
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

208 | P a g e

www.ijacsa.thesai.org

A New Key Generation Technique based on Neural

Networks for Lightweight Block Ciphers

Sohel Rana
1*

, M. Rubaiyat Hossain Mondal
2

Institute of Information and Communication Technology

Bangladesh University of Engineering and Technology

Dhaka 1205, Bangladesh

A. H. M. Shahariar Parvez
3

Department of Computer Science and Engineering

Dhaka University of Engineering and Technology

Dhaka 1700, Bangladesh

Abstract—In recent years, small computing devices used in

wireless sensors, radio frequency identification (RFID) tags,

Internet of Things (IoT) are increasing rapidly. However, the

resources and capabilities of these devices are limited.

Conventional encryption ciphers are computationally expensive

and not suitable for lightweight devices. Hence, research in

lightweight ciphers is important. In this paper, a new key

scheduling technique based on neural network (NN) is

introduced for lightweight block ciphers. The proposed NN

approach is based on a multilayer feedforward neural network

with a single hidden layer with the concept of nonlinear

activation function to satisfy the Shannon confusion properties. It

is shown here that NN consisting of 4 input, 4 hidden, and 4

output neurons is the best in key scheduling process. With this

architecture, 5 unique keys are generated from 64 bit input data.

Nonlinear bit shuffling is applied to create enough diffusion. The

4-4-4 NN approach generates the se-cure keys with an avalanche

effect of more than 50 percent and consumes less power and

memory, thus ensuring better performance than that of the

existing algorithms. In our experiments, the memory usage and

execution cycle of the NN key scheduling technique are evaluated

on the fair evaluation of lightweight cryptographic systems

(FELICS) tool that runs on the Linux operating system. The

proposed NN approach is also implemented using MATLAB

2021a to test the key sensitivity by the histogram and correlation

graphs of several encrypted and decrypted images. Results also

show that compared to the existing algorithms, the proposed NN-

cipher algorithm has lower number of execution cycles and hence

less power consumption.

Keywords—Lightweight cryptography; IoT; resource limited

devices; neural network; avalanche effect; FELICS; MATLAB

I. INTRODUCTION

Lightweight cryptography [1] is that the scaled-down
version of traditional cryptography which target is to provide
security for devices which resource capacity is restricted.
While thinking in computer communication all people want to
prevent his/her message from the malicious person as well as
the valid one must receive/decrypt original message easily.
However, there is a clear trade-off between lightweight and
security of ciphers: Hence, a decent level of security is often
achieved in such sort of resource-constrained devices. In recent
years, the research community has been focusing on designing
cryptographic primitives which are suited to those resource-
constrained devices [2]. Conventional cryptographic
algorithms like RSA [3] mostly perform well in powerful
devices; therefore, lightweight algorithms do not seem to be

necessary for them. Resources like read-only memory (ROM),
random access memory (RAM), processing speed, and battery
power are limited for resource-constrained devices like
Embedded systems, radio frequency identification tags (RFID),
and sensor networks. Hence, the lightweight block ciphers
become essential to ensure the security of these devices.
Different types of cryptographic algorithms like Advanced
Encryption Standard (AES) [1], Data encryption standard
(DES) [1], PRESENT [4], etc. are used for resource-
constrained devices. In most resource-limited devices,
lightweight block ciphers use such design architectures which
will ensure enough security while keeping execution cycles as
less as possible. Most of the ciphers follow the Feistel
Architecture like Secure Internet of Things (SIT) [5], SIMON
[6], Speck [6], etc. or by Substitution-Permutation Network
like PRESENT [4], AES [7], etc. or by using both
Architectures like DES, SIMON [6] to supply enough
Shannon’s confusion and diffusion properties in cipher text.
Key scheduling in the block ciphers should perform in a secure
way because the security of the ciphers depends on the secret
keys which are used in every round of a block cipher. To make
round keys strong, different complex number theories like
modular arithmetic, prime factorization, Euclidian algorithms,
etc. are applied in key generation techniques that end in
hamper the performance of resource-limited devices. Good key
scheduling must have two properties; randomness to generate
unique keys and a high avalanche effect to ensure high key
sensitivity. A single bit change in the key should change at
least 50% bit in the cipher-text so that an attacker cannot easily
predict a plain-text or keys through a statistical attack of
encrypted message. That type of effect in cipher text is
regarded as an avalanche effect. To implement a strong cipher,
the avalanche effect should be considered as one of the primary
design objectives.

