Tempx8 is XOR with the going with 8-pieces of the message
to make the going with 8-pieces of changed message as tended
to in Fig. 6.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

901 | P a g e

www.ijacsa.thesai.org

Fig. 6. Function of Sub-Work1.

Sub-work 2. The above result is again detached into sub
square of 8 pieces and initial eight-cycle sub square and focus
eight-bit sub square after bitwise complimenting(~) are XOR
and the result is again bitwise complimented(~) and set aside
in an alternate array(W2). The above cycle is reiterated for
second 8-bit sub square and focus notwithstanding one 8-digit
sub square and result is taken care of in second piece of
disconnected array(W2). This is repeated for all extra 8-digit
sub square. The result is 1024 cycle block is diminished to 512
digit block. The changed message as depicted under.

intMod_Inp(vector<int> mm, intnn)

 {

 staticint W[130] ;//32 bits as a group
 int ii, jj=0,pp,qq,kk1=0,TT=0;
 pp=nn;
 nn*=128;
 for (ii=nn;ii<nn+128; ii++)
 {
 W[ii]=TT ^ mm[ii] ;
 TT++;
 }
 jj=((ii+nn)/2) ;
 qq=jj;
 for (i i=nn;ii<(qq+nn); ii++)
 {
W2[kk1]=~(~(W[ii]) ^ ~(W[jj]));

 kk1++;

jj++;
 }
return 0;
}

2) ProgressionTask(Pfn):The 160-piece Initial Vector (IV)

is one of the commitments to the message digest creation work

(HA-160). It will in general be stretched out to 512-bits by

interfacing all hidden vector regards in indirect manner, which

is called Concatenated Vector (VC). The association cycle is

showed in Fig. 7.

Fig. 7. Formation of 160-Bit Block (IV‟) to 512-Bit Block (CV).

3) 32-bit XOR operation(XORop):XOR movement is done

on starting 32-piece sub-block of modified 512-cycle square

and expanded 512-piece square. For this initial four 8-digit

block are extended and summed with the goal that it becomes

32 piece square. At that point this 32-piece square is XOR

with initial 32-bit of extended or instate MD cradle of 512-

piece square. This interaction is rehashed for rest of the pieces

of adjusted 512-bit and extended 512-digit block. The

outcome is 512-cycle block as demonstrated underneath.

 for (tt1 = 0; tt1 < 16; tt1++)

 {

WW3[t1] = (WW2[4 *t t1] << 24) + (WW2[4 * tt1
+ 1] << 16) + (WW2[4 * tt1 + 2] << 8) + (WW2[4 *
tt1 + 3]) ;

if(tt1==0)

WW3[tt1]=((WW3[tt1]) ^ (EE)) ;

if(tt1==1)

WW3[t1]=((WW3[t1]) ^ (DD)) ;

if(tt1==2)

WW3[t1]=((WW3[tt1]) ^ (CC)) ;

if(tt1==3)

WW3[tt1]=((WW3[tt1]) ^ (BB)) ;

if(tt1==4)

WW3[tt1]=((WW3[tt1]) ^ (AA)) ;

if(tt1==5)

WW3[tt1]=(WW3[tt1]) ^ (EE) ;

if(tt1==6)

WW3[tt1]=((WW3[tt1]) ^ (DD)) ;

if(tt1==7)

WW3[tt1]=(WW3[tt1]) ^ (CC) ;

if(tt1==8)

WW3[tt1]=(WW3[tt1]) ^ (BB);

if(tt1==9)

WW3[tt1]=(WW3[tt1]) ^ (AA);

if(tt1==10)

WW3[tt1]=(WW3[tt1]) ^ (EE);

if(tt1==11)

WW3[tt1]=(WW3[tt1]) ^ (DD);

if(tt1==12)

WW3[tt1]=(WW3[tt1]) ^ (CC);

if(tt1==13)

WW3[tt1]=(WW3[tt1]) ^ (BB);

if(tt1==14)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

902 | P a g e

www.ijacsa.thesai.org

WW3[tt1]=(WW3[tt1]) ^ (AA);

if(tt1==15)

WW3[tt1]=(WW3[tt1]) ^ (EE);

 }

 }

4) Partition and Modification operation(Pop):Each

32-digit square of the above outcome is additionally allocated

2 sub-squares of 16-bits each. By then every 16-bit block is

segregated into two 8-cycle sub square, all of these eight

pieces are changed that is First the four pieces are taken from

the 8-digit regard starting from least basic position then it is

XOR with a variable1(mm) whose value is zero, the result is

kept in a variable2(mm1) also the assessment of

variable1(mm) is invigorated for instance it is given the

assessment of variable2(mm1). Ensuing to completing the

above advance again from 8-digit value(input), four pieces

starting from most critical position is taken care of in

variable3(mm2) and variable3 is changed by playing out a

XOR with variable1(mm) . The data is reproduced for

example 8-cycle regard is recomputed by taking care of the

assessment of variable3(mm2)(four bits starting from least

basic situation) in four pieces starting from most huge position

and next four pieces of early on eight bit(input)

communicating from least critical position gets the pieces

from variable2(km1) (four pieces starting from least huge

position) so this way the 8-digit of data is changed . A

comparative procedure is embraced for remaining three 8-bit

regards made from 32 cycle that is

BB1 = (WW3[t] >> 8) & 0xff; 2nd 8- piece

number made from 32 bit number

AA2 = (WW3[t] >> 16) & 0xff 3rd 8 cycle

number made from 32 bit number

BB2 = (WW3[t] >> 24) & 0xff 4th 8 digit

number made from 32 cycle number

AA1yy1

int Mod_Int2(int yy1)

{

inti,j,mm=0,mm1=0,mm2=0;

 mm1=yy1 & 0xf;

 mm2=(yy1 >> 4) & 0xf;

 mm1= mm1 ^ mm;

mm= mm1;

 mm2= mm2 ^ mm;

 y1 = (mm2<< 4) + (mm1);

return yy1;

}

A same strategy is adopted for remaining seven
32-digit blocks.

5) New Point(on elliptic curve) estimation task

(NPfn):Each 32-digit block is separated into two sub squares

of same length. These sub squares go probably as two

motivations behind an elliptic curve which are used in new

point appraisal in elliptic curve as exhibited in Fig. 5. First by

using two point slope(λ) of line is resolved the this slant

value(M) is used in the calculation of new X and Y center

point on elliptic curve. The resultant new point is 16 cycle

regard i.e X center is 8 pieces and Y center point is 8 pieces so

both taken together is 16 digit sub square. An amount of

sixteen 16-cycle sub square is created after new point

computation. As of now this new point are changed by

performing XOR on new point. Each 8-digit sub square is

XOR with its adjoining 8-cycle sub square beside beginning

8-bit sub square which is XOR with a 8 bit sub square,

everything being zero. After above action connecting sub

squares are incorporated an especially that it becomes 32 cycle

sub square. Repeating this, achieves eight 32-digit sub square.

