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Abstract—Condition monitoring of equipment can be very 

effective in predicting faults and taking early corrective actions. 

As hydraulic systems constitute the core of most industrial 

plants, predictive maintenance of such systems is of vital 

importance. Due to the availability of huge data collected from 

industrial plants, machine learning can be used for this purpose. 

In this work, a hydraulic system condition monitoring (HSCM) is 

addressed via a public dataset with 17 sensors distributed 

throughout the system. Using a set of 6 features extracted from 

sensory data, the random forest classifier was proven, in the 

literature, to achieve classification rate exceeding 99% for four 

independent target classes, namely, Cooler, Valve, Pump and 

Accumulator. In this paper, sensor dependency is examined and 

experimental results show that a reduced set of important 

sensors may be sufficient for the addressed classification task. In 

addition, feature importance as well as implementation issues, i.e. 

training time and model size on disk, are analyzed. It is found 

that the training time can be reduced by 25.7% to 36.4% while 

the size on disk is reduced by 70.3% to 85.5%, using the 

optimized models, with only important sensors employed, in 

comparison with the basic model, with full set of sensors, while 

maintaining classification precision. 

Keywords—Condition monitoring; sensory data analysis; 

machine learning; classification 

I. INTRODUCTION 

This Faults or failure of equipment in an industrial plant 
may have serious consequences ranging from threatening the 
safety of operators, causing the plant to shut down for long 
periods of time, and lowering production rate and revenue [1]. 
For these reasons, maintenance plays a crucial role in process 
industries. 

The simplest strategy for maintenance is to wait until the 
fault occurs and then start reacting. In this strategy, there is 
cost for replacing the damaged equipment and additional cost 
for the loss of production during equipment downtime. More 
advanced strategy is scheduled maintenance which is 
performed periodically. This approach, despite being effective, 
may take corrective actions which are unnecessary and costly. 
The most advanced approach is predictive maintenance in 
which the condition of equipment is continuously monitored 
and faults are predicted and necessary corrective actions are 
taken [2]. 

Currently, equipment condition monitoring (CM) is 
possible thanks to the advances in sensor technology as well as 

machine learning techniques which can process huge bulks of 
data from sensors distributed throughout the plant. These 
techniques, which extract key features from data and correlate 
them to possible faults [3] are successfully applied in condition 
monitoring of e.g. gearbox [4-6], rotating machinery [7], motor 
bearings [8], centrifugal pumps [9,10], hydraulic systems [11], 
cutting tools [12], grinding mill liners [13], and semiconductor 
failures [14]. 

Hydraulic systems are core components in most fields of 
industries such as water treatment plants, vehicle, aerospace 
[15], and other industries. The failure of hydraulic system can 
cause a whole plant to shut down or threaten operators’ safety 
[16-18]. In addition, hydraulic systems are not operator-
friendly environments for condition monitoring [19]. Due to 
these reasons, condition monitoring of hydraulic systems gain a 
lot interest in the past two decades. For example, Liu [16] 
developed a tree structure model for fault diagnosis of out-of-
sync oil cylinder. El-Betar et al. [17] proposed a neural 
network scheme for fault diagnosis of actuator leakage and 
valve spool blockage. Tian et al. [18] applied support vector 
machines (SVM) for predicting pump faults. On the other 
hand, Jegadeeshwaran and Sugumaran [20] employed both 
SVM and decision trees for fault detection of hydraulic brake 
systems. Helwig et al. [21] developed a hydraulic test rig with 
several induced fault types. Key features are extracted from 
sensors’ data and the most highly correlated with a given fault 
are determined. Linear discriminant analysis (LDA) was 
employed to reduce feature space. The same test rig was 
further examined by Chawathe [22] who applied naïve Bayes, 
decision trees, and random forests (RF) [23]. RF classifier 
achieved classification accuracy of about 99% for all classes. 
Furthermore, it was noted that accuracy can be retained using 
only small set of features.  Quatrini et al. [15] have studied the 
same dataset and used Pearson’s correlation coefficient to rank 
the features correlated with a given fault. Algorithms such as 
SVM, ANN, RF, and logistic regression are tested and again 
RF outperfoms the other techniques for most fault types. On 
the other hand, König and Helmi [24] applied convolutional 
neural network (CNN) successfully for the same dataset [21]. 
In the contrary to previous studies, CNN has the ability to 
automatically extract key features. In addition, an analysis of 
misclassifications is also conducted. 