A. Motivation

To research on cryptography is a challenging and
interesting topic. Cryptography is the heart of secure data
transmission. It includes complex mathematics, advanced
programming, advanced number theories, etc. With the
increasing usage of resource-constrained devices, lightweight
block ciphers will be essential to provide security for those
devices in near future. HP investigate that above seventy
percent of re-source-limited devices are vulnerable to attacks
[8]. There is a trade-off between the safety and performance of
a low-powered small computing device. Since most of the
cipher proposed to date is based on [1] complex number theory

*Corresponding Author

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

209 | P a g e

www.ijacsa.thesai.org

i.e., Modular arithmetic, Prime factorization, GCD testing
algorithms, etc. As conventional ciphers use complex number
theory to meet (Avalanche Effect) [1] Shannon confusion and
diffusion properties so these ciphers generally become
computationally expensive that hinders the performance of
resource-limited devices. For that reason, it becomes
challenging to implement these heavy algorithms in small
computing devices for ensuring security. Hence, we focus on
developing a simple and less power-consuming key generation
technique using feedforward neural networks [9] (NN).

B. Contribution

This paper presents a NN-based key generation technique
for lightweight block ciphers to provide the lightweight
devices' security and meet the challenges of limited resource
utilization. This paper puts NNs into the key scheduling
process to generate strong round keys. This is done to achieve
a more avalanche effect: more than 50% of the output bit is
changed for a single bit change in input. This property is also
called Shannon confusion. In the used NN, every bit in the
input neuron is connected to all the output neuron bits. So, a
change of a single bit can affect all bits in the output. It has ad-
dressed nonlinearity also since the sigmoid activation function
is applied in hidden layer of proposed NN architecture. The
proposed technique is computationally lightweight because NN
uses simple mathematical operations like addition and
multiplication to generate output. It also ensures nonlinearity as
NN uses nonlinear activation functions like [10] sigmoid and
Step Function. Normally this nonlinear transformation is done
by S-BOX [11] like in AES [7], DES [7]. We faced few
challenges to put the NN in the key generation technique.
These are as follows.

 The choice of a NN to be used.

 The size of the input, hidden, and output neurons.

We evaluated 6 different feedforward NN architectures:
NN4-4-4, NN4-3-4, NN4-2-4, NN4-1-4, NN4-5-4, and NN4-6-
4. Among these, NN4-4-4 and NN4-3-4 perform better others.
The performance of NN4-5-4 is also good; however it has
higher computational complexity. We used 4-4-4 architecture
as its average avalanche effect is higher than NN4-3-4,
although the computational power of 4-4-4 is little more ex-
pensive than NN4-3-4. We used MATLAB 2021a to test the
randomness by entropy, correlation, and histogram and key
sensitivity i.e., Avalanche effect by encrypting images. Thus,
the proposed algorithm ensures enough security and consumes
less power.

II. BACKGROUND AND LITERATURE REVIEW

Lightweight devices have security vulnerabilities.
Particularly, the devices used in IoT have security threats since
these devices may remain without supervision for long hours
[12]. Conventional ciphers require higher computations [13].
Most of the modern cryptographic algorithms proposed are
based on complex number theory like [3] RSA, [1] ElGamal,
and SPN [11] network like AES and [11] Fiestel architecture
like [7] DES. The primary focus of using these primitives is to
create keys and ciphertext more secure by ensuring more
avalanche effect i.e., more confusion and diffusion in the
ciphertext. The main problem with these primitives is

computation-ally expensive, which hampers the performance
of resource-limited devices if implemented.