Incline of line in elliptic curve (for real) is determined as:

 ()
()

()

where (xxx1,yyy1) and (xxx2,yyy2) are points on elliptic
curve. New point on elliptic curve for reals are calculated
using the following formula

xx3(new point) = (slope(λ))2 - xxx1 - xxx2

and

yy3(new point) = slope(λ) * (xxx1-xxx2) – yyy1

the above calculation is for the case when xxx1 != (not
equal to) xxx2 (this is assumed that xxx1 is not equal to xxx2).
The logic of new point estimation is demonstrated below.

 for (tt = 0; tt< 16; tt++)

 {

 AA1 = WW3[tt] & 0xff;

 AA1=(Mod_Int2(AA1));

 BB1 = (WW3[tt] >> 8) & 0xff;

 BB1=(Mod_Int2(BB1));

 AA2 = (WW3[tt] >> 16) & 0xff;

 AA2=(Mod_Int2(AA2));

 BB2 = (WW3[tt] >> 24) & 0xff;

 BB2=(Mod_Int2(BB2));

 MM=(BB2-BB1)/(AA2-AA1);

AA3[ii]=(MM*MM)-AA1-AA2;

AA3[ii]=AA3[ii]^TT1 ;

BB3[ii]=MM*(AA1-AA2)-BB1;

BB3[ii]=BB3[ii] ^ AA3[ii];

 TT1=BB3[ii];

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

903 | P a g e

www.ijacsa.thesai.org

ii++;

 }

The above process results in A3 and B3 array . Now each
of this array element is altered using the strategy

 for(ii=0;ii<16;ii=ii+2)

 {

if(ii<2)

 {

AA3[ii] = (AA3[ii] << 24) + (BB3[ii] << 16) + (AA3[ii+1]
<< 8) + (BB3[ii+1]);

BB3[ii] = (BB3[ii] << 24) + (AA3[ii] << 16) + (BB3[ii+1]
<< 8) + (AA3[ii+1]);

AA3[ii+1] = (AA3[ii+1] << 24) + (BB3[ii+1] << 16) +
(AA3[ii] << 8) + (BB3[ii]);

BB3[ii+1] = (BB3[ii+1] << 24) + (AA3[ii+1] << 16) +
(BB3[ii] << 8) + (AA3[ii]);

 }

if(ii>=2 && ii<4)

 {

AA3[ii] = (AA3[ii] << 24) + (BB3[ii] << 16) + (AA3[ii+1]
<< 8) + (BB3[ii+1]);

BB3[ii] = (BB3[ii] << 24) + (AA3[ii] << 16) + (BB3[ii+1]
<< 8) + (AA3[ii+1]);

AA3[ii+1] = (AA3[ii+1] << 24) + (BB3[ii+1] << 16) +
(AA3[ii] << 8) + (BB3[ii]);

BB3[ii+1] = (BB3[ii+1] << 24) + (AA3[ii+1] << 16) +
(BB3[ii] << 8) + (AA3[ii]);

 }

if(ii>=4 && ii<6)

 {

AA3[ii] = (AA3[ii] << 24) + (BB3[ii] << 16) + (AA3[ii+1]
<< 8) + (BB3[ii+1]);

BB3[ii] = (BB3[ii] << 24) + (AA3[ii] << 16) + (BB3[ii+1]
<< 8) + (AA3[ii+1]);

AA3[ii+1] = (AA3[ii+1] << 24) + (BB3[ii+1] << 16) +
(AA3[ii] << 8) + (BB3[ii]);

BB3[ii+1] = (BB3[ii+1] << 24) + (AA3[ii+1] << 16) +
(BB3[ii] << 8) + (AA3[ii]);

 }

if(ii>=6 && ii<8)

 {

AA3[ii] = (AA3[ii] << 24) + (BB3[ii] << 16) + (AA3[ii+1]
<< 8) + (BB3[ii+1]);

BB3[ii] = (BB3[ii] << 24) + (AA3[ii] << 16) + (BB3[ii+1]
<< 8) + (AA3[ii+1]);

AA3[ii+1] = (AA3[ii+1] << 24) + (BB3[ii+1] << 16) +
(AA3[ii] << 8) + (BB3[ii]);

BB3[ii+1] = (BB3[ii+1] << 24) + (AA3[ii+1] << 16) +
(BB3[ii] << 8) + (AA3[ii]);

 }

if(ii>=8 && ii<10)

 {

AA3[ii] = (AA3[ii] << 24) + (BB3[ii] << 16) + (AA3[ii+1]
<< 8) + (BB3[ii+1]);

BB3[ii] = (BB3[ii] << 24) + (AA3[ii] << 16) + (BB3[ii+1]
<< 8) + (AA3[ii+1]);

AA3[ii+1] = (AA3[ii+1] << 24) + (BB3[ii+1] << 16) +
(AA3[ii] << 8) + (BB3[ii]);

BB3[ii+1] = (BB3[ii+1] << 24) + (AA3[ii+1] << 16) +
(BB3[ii] << 8) + (AA3[ii]);

 }

if(ii>=10 && ii<12)

 {

AA3[ii] = (AA3[ii] << 24) + (BB3[ii] << 16) + (AA3[ii+1]
<< 8) + (BB3[ii+1]);

BB3[ii] = (BB3[ii] << 24) + (AA3[ii] << 16) + (BB3[ii+1]
<< 8) + (AA3[ii+1]);

AA3[ii+1] = (AA3[ii+1] << 24) + (BB3[ii+1] << 16) +
(AA3[ii] << 8) + (BB3[ii]);

BB3[ii+1] = (BB3[ii+1] << 24) + (AA3[ii+1] << 16) +
(BB3[ii] << 8) + (AA3[ii]);

 }

if(ii>=12 && ii<14)

 {

AA3[ii] = (AA3[ii] << 24) + (BB3[ii] << 16) + (AA3[ii+1]
<< 8) + (BB3[ii+1]);

BB3[ii] = (BB3[ii] << 24) + (AA3[ii] << 16) + (BB3[ii+1]
<< 8) + (AA3[ii+1]);

AA3[ii+1] = (AA3[ii+1] << 24) + (BB3[ii+1] << 16) +
(AA3[ii] << 8) + (BB3[ii]);

BB3[ii+1] = (BB3[ii+1] << 24) + (AA3[ii+1] << 16) +
(BB3[ii] << 8) + (AA3[ii]);

 }

if(ii>=14 && ii<16)

 {

AA3[ii] = (AA3[ii] << 24) + (BB3[ii] << 16) + (AA3[ii+1]
<< 8) + (BB3[ii+1]);

BB3[ii] = (BB3[ii] << 24) + (AA3[ii] << 16) + (BB3[ii+1]
<< 8) + (AA3[ii+1]);

AA3[ii+1] = (AA3[ii+1] << 24) + (BB3[ii+1] << 16) +
(AA3[ii] << 8) + (BB3[ii]);

BB3[ii+1] = (BB3[ii+1] << 24) + (AA3[ii+1] << 16) +
(BB3[ii] << 8) + (AA3[ii]);