The main objectives of this work are to determine the 
sensors and features which are more effective in detecting a 
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given type of fault in HSCM system, and to analyze the 
implementation issues of the optimized classifier models. 

The paper is organized as follows: the benchmark hydraulic 
system and dataset are described in Section 2. Section 3 
illustrates the classifier model. The experimental results are 
then presented in Section 4. Section 5 presents a detailed 
discussion and the most important findings are highlighted. 
Finally, conclusions and future work are given in Section 6. 

II. HYDRAULIC SYSTEM DATASET 

For the purpose of setting up an environment to test and 
diagnose common faults in hydraulic systems, Helwig, 
Pignanelli, and Schütze [21] developed the hydraulic test rig 
shown in Fig. 1. In this system, several reversible faults, with 
different degrees of severity, can be induced and the data of the 
sensors distributed throughout the system are recorded. By 
correlating features extracted from sensor data and known 
faults, an antomated mechanism for fault detection can be 
developed. 

The system consists of two hydraulic circuits: the primary 
working (Fig. 1, top) and the cooling-filteration circuit (Fig. 1, 
bottom). The two circuits are connected through an oil tank. 
The primary circuit contains the main pump (MP1) and a relief 
valve (V11) which can be used to generate different load levels 
in the circuit, as well as four-compartments accumulator (A1, 

A2, A3, and A4) for pressure storage. The secondary circuit 
contains the cooler unit (C1). 

The test rig is equipped with 14 sensors to measure 
pressure (PS1 – PS6), flow (FS1, FS2), temperature (TS1 – 
TS4), electrical power (EPS1), and vibration (VS1). The 
measurements are recorded using the standard industrial 20 
mA current loop interfaces connected to a data acquisition 
system within Beckhoff CX5020 PLC. Additionally, three 
virual sensors are designed to provide estimates for system 
efficiency (SE), cooling efficiency (CE), and cooling power 
(CP). The data is collected with sampling rates of 100 Hz  for 
pressure and motor power, 10 Hz for flow rate, and 1 Hz for 
other variables. 

In addition to recording 17 sensors’ data, the state or condition 

of the following targets: Cooler, Valve, Pump and 

Accumulator, are also recorded. A total of 2205 cycles or 

training examples are collected, each is 60 second long. The 

training examples contains cases for each state of the four 

targets ranging from being fully operating to close to complete 

failure. A list of targets, degrees of faults, their abbrevations, 

and the corresponding number of training examples are given 

in Table I. As can be seen, the problem at hand can be 

considered as four separate classifiaction problems, one for 

each target. 

 

Fig. 1. Hydraulic System Under Study. Basic Monitored Units are in Light Red While Sensors are in Blue [22]. 
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TABLE I.  LIST OF TARGETS, FAULT STATES, AND THE NUMBER OF TRAINING EXAMPLES FOR EACH, IN THE BENCHMARK DATASET [21] 

Condition States Abbr. Examples 

Cooler 

Close to Complete Failure 

Reduced Efficiency 

Full Efficiency 

CF 

RE 

FE 

732 

732 

741 

Valve 

Close to Complete Failure Severe Lag 

Small Lag 

Optimal Switching 

CF 

SvL 

SmL 

OS 

360 

360 

360 

1125 

Pump 

Severe leakage 

Weak leakage 

No leakage 

SL 

WL 

NL 

492 

492 

1221 

Accum. 

Close to Total Failure 

Severely Reduced Pressure 

Slightly Reduced Pressure 

Optimal Pressure 

CF 

SvP 

SlP 

OS 

808 

399 

399 

599 

III. THE CLASSIFIER MODEL 

The two main components of a classification task are the 
extraction of features and the use of a suitable type of 
classifier. 

Features are key representative attributes of raw sensor 
data. They can be time domain or frequency domain. The set of 
features introduced by Quatrini et al. [15] are reused here to 
implement the experimental models. Each operation cycle is 
represented by 6 features, namely mean (m), standard deviation 
(sd), skewness (sk), kurtosis (k), slope of linear fit (slf) and 
position of maximum (p). The first four features characterize 
the distribution density of sensory signals, while slf and p 
features can capture the shape of the signal. These features 
proved very useful for fault recognition in such applications. 
Thus, for the 17 sensors, there are 102 features in total. 