A. NN in Cryptography

The NN is a core concept of computer science that can be
implanted into cipher to achieve a higher avalanche effect in
cryptography. As every neuron of input is connected to each
neuron of output so a change of a single bit in input can affect
all bits (neurons) of output. The NN also provides nonlinear
transformation like confusion by using nonlinear activation
functions like sigmoid. We can fix the output of a neuron by
training the NN for different weights. Backpropagation is a
good choice to train the NN. After that, a trained network with
fixed weights can be implanted to cipher to make enough
confusion in the ciphertext. Since NN is also a one-way
transformation, reverse engineering attack is not effective.

B. Other Related Works

The authors of article [9], proposed a block cipher based on
NN for cryptography. They designed an encryption algorithm
based on NN to provide security in resource-constrained
devices. Authors applied a [17] backpropagation network as
supervised learning to train the fully connected feedforward
NN. They claimed that the NN performs consistently and
unconditionally throughout the encryption as well as
decryption process. However, their algorithm was
computationally expensive due to the extra burden of the
training process of NN.

In [14], the authors evaluate the performance and security
of modern [18] lightweight ciphers like TEA, HIGHT,
KATAN, and KLEIN which are instigated especially in
resource-constrained devices. To evaluate the performance
metrics like memory and power consumption, the authors used
the AtTiny45 microcontroller as a resource-limited device.
Besides, they assessed the level of Shannon confusion and
diffusion to testing the avalanche effect.

In [2], authors proposed a cipher for lightweight devices
consisting of two core concepts of genetic algorithm, namely,
two-point crossover and coin flip mutation. They also tested
their proposed cipher on Fair Evaluation of Lightweight
Cryptographic Systems (FELICS) to compare execution cycle
and memory usages.

The author in [5] presented a symmetric cipher that
combined together Feistel architecture and Substitution
Permutation Network (SPN) to avail the linear and non-linear
transformation in cipher text. They proposed a cipher that
includes: key generation and the encryption process. The key
scheduling section generates 5 unique keys by taking 64 bits
master key as input from the user. After initial permutation, 64-
bit input is grouped into 4 blocks each of which is 16-bit data
in size. Every 4 blocks are fitted as input for f-function as
shown in Fig. 1. A 4x4 metric is used to transform the output
of the f-function. Here the only source of nonlinearity is the
usage of the matrix. The F-function consists of two P-Boxes;
used in key scheduling is just the linear transformation. We
introduced NN-function in replace of F-function to provide
both nonlinearity and high avalanche affect which results in
high key sensitivity.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

210 | P a g e

www.ijacsa.thesai.org

Fig. 1. 4x4 Matrix Format of Key Generation.

III. PROPOSED NN APPROACH

This section describes our proposed NN cipher approach.
The proposed technique is a symmetric key block cipher based
on a feedforward NN with a nonlinear activation function. The
NN approach is suitable for low-powered and resource-limited
devices. Using NN is to generate the keys strong enough by
ensuring the avalanche effect more than 50%. We put the NN
with nonlinear activation function into the key scheduling
process to generate round keys used in different rounds of the
encryption process. As every neuron of input is connected to
each neuron of output so a change of a single bit in input can
affect all bits (neurons) of output. These properties of NN meet
the standard of avalanche effect that is more than 50%. We
analyze the different sizes of NN to test the avalanche effect.
Our experiment shows that NNs having too many or too few
neurons in hidden layers than that of the input layer have less
avalanche effect. We use NN consisting of 4 input neurons, 4
hidden neurons, and 4 output neurons in the key scheduling
process. The size of the keys and plaintext is 64 bits.