 }

 }

that is AA3[i] is recreated from AA3[i], BB3[i], AA3[i+1]
and BB3[i+1] i.e. here AA3[i] is left shifted by 24 bits,
BB3[i] is left shifted by 16 bits, AA3[i+1] is left shifted by 8
bits and BB3[i+1] is left shifted by 0(zero) bits and then
AA3[i], BB3[i], AA3[i+1] and BB3[i+1] are added to
generate AA3[i]. Similarly BB3[i] is recreated from AA3[i],
BB3[i], AA3[i+1] and BB3[i+1] i.e. here BB3[i] is left shifted
by 24 bits, AA3[i] is left shifted by 16 bits, BB3[i+1] is left
shifted by 8 bits and AA3[i+1] is left shifted by 0(zero) bits
and then AA3[i], BB3[i], AA3[i+1] and BB3[i+1] are added
to generate BB3[i]. For recalculating AA3[i+1] again AA3[i],

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

904 | P a g e

www.ijacsa.thesai.org

BB3[i], AA3[i+1] and BB3[i+1] are used i.e. here AA3[i+1] is
left shifted by 24 bits, BB3[i+1] is left shifted by 16 bits,
AA3[i] is left shifted by 8 bits and BB3[i] is left shifted by
0(zero) bits and then AA3[i], BB3[i], AA3[i+1] and BB3[i+1]
are added to generate AA3[i+1]. Finally for recalculating
BB3[i+1] again AA3[i], BB3[i], AA3[i+1] and BB3[i+1] are
used i.e. here BB3[i+1] is left shifted by 24 bits, AA3[i+1] is
left shifted by 16 bits, BB3[i] is left shifted by 8 bits and
AA3[i] is left shifted by 0(zero) bits and then AA3[i], BB3[i],
AA3[i+1] and BB3[i+1] are added to generate BB3[i+1]. The
same process is repeated for all the value of „ii‟.Here „ii‟ is
incremented by 2 when the statements inside looping structure
are rotated using ii

6) Result:The 160-piece hash code is acquired by adding

four 32 bit sub square i.e. first and fifth, second and sixth,

third and seventh and fourth and eight 32-bit sub square are

added which brings about four 32-digit sub square. Presently

this four 32-cycle block got in above interaction are

numerically controlled which brings about last 32-digit sub

square as demonstrated beneath. The message digest (160

pieces) is gotten by connecting the five 32-cycle block got in

above interaction.

EE=~ (AA) ^ (BB>>5) ^ ~(CC) ^ ~ (DD <<5);

160-bit Hash Code = AA || BB || CC || DD || EE

All hexadecimal numbers are copied into pass on vector
(or instate MD cushion), which is the message blueprint of a
given message(if the message size is 1024-piece square) in
any case the above cycle is emphasized until the last 1024-
digit square of the message.

IV. ENCRYPTION ALGORITHM

Step 1: In trigonometry operation, for encryption we use a
trigonometric formula made up of Cos function i.e. Cos
() =y then Sin function i.e. Sin ()
=y1, here we require the value of for Cos and Sin function.
At the time of encryption and decryption this value of pi will
be needed. The actual value of , but in this case
the Sensor Nodeand mobile device(user)will take the value of
 be current key generated from the secret key for session SKm
or SKs . For example, let the value of key be 77.

Here is the method how the key for encryption or
decryption is generated from secret key for session(SKi).

1) First the secret key is stored in a variable and then this

variable is rotated ten times, for each rotation it checks

whether the rotation is even or odd. If even, the variable is

right shifted by one and the shifted value is stored in a new

array(xx), also the variable gets the current value of array x

and the array is incremented. If odd, the variable is left shifted

by one and the shifted value is stored in a new array(xx), also

the variable gets the current value of array x and array is

incremented. This process is repeated for a array of size ten,

so at the end of first step we get ten different values generated

from secret key. The process is shown below:

y=sks

jj=1;

for(ii=0;ii<10;ii++)

{

if(ii%2==0)

{

xx[ii]=y<<jj;

y=xx[ii];

}

else

{

xx[ii]=y>>jj;

y=xx[ii];

}

2) Now the new array is analyzed that is from secret key

ten different keys are generated in stage1, then this ten keys

are XOR and the result of XOR operation is kept in a

variable(t). After computing the value of t, the new array is

modified that is array xx first position will now hold the value

of array xx second position and array xx second position will

now hold the value of array xx third position and the process

continues till ninth position tenth array xx position will hold

the value of variable t. After completion of above step one

position of array xx(tenth position) is altered, the same process

is repeated for all the position(ninth to one position) of array

xx. So after stage2 the ten different key generated in step one

will be holding all new values

jj=1.

for(jj=0;jj<10;jj++)

{

t=0;
for(ii=1;ii<10;ii++)

t=(t + xx[ii]) ;
for(ii=0;ii<10;ii++)

{
if(ii==9)
tt2[ii]=t;

else
tt2[i]=xx[ii+1];

}
jj=9;

for(ii=0;ii<10;ii++)
{

xx[ii]=tt2[jj];
jj--;
 }

}

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

905 | P a g e

www.ijacsa.thesai.org

3) The ten key generated in stage2 are reduced to five that

is first key is XOR with tenth key and the result is stored in a

separate array(kk1) in first position after a left shift by zero,

then second key XOR with ninth key and result is stored in

array(kk1) second position after a left shift by one and the

process continues till stage2 ten keys are reduced to five. The

process is shown below:

jj=10;

for(ii=0;ii>jj;ii++)

{

kk1[ii]=(kk1[ii] + kk1[jj])<<ii;

jj=jj-1;

}

4) The ten keys of stage2 are reduced to five in stage3

then in stage4 this five keys are XOR and the result is stored

in a variable (kkmm). the output of stage4 will be the input to

stage5.

kkmm=0

for(ii=0;ii<5;ii++)

kkmm=(kkmm^kk1[ii]) ;

5) Finally the result of stage4 is reduced to a number less

than 10 by applying modular operation. This result as shown

in Table II will be acting a key.

Shared secret key for session = 77

TABLE II. GENERATED KEY

KKi Value

KK1 1155

KK2 2156

KK3 4235

KK4 8316

KK5 16555

KK6 32956

KK7 65835

KK8 131516

KK9 262955

KK10 525756

Final value of Key =3.000000

Step 2: Take the input message, for example “24, 32, 56,
65, 73”. Here every element of input message will be
encrypted by calling the trigonohash technique. The input(xx)
is taken from input string to be encrypted, first the input is
converted into radians by multiplying xx with pi/180.0 and the
generated value is given to Cos function. The output of Cos
function will be the input to Sin function. The output of Sin
function is again manipulated which forms the final cipher
text to be transmitted to destination. So the process of

encryption can be described as four step process as illustrated
below:

 for(ii=0;ii<nx;ii++) // nx Number of input data

{

yy11[ii]=cos(sz[i]*key/180.0); // sz[i] ith Data

yy12[ii]=sin(yy11[ii]*key/180.0);

ss1=int(yy12[ii]);

frac1= yy12[ii]-ss1;

ss2 = Mod_Int3(ss1);

yy12[ii]=ss2;

yy12[ii]=yy12[ii]+frac1;

ab1[ii]= hash1(sz[i]);

}

int Mod_Int3(int xx)

{

int static r1;

int AA1,BB1,AA2,BB2;

AA1 =xx & 0xff;

 BB1 = (xx >> 8) & 0xff;

 AA2 = (xx >> 16) & 0xff;

 BB2 = (xx >> 24) & 0xff;

 r1 = (AA1 << 24) + (BB1 << 16) + (AA2 << 8) + (BB2);

return r1;

 }

These values(xx in radian) will go into the Cos () , and
the output of Sin (yy) after manipulating it with Mod_Int3
function form the cipher text. As we have changed the value
of = SK1 = 1.137201(for example) the result will be
automatically changed as seen in the cipher text.