On the other hand, according to previous studies, random 
forest (RF) and artificial neural networks show outstanding 
results in the addressed dataset with a slight preference of RF 
[15, 24]. As the objective of the current work is not to compare 
different classifiers but to determine which sensors and features 
are important in detecting a given type of fault, random forest 
is employed in this paper. 

Random forest classifier is an ensemble of decision trees. 
Each tree is fed with a set of features and provides a decision 
which represents a corresponding class. Within the forest, the 
most voted class is selected as the final classifier output [23]. 
To use a random forest, two parameters need to be set: the 
number of trees and the maximum number of splits allowed in 
each tree which controls the tree depth. 

IV. EXPERIMENTAL RESULTS 

In this section, several experiments are conducted to test 
the performance of RF classifier using the full set of sensors 
and features, and then a reduced set of them. 

In all experiments, RF model is implemented with 100 
decision tress and maximum number of splits equals 10. The 
latter parameter is selected out of values between 2 and 10. For 
each target, samples are randomly split into 75% for training 
and validation, and 25% for testing. A number of 100 
independent computer runs are carried out per experiment in 
order to well characterize the average performance of 
classification models. 

To evaluate the classification performance, the following 
set of metrics are used: accuracy (Acc), precision (Pre), recall 
(Rec) and F-measure (F). They are defined as follows: 

𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑁𝑆
,    

𝑃𝑟𝑒 =
𝑇𝑃

𝑇𝑃+𝐹𝑃

′
    

𝑅𝑒𝑐 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
,    

𝐹 =
2×𝑃𝑟𝑒×𝑅𝑒𝑐

𝑃𝑟𝑒+𝑅𝑒𝑐
    

Where NS is the total number of training examples, and TP, 
FP, TN, and FN denote the number of true positive, false 
positive, true negative, and false negative examples of a given 
class, respectively. The environment of Matlab 2018 is used for 
the implementation and testing on a machine with core i5, 2.6 
GHz CPU and 10 GB RAM. The implementation of RF 
algorithm follows [23]. 

A. RF for HSCM Task 

In this preliminary experiment, the RF classifier is used 
with the full set of sensors and features. The average 
classification rates and implementation issues (model size, 
training and inference times) for the RF model are presented in 
Table II. The average rates of all metrics are above 0.99. High 
accuracy and F-measure ensure the effectiveness and 
robustness of employed attributes or features together with the 
classifier. 

TABLE II.  PERFORMANCE OF RF CLASSIFIER FOR FAULTS OF DIFFERENT 

TARGETS: COOLER (C), VALVE (V), PUMP (P), AND ACCUMULATOR (A) 

 Acc Pre Rec F 
Size 

(KB) 

Tr.  

Time 

(sec) 

Inf.  

Time 

(sec) 

C 0.998 0.998 0.998 0.998 4028 1.4 0.09 

V 0.996 0.995 0.995 0.995 4510 1.76 0.091 

P 0.994 0.992 0.992 0.992 4540 1.71 0.09 

A 0.992 0.992 0.991 0.992 5399 2.35 0.098 
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Although the addressed dataset is unbalanced, the proposed 
model performs equally well for the recognition of different 
conditions of each target class. This behaviour can be 
confirmed by looking at the confusion matrix for the average 
performance of RF classifier for each target as shown in 
Tables III to VI. For better readability, fractions are truncated. 

TABLE III.  CONFUSION MATRIX FOR COOLER TARGET 

 CF RE FE 

CF 183 0 0 

RE 0 183 0 

FE 0 0 185 

TABLE IV.  CONFUSION MATRIX FOR VALVE TARGET 

 CF SvL SmL OS 

CF 90 0 0 0 

SvL 0 89 0 0 

SmL 0 1 89 0 

OS 0 0 0 281 

As can be seen from Table V, only one observation of 
“Weak leakage” is misclassified as “Severely leakage” for the 
Pump target and vice versa. Also, from Table IV, two 
observations are misclassified for “Slightly reduced pressure” 
and one for “Severely reduced pressure” of the Accumulator 
target. From Table II, the size of classifier model is 4028 KB 
for the Cooler, with an increment of 12%, 12.7% and 32.5% 
for the Valve, Pump and Accumulator targets, respectively. 
Such variance may be explained by the different degrees of 
difficulty for classifying each target conditions. In addition, the 
training time for cooler model is the fastest with time 1.4 sec, 
while models of Valve and Pump require about 1.7 sec. The 
Accumulator model takes more training time with 2.35 
seconds. Clearly, the inference time (i.e., testing the model for 
one observation) is almost the same for any of the four models 
and equals approximately 0.09 seconds. 