A. Key Expansion

In a block cipher, the most fundamental component is the
keys that are used to perform the encryption as well as
decryption. If the key that was used to generate cipher text is
compromised, the security is totally broken. Therefore, the
illumination of the key should be as difficult as possible. To
prevent data from different statistical attacks like chosen cipher
text, chosen plain text, differential attack, etc. the sensitivity of
the keys must be too high. Even if the attacker assumes the key
that differs only a single bit from the original key, the result of
decryption with that assumed key should be like cipher text. To
ensure higher key sensitivity, the algorithm uses NN, with a
nonlinear activation function for generating a key with an
avalanche effect of more than 50%. Fig. 2 illustrates the
process of the proposed key scheduling details.

The proposed algorithm needs 64-bit data as input to
generate five unique keys for five rounds of the encryption
process. These 64 bits of data are divided by 4 bits which
generate 16 networks. Each network consists of 4-bit data. The
proposed technique uses NN in 4 networks to create nonlinear
transformation, and others are P and Q transformation to make
enough diffusion in generated keys. A feedforward NN of NN
4-4-4 (4 input neurons, 4 output neurons, and 4 neurons of a
hidden layer) is put on 1st, 6th, 11th, 15th networks, receipts 4
bits as input, and generates the 4-bit output with sigmoid and
step activation function which is a nonlinear activation
function. By using the nonlinear activation function in the
hidden layer, the manufactured key is getting stronger with
more confusion. Nonlinear bit shuffling is applied to create
enough diffusion (linear transformation) in generated keys.

Fig. 2. NN based Key Scheduling Process.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

211 | P a g e

www.ijacsa.thesai.org

After that the four 16-bit key (K1, K2, K3, K4) are
generated, which consists of the output of four-bit networks.
The next step is to apply XOR operation on every key K1, K2,
K3, and K4 to generate the fifth key K5.

B. NN as a Function

In this paper, we use NN instead of the f-function [5],
which is a combination of some linear transformation, i.e.,
permutation Box. The one-way properties of NN are more
powerful to generate strong keys, and the avalanche effect of
the proposed NN is more than 50 percent. This property of NN
ensures the higher key sensitivity to protect different statistical
cryptanalysis. Moreover, NN has less computational
complexities because simple mathematical operations like
addition and multiplication are used to produce output. Without
NN, if anyone wants to generate the key with a higher
avalanche effect, they must have to use complex number
theory like prime factorization, Random numbers, and Modular
arithmetic etc. For example, like RSA, large Prime numbers
and modular exponential arithmetic are used to generate keys.
Hence, there will be large computation power which is not
acceptable for lightweight devices. In this proposed algorithm,
a feedforward NN as shown in Fig. 3 is applied. The weights
are trained with machine learning for a better output result. In a
feedforward NN, input data travels in one direction only,
passing through artificial neural nodes and exiting through
output nodes. It has unidirectional forward propagation [9] but
no backward propagation. Weights are static here. An
activation function is fed by inputs which are multiplied by
weights. The network has no cycles or loops.

Here, Xi =[X1, X2, X3, X4] are four neurons of input layer
that join with their corresponding weights to 4 neurons of
hidden layers Hj = [H1, H2, H3, H4] to generate 4 neurons of
output layer Ok =[O1, O2, O3, O4]. The equation to calculate
the each neuron of hidden layer is

 ∑

 (1)

where = hidden layer output, = weights, = input bit

and =bias value.

The equation to calculate the each neuron of hidden layer is

 ∑

 (2)

where = desired output, =hidden layer output, =

weights and = bias value of hidden layer.

C. Activation Function

Activation function produces nonlinearity into the output of
a neuron. We used sigmoid function [10] is as activation
function in the hidden layer.

 ()

 (3)

We used step function [10] as activation function in output
layer because we need either 0 or 1 as output in output layer.
The output is a certain value, A1 for the case where the input
summation has a values beyond a particular threshold, and A0
when it is less than the threshold. The perceptron values were
A1 = 1 and A0 = 0.