The general methodology for calculating cipher text is a
four step process.

1) The first input is given to Cos(input*key/180.0) as Cos

function takes input in radian form, the input is multiplied

with here is assigned the value of generated key.

2) The output of Cos function will be the input to Sin

function i.e. the out will be given to Sin(cos

output*key/180.0), as Sin also takes radian value the same

procedure is adopted as above for generating output.

3) The output of Sin function is manipulated using

Mod_Int3 function which rearranges the bytes in the input i.e

in Sin function output least significant byte is placed most

significant bytes place i.e interchanged then (least significant -

1) byte is interchanged with (most significant -1) this is

repeated for all the bytes /2 in the output. The output of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

906 | P a g e

www.ijacsa.thesai.org

Mod_Int3 is the final cipher text which is transmitted to

destination along with the hash value(HA-160) of input.

Now if yy12[ii] and encryption algorithm are known to the
attackers then also they will not be able to breach the
information. Because the value of is not general like
 rather than it is 1.137201 (SK1 or generated
key) Experimental results are shown in Table III.

TABLE III. DEMONSTRATION OF ENCRYPTION PROCESS

Input

Message

Key

(pi)
CipherText Hash value of Input

24

3.000000

0.015350
05c8778d2274ca4940aca31e32a7

1ebfc99b597d

32 0.014351
82817f1da244ca39d0dca32eb277

1eaf4654610d

56 0.009919
2814db78a2388a55c37d1a4ab26a

decbebe7bd68

65 0.007806
4f15dbe822088a4553ad1a5a323a

debb12e8bdd8

73 0.005780
e514db78a2388a55c37d1a4ab26a

decba8e7bd68

V. DECRYPTION PROCESS

Take the input message, for example “0.000256, 0.000239,
0.000165, 0.000130, 0.000096” .Here every element of input
message will be decrypted by calling the trigonohash
technique. The input(xx) is taken from input string to be
decrypted, first in the input, the effect of Mod_Int3 function of
encryption module is nullified by arranging the bytes of input
in original form by using Mod_Int3 function of decryption
module. This output is given to Sin function and the output of
aSin function will go as input to aCos function. The output of
aCos function is given to hash function(HA-160). The
calculated hash code is matched with the received hash code,
if matched then the output of aCos function is accepted as the
message transmitted by sender else rejected. So the process of
decryption can be described as four step process as illustrated
below:

 for(ii=0;ii<nx;ii++) // nx Number of input data

{

ss1=int(yy11[ii]);

frac1= yy11[ii]-ss1;

ss2=Mod_Int3(ss1);

yy11[ii]=ss2;

yy11[i]=yy11[ii]+frac1;

kk2[i]=(asin(yy11[ii])*(180.0/key));

kk3[i]=(acos(kk2[ii])*(180.0/key));

qq1=(int)round(kk3[ii]);

ab2[i]=hash1(qq1);

}

int Mod_Int3(int xx)

{

int static r1;

int AA1,BB1,AA2,BB2;

 AA1 =xx & 0xff;

BB1 = (xx >> 8) & 0xff;

AA2 = (xx >> 16) & 0xff;

BB2 = (xx >> 24) & 0xff;

 r1 = (AA1 << 24) + (BB1 << 16) + (AA2 << 8) + (BB2);

return r1;

}

These values(xx) after rearrangement with Mod_Int3
function will go into the aSin () , and the output of aCos
(yy) after calculating the message digest of output and
comparing it with received message digest, if the comparison
is positive will form the plane text or message to be accepted
by receiver. As we have changed the value of = SK1 =
1.137201(for example), the result will be automatically
changed as seen in the plane text.

The general methodology for calculating plain text is a
four step process:

1) The input to decryption algorithm is manipulated using

Mod_Int3 function which rearranges the bytes in the input i.e

input least significant byte is placed most significant bytes

place that means interchanged then (least significant -1) byte

is interchanged with (most significant -1) this is repeated for

all the bytes /2 in the input. The output of Mod_Int3 is given

as input to next stage.

2) The output of previous stage acts as the input to Sin

function i.e. the out will be given to (aSin(aTan

output)*key/180.0), as aSin also takes radian value the same

procedure is adopted as above for generating output.

3) The output of aSinfunction will be the input to aCos

function i.e. the output will be given to (aCos(aSin

output)*key/180.0), as aSinfunction also takes radian value

the same procedure is adopted as above for generating output

as above for generating output. The output of aCos is given to

Hash function(HA-160) for generating message digest, then

the generated message digest is compared with received

message digest(from sender), if matched then only the output

of aCos is accepted as received message(plain text) otherwise

it is rejected. Experimental results are shown in Table IV.

TABLE IV. DEMONSTRATION OF DECRYPTION PROCESS

Ciphertext Key(pi)
Hash value

check
Plain Text

0.015350 3.0000

Hash value check

for each cipher

text

24

0.014351 3.0000 32

0.009919 3.0000 56

0.007806 3.0000 65

0.005780 3.0000 73

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

907 | P a g e

www.ijacsa.thesai.org

VI. MYSTERY KEY FOR SESSION UPDATE PHASE AND USER

PASSWORD UPDATE PHASE

Right when the data correspondence time among sender
and beneficiary methodologies update period, GN Server
makes information for update secret key for next
session(DUMK) and encodes it and sends it to both User and
Sensor Node.

EIDUMKSs = X IDs – GN DUMK

EIDUMKUm = MM2 DUMK

At that point server sends EIDUMKSs (encrypted data for
update mystery key for next(new) meeting) to the Sensor
Node and EIDUMKUm (encrypted data for update mystery
key for next(new) meeting) to the User. Subsequent to getting
this data, Sensor Node quits sending information and hangs
tight for another mystery key meeting. Subsequent to getting
the solicitation both User and Sensor Node suspends their
activity and User sends { IDm , RPWm, σm} to GN Server
and the cycle of enlistment and verification and meeting key
synchronization start which brings about formation of new
meeting key(i.e. second meeting so SKS2) at both at mobile
device(user) and Sensor Node(Ss) additionally at this junction,
if client needs he too can change his password(PWm).

The aggregate of the above are the nuances of the
lightweight arrangement. The arrangement consolidates three
phases. In like manner approval stage, we present a grouping
key (xx1, bm , XGN and XIDs – GN) and pre realized a solitary
bearing hash function(H1). It can comprehend shared approval
just as hinder various attacks. Variable gathering key is proper
for different applications and prevents attacks satisfactorily.

VII. DISCUSSION OF SECURITY FEATURES

In this part, we show our protocol achieves some excellent
functional properties and can resist well-known attacks.
Besides, the comparative analysis of our protocol and other
relevant protocols are also given in this part.