TABLE V.  CONFUSION MATRIX FOR PUMP TARGET 

 NL WL SL 

NL 305 0 0 

WL 0 122 1 

SL 0 1 122 

TABLE VI.  CONFUSION MATRIX FOR ACCUMULATOR TARGET 

 CF SvP SlP OP 

CF 201 0 1 0 

SvP 0 98 0 1 

SlP 2 0 97 0 

OP 0 0 0 149 

Summing up, the proposed RF model alone achieves 
outstanding recognition rates for all targets.  Unlike the work 
of Quatrini et al. [15], notable performance was achieved by 
two classifiers, ANN for the Pump with rate 0.998 for the 
pump target while RF was better for the Cooler, Valve and 
Accumulator with classification rates of 0.998, 1 and 0.991, 
respectively. 

B. Sensor and Target Correlation 

The sentiment analysis of the impact of individual sensors 
on recognition of severe operating conditions is extensively 
studied in this section. The features of each sensor are 

introduced to the RF model. It might be more important to 
examine an employed sensor capability of recognizing every 
probable failure condition ignoring false alarms. Regarding this 
concern, precision metric is applied in this experiment. Each 
sensor test is repeated for 100 times in order to build up 
rigorous conclusions. Then, the highest-precision sensors on 
average are determined. 

For the Cooler target, the classification task seems 
straightforward in agreement with previous studies [15, 24].  
Precision achieved using only one of the following sensors: 
TS2, CE, TS1, CP, PS6, PS5, TS3 and TS4, exceeds 0.995. 
The use of one sensor minimizes the model size from 4028 to 
651 KB and the training time from 1.4 to 1.04 sec as shown in 
Fig. 2(a) for the cooler. Similar behaviour is reported for the 
Valve target. The sensors PS3 and PS2 give Precision rates of 
0.997 and 0.991, respectively. The next important sensors are 
PS1 and FS1 with Precision 0.957 and 0.953, respectively. 
Fig. 2(b) shows the model performance using the following 
groups of sensors: GV1 (PS3, PS2), GV2 (PS3, PS2, PS1) and 
GV3 (PS3, PS2, PS1, FS1). Model size is reduced to 892, 1137, 
1432 KB for GV1, GV2 and GV3, respectively, instead of 4510 
KB for the basic model with full set of sensors. 

Pump and Accumulator targets are more challenging. The 
most effective sensors, when used individually, are FS1, SE, 
PS1, EPS1 and PS3 with precision 0.981, 0.979, 0.943, 0.941, 
and 0.929, respectively, for the Pump. The best combination of 
sensors are FS1, SE, PS1, giving an optimal precision 0.993. In 
this case, model size occupies only 657 KB and takes 1.15 
seconds for training compared to 4540 KB and 1.71 seconds, 
respectively, when the full set of sensors are used. Fig. 2(c) 
summarizes the performance of different groups of sensors for 
Pump target: GP1 (FS1, SE), GP2 (FS1, SE, PS1), GP3 (FS1, SE, 
PS1, EPS1) and GP4 (FS1, SE, PS1, EPS1, PS3). 

Similarly, the top 6 effective sensors when used 
individually, for the classification of Accumulator, are PS3, 
PS1, SE, FS1, TS1 and PS2 with precision 0.923, 0.88, 0.837, 
0.828, 0.802 and 0.8, respectively. Fig. 2(d) illustrates the 
performance of combining attributes of sensors in the groups: 
GA1 (PS3, PS1), GA2 (PS3, PS1, FS1), GA3 (PS3, PS1, FS1, 
SE), GA4 (PS3, PS1, FS1, SE, PS2) and GA5 (PS3, PS1, FS1, 
SE, PS2, and TS1). The best precision of 0.986 is obtained 
using group GA5 with model size 1602 KB (compared with 
5399 KB for the basic model) and training time of 1.73 sec 
(compared with 2.35 seconds, for basic model). This 
experiment reveals that the Accumulator target conditions are 
the hardest for classification. 