 () {

 (4)

From the truth table shown in Table I, it can be seen that
the rate of bit changing is average 50% upper. This type of bit
changing can make Shannon's confusion and diffusion easily.
The security of the proposed key generation is standard for its
image analysis because its correlation comes out in uniform
patterns.

D. The Selection of Architecture NN 4-4-4

In cryptography, the keys must be generated by secure
enough key scheduling algorithms. Generally, Different
popular hashing algorithms like Secure Hash Algorithm
(SHA), (Message Digest) MD5 etc., are used to generate
rounds key to encrypt the plaintext. The most important issue
in generated keys is the sensitivity of the keys. Any change in
the key or the plaintext will lead to a significant change in the
ciphertext so that an attacker cannot easily predict a plaintext
or keys through a statistical analysis of ciphertext. This
property is regarded as avalanche effect. To implement a
strong cipher, avalanche effect should be considered as one of
the primary design objective. The avalanche effect was
identified by [1] "Shannon's property of confusion", however,
the term was first mentioned by Horst Feistel. A strong
encryption algorithm should always satisfy the [1] Avalanche
effect > 50% criteria.

Fig. 3. Feed Forward NN (NN 4-4-4).

TABLE I. SAMPLE OUTPUT OF NN 4-4-4

Input Output

1 1

1 0

1 0

0 1

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

212 | P a g e

www.ijacsa.thesai.org

An encryption algorithm that does not satisfies this
property can favor an easy statistical attack. Considering the
higher avalanche effect and lower computational power, we
proposed the freed forward NN of 4 input neurons, 4 hidden
neurons, and 4 output neurons for key scheduling process. As
shown in Table II, we evaluate avalanche effect for different
combinations of hidden neurons. We collect the outputs in
python language. We do not consider all combinations of a
single bit to test the avalanche effect but run the program for
different combinations and put the average of collected
outputs. According to the used weights, threshold values and
activation functions, we got 53.125 % of avalanche effect (1-
bit change) for architecture NN 4-4-4, NN 4-3-4, and NN 4-5-4
others are zeros. However, for 4-bit change, architecture NN 4-
4-4 has the highest avalanche effect.

E. Computational Complexity of NN

In order to calculate the actual computational complexity of
NN, it is necessary to know both the complexity for each
operation and the number of operations. Assume that
Computational Cost where M denotes the
number of Multiplications and A denotes the number of
addition in a NN. Here in the above equation, M is multiplied
by 3 because in integer arithmetic multiplication is usually 3
times appreciably slower than addition. We do not consider the
complexity of the activation function for simplicity of
calculation.

TABLE II. EFFECT IN ROUND KEYS ON A SMALL CHANGE IN MASTER

KEY

NN

I/P - H -

O/P

Affect in output

for 1 bit changed

in input (%)

Affect in output

for 4 bit changed

in input (%)

Computational

cost

NN 4-4-4 53.125 59.375
32 Multiplications

+ 32 Additions

NN 4-3-4 53.125 56.25
24 Multiplications
+ 24 Additions

NN 4-2-4 00.00 00.00
16 Multiplications

+ 16 Additions

NN 4-1-4 00.00 00.00
8 Multiplications

+8 Additions

NN 4-5-4 53.125 56.25
40 Multiplications
+ 40 Additions

NN 4-6-4 00.00 00.00
48 Multiplications

+48 Additions

TABLE III. WEIGHED COMPUTATIONAL COST

NN I/P - Hidden - O/P Computational Cost (Cycle)

NN 4-6-4 192

NN 4-5-4 160

NN 4-4-4 128

NN 4-3-4 96

NN 4-2-4 64

NN 4-1-4 32

Fig. 4. Impact on Computational Power and Avalanche effect by each

Increasing Hidden Layer.

Here M= 4 input weights * 4 inputs + 4 hidden weights * 4
output neurons = 32, similar for A = 32. So, C.C = 32 * 3 +32=
128. Accordingly, we calculated for all the NNs shown in
Table III. The impact on computational power and avalanche
effect by each increasing hidden layer are illustrated in Fig. 4.
Horizontal axis represents the number of hidden layers for 4
input and output neurons.