A. Proper Mutual Affirmation

The versatile device(user) and GN Server can validate
each other in light of the fact that toward the beginning of
verification, mobile device(user) himself checks if he is
certified by contrasting a worth he makes i.e Am = A'm. The
client registers A'm esteems from the information which he
supplies at the hour of verification. The Am is pre figured
worth done at the hour of enrollment from the data(Bm) given
by GN server. So whenever figured value(A'm) is equivalent
to preexisted value(Am) which implies that client is certifiable
and when GN server registers MM5 = MM'5 , GN server gets
a confirmation that the client is real Also the sensor hub get an
affirmation about the GN server when it checks MM7=MM'7 .
The GN server gets an affirmation about the sensor hub when
it figures MM'8 and contrasts it and the got MM8 esteem from
the sensor hub i.e MM'8=MM8 gives a confirmation to the
GN server about the sensor hub. The portable device(user) get
an affirmation about GN server when he figures MMM'10 and
contrasts it and the got MMM10 esteem from the GN server.
The GN server and mobile device(user) has a pre shared one
way hash work H1(∙), just real GN Server and portable
device(user) realizes the arranged one way hash work H1(∙)

and the GN worker and sensor hub has a pre shared one way
hash work H1(∙), just real GN Server and sensor node(Ss)
realizes the arranged one way hash work H1(∙).

B. Quickly Identification for Unapproved Login

Here the plan the Sensor Node information can be gotten
to by versatile device(user) simply in the wake of passing
shared confirmation and key synchronization stage and toward
the beginning of the stage the client's login(identity ID) ,secret
word and biometric needs to pass the check. Some
unacceptable secret key checking instrument permits the cell
phone to rapidly recognize and dismiss unapproved login
brought about by wrong secret word, and the confirmation
cycle can be found in the Step 1 of shared verification and key
synchronization stage. Nonetheless, the protocol [17] had no
such instrument to recognize wrong secret word.

C. Oppose Mobile Device Misfortune Attack

In the event that an aggressor A gets Um's cell phone ,A
can recover the parameters { Bm, Gen(.),Rep(.), XX, τm } in
the cell phone by utilizing power examination attack[18]. Here
Bm = Am (RPWm σm), RPWm = (PWm rm).

Am = Bm (RPWm σm), and σm is an irregular
number extricated from Um's biometric information . As Bm,
RPWm and Am are figured from obscure arbitrary numbers
RPWm, rm , σm and H1(one way hash work), the assaulter A
will be unable to figure these boundaries precisely which may
bring about finish of validation stage as the variable A'm at the
hour of verification may not match so our protocol can dodge
cell phone misfortune assault.

D. Customer Mystery and Intractability

Believe that a login demand message {MM3, MM4,MM5}
is snooped by aggressor A, where MM3= IDm MM2,
MM4=IDs MM2 and MM5= H1(A' m) where MM2=
bm*XX is critical and this key is the result of private key of
user(bm) utilizing elliptic curve idea and XX is the public key
of GN server utilizing elliptic curve idea i.e. key is made by
Diffie-Hellman key exchange idea, assailant A can't recover
MM3,MM4 until it have the data about the private key of GN
Server or private key of mobile device(user). MM5 is created
from Am which is known to just mobile device(user) and GN
server and from hash code the assaulter A can't recover Am.
So by utilizing private key and public key (elliptic curve idea
and Diffie-Hellman key exchange) , symmetric mystery key of
GN server(XGN) and one way hash work H1(∙), the proposed
convention accomplishes the component of client mystery.
Here after GN Server gets the login data it can recover the Um
recognizable proof (IDm) as it has the key additionally in this
protocol first the client personality check is done carefully
toward the beginning of validation and key synchronization
phase(Am=A'm). Likewise the component of login request
message relies upon bm(user private key), in this way
aggressor A can't follow User(as no fundamental data is
passed straightforwardly) from public channel. In any case,
the scheme [17] can't accomplish the capacity of intractability.

E. Sensor Hub Mystery

In this plan, Sensor Node's personality isn't sent out in the
open channel as plaintext. At the point when Um needs to get

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

908 | P a g e

www.ijacsa.thesai.org

to the Sensor Node(Ss) information, Sn character is scrambled
when Um send the solicitation to GN server for
correspondence with Sensor Node Ss which GN Sensor can
recover by decoding it with comparing secret key. Any
aggressor without the information on relating secret word can't
get Sensor Node's personality IDs and the plan accomplishes
the component of sensor hub namelessness.

F. Appropriate for Internet of Things Applications

In our plan, GN Server is a confided in outsider for mobile
device(user) and Sensor Node(Ss) and the verification and key
synchronization stage is finished with the assistance of GN
Server . With this the over-burden of both User and Sensor
Node is diminished additionally it saves energy utilization of
both portable device(user) and Sensor Node(Sn) (as the energy
utilization of sensor hub is straightforwardly extent to the
correspondence distance) also expands the life cycle of sensor
nodes. Alongside when the common validation and key
synchronization stage finishes, a meeting key SKS at both
mobile device(user(Um)) and Sensor Node(Ss) is given by GN
server, which can guarantee the resulting secure
correspondence among Um and Ss. Consequently the portray
design for our plan is reasonable for most IoTapplication.
However, in some past related work [13], the client discuss
straightforwardly with sensor hubs, it would lessen the
existence pattern of sensor organizations and isn't reasonable
for IoT applications.

G. Restrict Impersonation Attack

From the depiction of verification and meeting key
Agreement stage, assailant A necessities the data of IDm and
Am = (IDm XGN) to mimic as a real client to make a
substantial login demand. However, from the description
above, the proposed protocol provides the feature of user
anonymity, and any gathering with the exception of GN can't
get client's personality IDm. Likewise, Am must be recovered
by Um from Bm utilizing PWm, rm and σm or can be
determined by GN server utilizing IDm and GNs(secret key of
GN server) when he/she gets IDm. Therefore, aggressor A
can't get Am without knowing required data, and our protocol
can maintain a strategic distance from client impersonation
assault. Additionally, to mirror as the GN worker, the private
keys xx1 and GNs(secret key of server) is fundamental data
for assailant A to produce substantial correspondence
messages. Nonetheless, xx1(private key) and mystery
key(XGN) of GN server and known to GN server just, and the
proposed convention can stay away from entryway
impersonation assault.

H. Oppose Replay Assault

In this plan, the single direction hash work system is
received to oppose replay assault. In various strides of
confirmation and key synchronization period of the plan, the
hash code is created by Um, GN Server and Sensor Node for
processing correspondence messages. Since the hash code
carefully follow avalanche effect little change in message will
create gigantic change in hash code so it would be hard for an
assaulter A to figure the shared message on which the hash
code are produced, so it is hard to perform replay assault.
Consequently, our plan is secure from replay assault.

I. Simple Secret Key Change

In our plan, as the update time frame for key finishes. The
GN worker starts a solicitation for change of mystery key for
meeting. For this the GN server sends encoded message to
User and sensor hub, so the cycle of progress of secret phrase
begins. In the wake of accepting the solicitation both mobile
device(user) and Sensor Node(Ss) suspends their activity and
User sends { IDm , RPWm, σm} to GN Server and the cycle
of enlistment and confirmation and meeting key
synchronization start which brings about production of new
meeting both at User and Sensor Node. At this intersection the
mobile device (user) can likewise change his password
(PWm).