In summary, this experiment justifies, to a great extent, the 
preliminary discrimination of target classes in this dataset into 
easy (Cooler and Valve) and hard (Pump and Accumulator) 
classifiable classes [21]. For the Cooler and Valve targets, it is 
sufficient to apply only one sensor for monitoring the different 
conditions of each one. For the pump target, however using 
FS1 alone can achieve precision of 0.981 but the group GP2 
(FS1, SE, PS1) improves it to 0.993. Focusing on the most 
effective sensors can optimize the RF model in terms of model 
size and training time. Finally, several sensors are needed to 
give an acceptable recognition precision of Accumulator 
conditions. The sensors GA5 (PS3, PS1, FS1, SE, PS2, TS1) 
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can achieve a high precision of 0.986. However, this is still 
below the precision 0.993 of the basic model which employs 
all sensors. 

 
(a) COOLER 

 
(b) VALVE 

 
(c) PUMP 

 
(d) ACCUMULATOR 

Fig. 2. Normalized Numerical Results of Sensor Correlation Tests for 

Different Targets. 

C. Feature Effectiveness 

Based on the findings of the previous experiment, it is 
interesting to investigate the most effective attributes per 
sensor. Therefore, in section, only the most effective sensors 
for each target are considered. The wrapper-based approach is 
followed where each individual attribute is provided for the 
classifier. Thus, a direct judgement of the discriminating power 
of each attribute is obtained. For this purpose, RF model using 
5 decision trees with a maximum number of split equals 2 is 
sufficient. 

Fig. 3(a) shows that only the mean of the CE sensor 
(CE_m) can classify the conditions of the Cooler target with 
average precision of 0.998. Also, the mean of CP sensor 
(CB_m) can achieve precision 0.992. Moreover, the mean of 
each of PS5, PS6, TS1 and TS2 results in precision exceeding 
0.96. Slop of linear fit of the TS1 sensor is also useful 
achieving a precision of 0.942. 

Other effective features are determined for the Valve 
condition. The kurtosis and skewness of PS2 (PS2_k and 
PS2_sk) give precision of 0.994 and 0.972, respectively. 
Position of the maximum of PS3 (PS3_p) achieves 0.99 
precision. Fig. 3(b) shows the effectiveness of attributes of PS2 
and PS3 denoted by GV1 and give the highest rate for the Valve 
target. 

Attribute effectiveness for the most useful sensors for the 
Pump target, namely GP2 (FS1, SE, PS1), is presented in 
Fig. 3(c). The mean of SE (SE_m) gives 0.952 and the mean of 
FS1 gives 0.924 precision. The rest of attributes achieve lower 
rates, in particular the position of the maximum of each of FS1 
and SE (FS1_p and SE_p) are definitely useless for Pump 
target class. 

For the Accumulator target, no individual attribute of the 
sensors group GA5 (PS3, PS1, FS1, SE, PS2, TS1) can exceed a 
precision level of 0.7 as shown in Fig. 3(d). The mean of each 
of TS1 and PS1 are the highest two attributes with precision 
0.683 and 0.59, respectively. Such observation shows again 
that recognition the conditions of the Accumulator target is 
harder than others in this application. Also, the position of 
maximum of each of FS1 and SE (FS1_p and SE_p) seems 
useless for this target class. 

Summarizing these findings, it is interesting to discover 
that only one attribute of one senor can be efficient for the 
addressed classification task in this work for some targets. The 
mean of CE sensor (CE_m) and the kurtosis of PS2 (PS2_k) 
achieve precision of 0.998 and 0.992 for Cooler and Valve 
targets, respectively. Conversely, some features are useless for 
classification such as (FS1_p and SE_p) for both Pump and 
Accumulator targets. 
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(a) COOLER TARGET 

 
(b) Valve Target.    (c) Pump Target. 

 
(d) Accumulator Target. 

Fig. 3. Effective Attributes for each Target Class. 

V. DISCUSSION AND LIMITATIONS 

Condition monitoring of hydraulic systems via sensors 
fixed inside the system is suspicious to some hazard situations 
if one or more sensors become out of service. Thus, the 
importance of current study stems from investigating the role 
of each sensor in the assigned classification task. Besides, 
emphasizing the most effective attributes leads to optimizing 
the classification model size and training time. 

Table VII summarizes the outcomes of this study. The 
optimized RF model for the Cooler target uses only one sensor 
of (TS2, CE, TS1, CP, PS6, PS5, TS or TS4), keeps 
performance (denoted by + in Table VII) of basic model that 
uses all sensors. It follows that model size and training time are 
reduced by 83.8% and 25.7%, respectively. 