The computational power cost increases linearly as we
increase the hidden layer one by one. On the other hand, a
number of architecture, namely NN 4-4-4, NN 4-3-4 and NN
4-5-4 have the avalanche effect of 53.125% (> 50%) which
satisfy the standard of Shannon's property of confusion. We
observed that as he hidden layers exceed the input or output
neuron, avalanche effect remains the same and sometimes
starts to fall. The performance of architecture with 5 hidden
neurons is not improved. The optimal number of hidden [8]
units should be smaller than the number of inputs. So, we
selected architecture NN 4-4-4 to generate keys with high
sensitivity.

F. Key Sensitivity for Ciphertext

To keep data secret from different statistical analyses like
chosen ciphertext, chosen plain text, differential attack,
encrypted ciphertext must change drastically (at least 50%) for
the change of single bit of keys or plain text. We tabulated keys
with single bit change and corresponding ciphertext for all
mentioned architectures. Proposed architecture showed the
avalanche effect more than 50%. All most entire avalanche
effect depends on the NN in key scheduling. Table IV shows 6
pairs of cipher text for six different pair of main keys while a
pair of keys differs only in single bit to each other.

G. Permutation (P and Q Table)

We used the P and Q tables as reported in the literature [5].
These tables perform linear transformations resulting in
diffusion. However, we used P and Q table as per our new
design of the key scheduling. The transformations made by P
are shown in Table V.

32

64

96

128

160

192

0 0

53 53 53

0
NN 4-1-4 NN 4-2-4 NN 4-3-4 NN 4-4-4 NN 4-5-4 NN 4-6-4

Computational Cost (Cycle)

Avalanche effect (%)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

213 | P a g e

www.ijacsa.thesai.org

TABLE IV. AVALANCHE EFFECT IN CIPHER TEXT FOR SINGLE BIT

CHANGED IN KEY

NN

I/P - H - O/P

Input Keys (64

bits) in hex

Cipher text(64

bits) in hex

Avalanche

Effect (%)

NN 4-4-4

12 34 56 78 9a bc

de fa

04 36 12 d2 97 8f

1b af
53.125

12 34 56 78 9a bc

de fb

48 d b8 55 2d 30

5b 80

NN 4-3-4

12 34 56 78 9a bc

de fa

04 36 12 d2 97 8f

1b af
53.125

12 34 56 78 9a bc

de fb

48 d b8 55 2d 30

5b 80

NN 4-2-4

12 34 56 78 9a bc

de fa

d3 29 51 da ec 8f

c8 b4
00.00

12 34 56 78 9a bc
de fb

d3 29 51 da ec 8f
c8 b4

NN 4-1-4

12 34 56 78 9a bc

de fa

d3 29 51 da ec 8f

c8 b4
00.00

12 34 56 78 9a bc
de fb

d3 29 51 da ec 8f
c8 b4

NN 4-5-4

12 34 56 78 9a bc

de fa

04 36 12 d2 97 8f

1b af
53.125

12 34 56 78 9a bc
de fb

48 d b8 55 2d 30
5b 80

NN 4-6-4

12 34 56 78 9a bc

de fa

d3 29 51 da ec 8f

c8 b4
00.00

12 34 56 78 9a bc
de fb

d3 29 51 da ec 8f
c8 b4

Here, Plain text used is 0xab cd 12 34 87 65 01 35

TABLE V. P TABLE

Input

key(
)

0 1 2 3 4 5 6 7 8 9 A B C D E F

Genera

ted

key(
)

3 F E 0 5 4 B C D A 9 6 7 8 2 1

The transformations made by Q are shown in the Table VI.