TABLE V. PARAMETERS VALUES

 --
Parameters Values(in bits)

 IDm - 80

 IDs – 160

 XGN, X IDs -GNPWm(All Password) - 160

 bm,xx1,XX,MM1 - 320

 Hash value – 160

Note: Values taken as per Xiong-Li[21]

 --

VIII. PERFORMANCE ANALYSIS

A. Process Computation Time

We look at the time of the common attestation stage,
which is executed using[19][20] in the three conventions
(DES algorithm, Xiong -li scheme(2017) and our convention).
Analysis, were led on a PC with windows7 32bit, 2.00 GHz
with 2 GB of internal memory utilizing C/C++ language. The
yield says that our plan accomplishes the best time execution
of 31000 µs(microseconds) as shown in Fig. 8, DES algorithm
31000 µs(microseconds) and Xiong-Li(2017) common
attestation time is 31000 µs(microseconds) , which is shown
in the Fig. 9 beneath.

Our proposed plot is having less overhead, and can restrict
various attacks. Researching Xiong-Li(2017)[21] basic
affirmation in this arrangement it allows the sensor device to
go about as server as it makes the mysterious expression and
accommodates customer and does an incredible arrangement
getting ready which is illicit of lightweight count rules. Also
ChangLi(P1) plan like shared confirmation isn‟t done suitably,
faces stolen smart card attack, further more encounters
tracking attack, not applicable to practical application, delayed
and costly detection of wrong password input, lack of identity
detection mechanism and unfriendly mystery key change In
our arrangement, we simply use XOR and XNOR action, one
way Hash work and elliptic curve cryptography methodology
for shared approval and meeting key synchronization.
Moreover, session key is created by server and synchronized
with IoT node and user (mobile device). Fig. 9 shows that our
scheme takes minimum time for authentication. It is a nice
technique to minimize the overhead of IoT hub.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

909 | P a g e

www.ijacsa.thesai.org

Fig. 8. Result of Execution of Our Algorithm.

Fig. 9. Examination of Shared Confirmation Time among Xiong -Li(2017),

Our Scheme and DES Algorithm.

B. Performance Analysis of Hash Algorithm(HA-160)

These three calculations HA-160, SHA1 and MD5 were
tried for comparison dependent on the execution time
necessities as shown in Fig. 10, Fig. 11 and Fig. 12. All the
calculations have been actualized in C/C++ and run on
windows 7 32-bit, CPU 2.00 GHz with 2 GB of internal
memory. With the aftereffects of the analysis, it was
discovered that SHA1 and MD5 requests more execution time
than HA160 to create hash code.

The outcome in above Fig.11 shows time taken by three
calculation (MD5, SHA1, and HA160(size of message taken
by HA160 is double than SHA1)) for producing hash code for
the message “ The quick brown fox jumped on the lazy dog “.

Fig. 10. Processing Time by HA-160 Algorithm“The Quick Brown Fox

Jumped on the Lazy Dog ”.

Fig. 11. Assessment of MD5, SHA1 and HA 160 Concerning Time Taken to

Execute the Message “The Quick Brown Fox Jumped on the lazy Dog “ i.e.

34 Bytes.

Fig. 12. Demonstrating Avalanche Effect. The Input Message used and the

Two Altered Message (Dog is Replaced by Cog and Eog in Input Message)

for Comparison is Shown Below.

Table VI shows the message digest conveyed by three
calculation (HA160, SHA-1 and RIPEMD160) for the
message "The quick brown fox jumped on the lazy dog".
Table VII shows the adjustment in hash code when the
message in Table VI is modified for example dog is dislodged
with cog, HA-160 produces a hash code with change of
paying little heed to hexadecimal attributes from e and
f(starting from left showed up in solid), SHA-1 yield is a hash
code with change of with or without hexadecimal attributes
from 9 and 1(starting from left showed up in serious) and
RIPEMD 160 produces a message digest with change of
paying little mind to hexadecimal attributes from f (starting
from left showed up in strong) and Table VIII shows the
adjustment in hash code when the message in Table VI is
adapted to occurrence dog is supplanted with eog, HA-160
produces a message digest with change of each hexadecimal
quality , SHA-1 yield is a hash code with change of with or
without hexadecimal attributes from f, 2, 4 and 3(starting from
left showed up in unprecedented) and RIPEMD 160 produces
a message digest with change of with or without hexadecimal
qualities from 4 and 4(starting from left showed up in
strong).So on an ordinary HA-160 shows better result when
any character is changed. The result is better than SHA160
and RIPEMD160 as shown in Fig. 11.

0

20000

40000

60000

80000

100000

Xiong-Li ChangLi(P1) DES OUR

C
o

m
p

u
ta

ti
o

n
 T

im
e

in
 (

m
s

Schemes

Mutual Authentication Time

93000

31000

78000

46000

0.0305

0.031

0.0315

0.032

0.0325

MD5 SHA-1 HA160

T
im

e
in

 (
m

ic
ro

se
co

n
d

s)

Schemes

34

35

36

37

38

39

40

41

SHA1 RIPEMD-160 HA160

T
o

ta
l

N
o

 o
f

ch
a

n
g

ed

H
ex

a
d

ec
im

a
l

v
a

lu
es

 o
u

t
o

f

4
0

Schemes with two given inputs (cog,eog)

cog

eog

A. Message: “The quick brown fox jumped on the lazy dog “

Compared with

cog :“The quick brown fox jumped on the lazy cog “

eog:“The quick brown fox jumped on the lazy eog “

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

910 | P a g e

www.ijacsa.thesai.org

TABLE VI. RESULT

Algo/Input: “The quick brown fox jumped on the lazy dog”

HA160: a5abc142 e821f1a2 48d60829 f8544618 697ea332

SHA1: 42914f6d 22976baf d4bab416 fe23b03d 4fa74963

RIPEMD160 :39349b80 fc87ec4c 887ccd87 4943f253 ee051126

TABLE VII. RESULT (IN INPUT DOG CHANGED TO COG)

Algo/Input: “The quick brown fox jumped on the lazycog”

 HA160: 58713d84 ebe7200f 24c245a4 fc197485 1c441f74

SHA1 :99e9c9dc 4698e297 efe02e13 dc3d7e97 f5355001

 RIPEMD160:5fb682d2 4aa561f7 070774db 001cf3d6 dbdb7061

TABLE VIII. RESULT (IN INPUT DOG CHANGED TO EOG)

Algo/Input: “The quick brown fox jumped on the lazyeog”

HA160: 04b36898 26446645 7659cb26 3676babb c8864a88

SHA1 :7f036e54 7b914f0f 3cadc54d 572cfa6b eb634b13

RIPEMD160:ac46cdbc 2ff1300a 1eeff31a 4f4f956c dfdb483f

C. Communication Overhead

To investigate the correspondence overhead, we expect
that the eight messages (i.e., Message1, Message2, Message3,
Message4, Message5, Message6, Message7 and Message8)
are communicated during the enrollment system and the
confirmation method. All the more accurately, Message1 and
Message2 are sent in the enlistment strategy and Message3,
Message4, Message5, Message6, Message7 and Message8 are
communicated in the verification technique. Message1
incorporates the sensor's character IDm, RPWm(encrypted
password) and uniform random number generated from
Biometric information(σm) and Message-2 includes Bm((a
value generate from GWN server from Am) and XX(public
key of GWN Server) . In addition, Message3 includes MM1,
MM3, MM4 and MM5 which are calculated as follows:

|MM1| =| bm*PP |

|MM3|= | MM2 IDm|

|MM4|=| MM2 IDs) |

|MM5| =| H1(A' m) |

Moreover, the parameters MM6 and MM7 in Message 4 , are

calculated as follows:

|MM6|= | X' IDs -GN ID'm |

|MM7|= | H1(X' IDs -GN)|

then, the parameter MM8 in Message 5 , is calculated as

follows:

MM8 =H1(X IDs -GN ID''m)

also, the parameter MM9, MM10 and MMM10 in Message 6

, is calculated as follows:

|MM9|= |X' IDs -GN SKS|

|MM10|= | MM'2 SKS|

|MMM10| = | H1(A''m ID'm)|

Finally, the parameter MM11 in Message 7 and MM12 in

Message 8 is calculated as follows:

|MM11|=| H1(MM10) |

|MM12|= |H1(MM9)|

Table V contains the setting of boundaries that we have
accepted for assessing the correspondence overhead of the
proposed component as shown in Table IX. Subsequently, the
general transmission capacity overhead of the proposed
component is determined as follows:

 8

bw =∑ Message i

 i = 1

Message 1 =|IDm| +|RPWm| + |σm(random rumber)|
 = 400 bits
Message 2 =|Bm| +|XX| = 480 bits
Message 3 =| MM1| + |MM3| +|MM4| + |MM5|=
 1120 bits
Message 4 =| MM6| +|MM7| = 320 bits
Message 5 =|MM8| = 160 bits
Message 6 =|MM9| + |MM10| + |MMM10|= 480 bits
Message 7 =|MM11| = 160 bits
Message 8 =|MM12| = 160 bits

TABLE IX. COMMUNICATION COST OF OUR PROPOSED MECHANISM

Scheme Communication Cost

Our Scheme 3136 bits

Xiong-Li[21] 2688 bits

Chang-Le‟s[21] 2400 bits

D. Computational Expense

To figure the computational expense of the proposed
system, we have thought about the accompanying
documentations: Th indicates the expense of single direction
hash work, Tm signifies the expense of Multiplication activity,
Ts means the expense of encryption and unscrambling
activity. In view of the three parts (i.e. brilliant sensor, client
and verification worker) which are utilized in the proposed
instrument, the computational expense of every segment is
introduced as follows:

1) Smart Sensor: The brilliant sensor performs

calculations just in the verification method.

2) User: The client performs calculations in the enlistment

and verification stage.

3) GN Server: The GN server performs calculation

activities in enlistment and validation stage. The proposed

component's computational expense is delineated in Table X.

Because of the way that the proposed verification system

depends just on scalar duplication activity utilizing ECC, a

symmetric encryption/decoding activity and hash activity.

We use the simulation result [23] where Tm(cost based
only on scalar multiplication operation using ECC)
=1.226ms,Ts(cost based only on symmetric
encryption/decryption operation) =2.049µs and Th(cost based
only on hash operation) =2.580 µs.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

911 | P a g e

www.ijacsa.thesai.org

TABLE X. COMPUTATIONAL COST OF OUR PROPOSED MECHANISM

Scheme
User(Mobile

device)

GWN

Server

Smart

Sensor
Total Cost

Our

Scheme
3*Th + 2*Tm

6*Th +

1*Tm
3*Th 2482.96 µs

Xiong-

Li[21]

7*Th+ 2*Tm +

2Ts

8*Th +

1*Tm +

4Ts

4*Th +

2Ts
3743.412 µs

Chang-

Le‟s[21]
6*Th +2*Tm 8*Th

5*Th

+2*Tm
4953.000 µs

Note: Considering the process computation time for
mutual authentication, computation cost, communication cost
and other indicators, our algorithm performs well in most of
the cases. The most prominent advantage is its process
computation time for mutual authentication and
communication cost.

E. Encryption and Decryption Algorithm Analysis

The investigation of the proposed trigonohash calculation
for encryption and unscrambling has been done and exhibited
in Table III and Table IV. The Encryption and Decryption
Algorithm was coded in C/C++ Language[19][20]. It was
compiled with MinGW-GCC 4.8.1, on the Core 2 Duo
Processor, 2.00 GHz under windows 7 OS(32 bit). The
investigation boundaries are plain content size (in Bytes) and
time taken in encryption and unscrambling (in µ seconds).

a) Comparative PerformanceAnalysis: The proposed

Trigonohash algorithm(LW-algorithm) has been compared

with other existed algorithms like RC4, Hill-Cipher[19][20],

RSA, Present(Block Cipher with key 80 bits and plain content

64 bits or 8 bytes) [27] and ELSCA(LW-Stream Cipher) -

(Varient-HassanNoura(2019(key consist of 4 location)) stream

cipher)[22]. Likewise, the results are shown below. From the

going with Fig. 13 and Table XI we can say that the run time

unpredictability of trigonometric Algorithm is underneath than

the other existed Algorithm plot.

TABLE XI. SAMPLE RESULT FROM DIFFERENT ALGORITHM.(RESULT IN

MICROSECOND)

No

of

By

tes

RC4

(strea

m

cipher

)

Hill-

Cipher

(Symm

etric

encrypt

ion)

RSA

(public

key

encrypt

ion)

Present(L

W-Block

Cipher(6

4 bits))

ELSCA(L

WStreamCi

pher-2017)

Trignohas

h(LW-

algorithm

)

12 31000 16000 31000 47000 15000 00000

20 46000 46000 31000 78000 46000 16000

28 62000 63000 47000 125000 47000 31000

36 93000 78000 78000 156000 93000 62000

Fig. 13. Execution Examination of Encryption Algorithm of different

Protocol.

IX. CONCLUSION

In this paper, we propose a strong and weighty
cryptographic arrangement for Industrial Internet of Thing
using one way hash work, elliptic curve cryptography and
trigonohash(trigonometry and hash work) idea and endeavored
to improved security and execution of a cryptographic
arrangement for lightweight contraption using key generation.
It gives keen and feasible instruments for basic affirmation,
meeting key synchronization and meeting key update. They
are proper for IoT hub with limited handling resources and
force. First thing, we present the nuances of shared affirmation
using elliptic curve cryptography and one way hash work and
a way to deal with hinder replay attack without timestamp.
Besides, again elliptic curve cryptography and one way hash
idea is progressed to simply recognize meeting key
synchronization lastly by using mathematical thoughts data
encryption and unscrambling are done to diminish the
overhead of IoT center points. In addition, we have taken a
gander at the security and execution of our arrangement with
some lightweight approval and cryptographic plans. The
arrangement is lightweight anyway can thwart attacks
satisfactorily, which is useful for guaranteeing the security of
the correspondence between IoT center points, users(mobile
gadget) and server.

The proposed figuring for encryption isn't simply giving
the quick data encryption anyway it gives an unrivaled
security diverged from other count through a most grounded
key as well. The assessment of π is changing each time which
is created from the common key that makes the count
adequate. The estimation moreover makes the cryptanalysis
cycle complex. Since there are dark variables will be more and
the amount of conditions will be less when stood out from
other standard encryption computations. This calculation
could be well valuable for online applications like secure web
based talking, data transmission between resource constraint
devices and health sector.