TABLE VII.  SUMMARY OF EFFECTIVE SENSORS AND FEATURES FOR EACH TARGET, THE IMPACT ON MODEL PRECISION (PRE. ↑↓), PERCENTAGE REDUCTION IN 

MODEL SIZE (RS) AND TRAINING TIME (RT) 

 Sensors Features Pre. Pre. ↑↓ 
Size 

(KB) 
RS(%) 

Tr. Time 

(sec) 
RT(%) 

Cooler TS2, CE, TS1, CP, PS6, PS5, TS, TS4 Mean 0.995 + 651 83.8 1.04 25.7 

Valve PS3, PS2 
Kurtosis, 

Skewness 
0.997 + 892 80.2 1.12 36.4 

Pump FS1, SE, PS1 Mean 0.993 + 657 85.5 1.15 32.7 

Accumulator PS3, PS1, SE, FS1, TS1, PS2 Mean 0.986 - 1602 70.3 1.73 26.4 
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For the Valve target, the RF model, using PS3 and PS2, is 
as efficient as basic model with reduction in model size by 
80.2% and training time by 36.4%. Using only FS1, SE and 
PS1 attributes can achieve slightly better performance than the 
basic model for the Pump target with reduction ratios of 85.5% 
and 32.7% for model size and training time, respectively. A 
different finding is reported for the Accumulator target. Using 
a reduced set of sensors such as PS3, PS1, SE, FS1, TS1 and 
PS2 might result in performance degradation (marked with “–” 
in Table VII). However, model size reduction ratio reaches 
70.3% and training time becomes 26.4% less than using all 
sensors. For the attributes, it is figured out that simple time-
domain features such as mean, kurtosis and skewness are very 
useful and efficient for such classification problem. 

It is important to emphasize that, in this work, sensor role 
and feature importance is studied from a pure machine learning 
point of view. It is interesting to interpret the validity of the 
results obtained with the aid of an expert of such hydraulic 
plant. Moreover, the proposed model, and its optimized 
versions, should be tested in real environment where ad-hoc 
devices like PLC units are in charge for monitoring the system 
conditions. It also lacks to consider the effect of noise on 
recorded sensor signals, in particular low-frequency sensors. 

VI. CONCLUSIONS AND FUTURE WORK 

The employment of machine learning techniques for 
hydraulic system condition monitoring proves effective for 
automatic recognition of faults and severe conditions. It is 
common to fix various sensors in the system in order to collect 
enough readings for different operating conditions. The 
considered system in this study is provided by 17 (14 physical 
+ 3 virtual sensors) for measuring quantities such as motor 
power, volume flow, pressure, temperature and vibration. 
These sensor signals are represented by a set of six simple 
time-domain attributes to classify four targets, namely, Cooler, 
Valve, Pump and Accumulator. The random forest classifier is 
very suitable for such classification task and its performance 
exceeds 99% for all targets. Moreover, the conducted 
experimental work reveals the impact of each sensor in 
classification of each target conditions. Using of all sensors is 
not essentially effective and efficient. Only one temperature 
sensor is sufficient for the Cooler conditions classification. The 
same observation holds for the Valve target where only two 
pressure sensors are sufficient. Interestingly, the volume flow, 
pressure and efficiency factor sensors can achieve better 
recognition rate than using all sensors for the Pump target. 

On the contrary, for the Accumulator target, the use of the 
attributes of all sensors looks mandatory in order to achieve 
high performance. However, using a reduced set of pressure, 
volume flow, temperature, and efficiency factor sensors still 
gives acceptable classification rate for this target. 

Using few sensors optimizes the classification model size 
and training time and, furthermore, minimizes the cost of 
purchasing and maintenance of many sensors while some of 
them can be sufficient. It is worth to investigate the applied 
methodology here for other similar applications to determine 
the most important sensors for a given fault. 

The effect of noise commonly present in sensor 
measurements on the classification model is challenging and 
can be investigated in a future work. Moreover, noting that the 
classification performed in the current work employs windows 
of data of size 60 seconds, it is a reasonable extension to study 
the possibility of using shorter windows e.g. 5, 10, 20 or 30 
seconds. This can have significant effect on the quick detection 
of severe fault conditions. 
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