TABLE VI. Q TABLE

Input

key(
)

0 1 2 3 4 5 6 7 8 9 A B C D E F

Genera

ted

key(
)

9 E 5 6 A 2 3 C F 0 4 D 7 B 1 8

H. Non-Linear Bit Shuffling

We used the nonlinear bit-shuffling as reported in the
literature [2]. In the nonlinear bit-shuffling, a concatenated 16-
bit is transferred to each block of non-linear bit shuffling. After
that, a random number is computed from the input of 16-bit
data which is again logically combined with 16-bit input by
performing a bitwise XOR operation. The output of the XOR
operation is transferred to bit shuffling as well as to the perfect
shuffling block sequentially to create enough diffusion in
generated keys.

I. Encryption and Decryption Process

We used the encryption algorithm which was proposed by
[2]. The encryption process consists of Feistel architecture with
G-function [2] which is based on the concept of two operators
of genetic algorithms: mutation and crossover. Fig. 5 illustrates
the flow of operation for a single among five rounds. The
encryption process takes a block of 64-bit plain messages as
input at a time. The first round uses the first key K1 generated
by NN based key generation technique and then K2, K3, K4,
K5 for 2nd, 3rd,4th, and 5th rounds sequentially.

Fig. 5. A Single Round of Encryption Process.

 {

 (5)

The 64-bit message is equally split into four 16 bit
segments. According to the Feistel structure, swapping, XOR,
XNOR operations are performed among the split blocks to
increase the avalanche effect in cipher text. An XNOR
operation is performed between round key and left as well as
rightmost blocks separately. Then the output of the XNOR
operation is feed to G-function as input. The 4th block and
output of the left G-function are again XORed and the 2nd
block and output of the right G-function are XORed as well.
After that, a swapping operation is executed among the 4
blocks except for the last round. The equation (5) represents
the process of how a single rounds encrypt plaintext into cipher
text. Finally, every four blocks are combined together to
generate a block of 64-bit cipher text. The decryption process
is the opposite of the encryption process. This time last key is
used first.

J. G-Function

We replicated the G-function from the earlier research
work. The G-function [2] is based on the concept of two
operators of genetic algorithms: mutation and crossover. This
function takes 16 bits as input and first, split equally into two
eight-bit segments. Both two 8 bit data are transformed by
using a substitution box that is called S-Box. After performing
a two-point crossover to both outputs of S-Box, a coin flip
mutation operation occurs. Finally, the 16-bit output is
generated.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

214 | P a g e

www.ijacsa.thesai.org

IV. EXPERIMENTAL SETUP

 The proposed approach is initially written in a popular
structure language C. We used CodeBlocks as IDE. The coded
cipher is not dependent on any machine to be executed. We
also used a benchmark tool ‘Fair Evaluation of Lightweight
Cryptography Systems (FELICS) to measure memory usage
and execution cycles that run on Linux Ubuntu. The FELICS
tool is open access and free to install. We also implemented
our proposed NN approach in MATLAB 2021a to evaluate the
security strength of keys. The proposed NN approach is
evaluated based on key sensitivity, execution cycles, bridge
histogram, and correlation histograms. We also assessed the
NN cipher in terms of memory usage and clock cycles to
generate keys, cipher text, and regenerate plaintext.

A. Evaluation Parameters

The security strength of the proposed algorithm is tested
based on key sensitivity, execution cycles, bridge histogram
and correlation histograms. We also assessed the memory
utilization and execution cycles for key generation, encryption
and decryption of this algorithm. The FELICS [15] provides a
command-line interface like GCC (GNU Compiler Collection)
to test and build any lightweight cryptographic code. They
provide documentation to facilitate the implementation as
shown in Fig. 6. We can compile our implementation and test
whether ours is runnable in FELICS or not. It provides three
scenarios against which we can test our code.