0
20000
40000
60000
80000

100000
120000
140000
160000
180000

E
n

cr
y

p
ti

o
n

 t
im

e
in

 m
ic

ro
 s

ec
o

n

Encryption Schemes

Performance analysis of Encryption

12 Bytes

20 Bytes

28 Bytes

36 Bytes

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

912 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] L. Atzori, A. Iera, and G. orabito, “The Internet of Things: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2787 – 2805, 2010.

[2] L. Da Xu, W. He, and S. Li, “Internet of things in industries: A survey,”
IEEE Transactions on industrial informatics, vol. 10, no. 4, pp. 2233–
2243, 2014.

[3] M. S. Hossain and G. Muhammad, “Cloud-assisted industrial internet of
things (iiot)–enabled framework for health monitoring,” Computer
Networks, vol. 101, pp. 192–202, 2016.

[4] R. Amin, S. H. Islam, G. Biswas, M. K. Khan, L. Leng, and N. Kumar,
“Design of an anonymity-preserving three-factor authenticated key
exchange protocol for wireless sensor networks,” Computer Networks,
vol. 101, pp. 42–62, 2016.

[5] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini, “Security,
privacy and trust in internet of things:The road ahead,” Computer
Networks, vol. 76, pp. 146–164, 2015.

[6] M. L. Das, “Two-factor user authentication in wireless sensor
networks,” IEEE Transactions on Wireless Communications, vol. 8, no.
3, pp. 1086–1090, 2009.

[7] A. K. Das, P. Sharma, S. Chatterjee, and J. K. singh, “A dynamic
password-based user authentication scheme for hierarchical wireless
sensor networks,” Journal of Network and Computer Applications, vol.
35, no. 5, pp. 1646–1656, 2012.

[8] D. Wang and P. Wang, “Understanding security failures of two-factor
authentication schemes for real-time applications in hierarchical wireless
sensor networks,” Ad Hoc Networks, vol. 20, pp. 1–15, 2014.

[9] K. Xue, C. Ma, P. Hong, and R. Ding, “A temporal- credential-based
mutual authentication and key agree- ment scheme for wireless sensor
networks,” Journal of Network and Computer Applications, vol. 36, no.
1, pp. 316–323,2013.

[10] Q. Jiang, J. Ma, X. Lu, and Y. Tian, “An efficient two- factor user
authentication scheme with unlinkabilityforwireless sensor networks,”
Peer-to-peer Networking and Applications,vol.8,no.6,pp.1070–
1081,2015.

[11] H.-L. Yeh, T.-H.Chen, P.-C.Liu, T.-H. Kim, and H.- W. Wei, “A
secured authentication protocol for wireless sensor networks using
elliptic curves cryptography,” Sensors, vol. 11, no. 5, pp. 4767–4779,
2011.

[12] W. Shi and P. Gong, “A new user authentication protocol for wireless
sensor networks using elliptic curves cryptography,” International
Journal of Distributed Sensor Networks, vol. 2013, Article ID 730831, 7
pageshttp://dx.doi.org/10.1155/2013/7308312013.

[13] Q. Jiang, J. Ma, F. Wei, Y. Tian, J. Shen, and Y. Yang, “An untraceable
temporal-credential-based two-factor authentication scheme using ecc
for wireless sensor networks,” Journal of Network and Computer
Applications, vol. 76, pp. 37–48, 2016.

[14] X. Li, J. Niu, S. Kumari, F. Wu, A. K. Sangaiah, and K.-K. R. Choo, “A
three-factor anonymous /authentication scheme for wireless sensor
networks in I nternet of things environments,” Journal of Network and
Computer Applications, 2017, doi:10.1016/j.jnca.2017.07.001.

[15] X. Li, J. Niu, M. Z. A. Bhuiyan, F. Wu, M. Karuppiah, and S. Kumari,
“A robust ecc based provable secure authentication protocol with
privacy protection for industrial internet of things,” IEEE Transactions
on Industrial Informatics, vol. PP, no. 99, pp. 1–1, 2017.

[16] Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data,” in International
Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 2004, pp. 523–540.

[17] C.-C. Chang and H.-D. Le, “A provably secure, efficient, and flexible
authentication scheme for ad hoc wireless sensor networks,” IEEE
Transactions on Wireless Communications, vol. 15, no. 1, pp. 357–366,
2016.

[18] T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Examining smart-
card security under the threat of power analysis attacks,” IEEE
Transactions on Computers, vol. 51, no. 5, pp. 541–552, 2002.

[19] 3GPP TS 35. 201 V14. 0. 0, Specificatio n o f the 3GPP Confidentiality
and Integrity Algorithms; Document 1: f8 and f9 specifications, 2017.

[20] 3GPP TS 35. 202 V14. 0. 0, Specificatio n o f the 3GPP Confidentiality
and Integrity Algorithms; Document 2: Kasumialgorithm specifications,
2017.

[21] Xiong Li, J Peng, J Niu, F Wu, J Liao, Kim Kwang, R Choo, “A Robust
and Energy Efficient Authentication Protocol for Industrial Internet of
Things” DOI 10.1109/JIOT.2017 2327-4662 (c) 2017 IEEE.

[22] Hassan Noura and Ali Chehab“ An Efficient and Secure Variant of RC4
Stream Cipher Scheme for Emerging Networks” 978-1-5386-5657-
0/18/$31.00_c 2019 IEEE.

[23] D. Wang, D. He, P. Wang, and C.-H. Chu, “Anonymous two-factor
authentication in distributed systems: certain goals are beyond
attainment,” IEEE Transactions on Dependable and Secure Computing,
vol. 12, no. 4, pp. 428–442, 2015.

[24] VenkateswaraRaoPallipamu, K Thammi Reddy, P Suresh Varma
“ASH-160: A novel algorithm for secure hashing using geometric
concepts” http://dx.doi.org/10.1016/j.jisa.2014.05.0012214-2126/©
2014 Elsevier.

[25] VenkateswaraRaoPallipamu, K Thammi Reddy, P Suresh Varma “ASH-
512: Design and implementation of cryptographic hash algorithm using
co-ordinate geometry concepts” http://dx.doi.org/10.1016/j.jisa.2014.
10.006, 2214-2126/© 2014 Elsevier.

[26] VenkateswaraRaoPallipamu, K Thammi Reddy, P Suresh Varma
“Design and implementation of geometric based cryptographic hash
algorithm: ASH-256” pp 275-291 ,[Rao* et al., 5(7): July, 2016] IC™
Value: 3.00 2016 IJESRT.

[27] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M.
J.Robshaw, Y. Seurin, and C. Vikkelsoe, “Present: An ultra-lightweight
block cipher,” in International Workshop on CryptographicHardware
and Embedded Systems. Springer, 2007, pp. 450–466.

[28] W.B. Heinzelman, A.P. Chandrakasan, H. Balakrishnan, An application-
specific protocol architecture for wireless microsensor networks, IEEE
Trans. Wirel. Commun. 1 (4) (2002) 660–670.