We used FELICS to collect clock cycles required for the
key generation, encryption, and decryption process of different
reported ciphers along with the proposed cipher. We measure
the program memory, RAM, and actual code size as well.
Table VII shows the comparative results of different ciphers
for AVR architecture. It can be seen that among the methods
considered, the proposed NN method requires the lowest total
execution cycles. Though other ciphers like HIGHT [16] have
fewer cycles for key generation, the overall execution cycle of
NN is fewer than that of others. The NN cipher needs the
lowest RAM to execute and hence, it is memory efficient also.

Fig. 6. Testing the Proposed Approach in FELICS.

TABLE VII. EXECUTION CYCLES OF CIPHERS ON AVR ARCHITECTURE

C
IP

H
E

R

D
e
v

ic
e

B
lo

c
k

 s
iz

e

K
ey

 s
iz

e

C
O

D
E

S
IZ

E

R
A

M

C
y

c
le

s

(K
ey

 g
e
n

e
ra

ti
o

n
)

C
y

c
le

s

(e
n

c
ry

p
ti

o
n

)

C
y

c
le

s

(d
e
c
ry

p
ti

o
n

)

AES[7]
AV

R

12

8

12

8

2309

0

72

0
3274 5423 5388

HIGHT[16]
AV
R

64
12
8

1347
6

28
8

1412 3376 3401

LEA[14]
AV

R

12

8

12

8
3700

43

2
4290 3723 3784

PRESENT[

4]

AV

R
64 80 1738

27

4
2570 7447 7422

RC5
AV
R

64
12
8

2004
4

36
0

2679
3

4616 4652

Simon[6]
AV

R
64 96 1370

18

8
2991 1980 1925

Speck[6]
AV

R
64 96 2552

12

4
1509 1179 1411

SIT[5]
AV
R

64 64 826 22 2130 876 851

G-cipher[2]
AV

R
64 64 1228 34 1630 792 789

Proposed

NN-Cipher

AV

R
64 64 1228 34 1483 792 789

Fig. 7 presents bar chart comparisons among various
reported ciphers with NN approach. For each ciphers, bar chart
shows the status of required clock cycles to generate keys,
cipher text from plaintext, plaintext from cipher text, as well as
overall execution cycles. The chart shown in Fig. 7 clearly
demonstrates that the NN cipher executes in less clock cycles,
improving over the other reported ciphers especially than SIT
[5] and G-cipher [2] which we followed most. So, the proposed
NN cipher is more power efficient than that of other ciphers.

Fig. 7. Execution Cycle of Ciphers for Hardware Implementation.

3
2
7
4

1
4
1
2

 4
2
9
0

2
5
7
0

2
9
9
1

1
5
0
9

2
1
3
0

1
6
3
0

1
4
8
3

 5
4
2
3

3
3
7
6

3
7
2
3

 7
4
4
7

1
9
8
0

1
1
7
9

8
7
6

7
9
2

7
9
2

5
3
8
8

3
4
0
1

3
7
8
4

 7
4
2
2

1
9
2
5

1
4
1
1

8
5
1

7
8
9

7
8
9

1
4

0
8

5

8
1

8
9

 1
1

7
9

7
 1

7
4

3
9

6
8

9
6

4
0

9
9

3
8

5
7

3
2

1
1

3
0

6
4

E
x
ec

u
ti

o
n

 C
y

cl
es

Cycles (Key generation)

Cycles (Encryption)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

215 | P a g e

www.ijacsa.thesai.org

B. Analysis of Key Sensitivity

The NN approach is also demonstrated in MATLAB®
which encrypts an image and then decrypts the image with the
correct key for a visual observation key sensitivity. After that
the images are decrypted by using a wrong key with a single
bit alteration from the original key. This is also a test for the
avalanche effect of the keys. This is also a test for the
avalanche effect of the keys. The decryption is non-
recognizable if even one bit changes in the original keys. Fig. 8
shows that for NN-cipher, the encrypted images can only be
decrypted with the correct key.

Plain image cipher image

Decrypted

with the

correct key

Decrypted with

wrong key (1 bit)

Fig. 8. Analysis of Key Sensitivity.

C. Histogram and Correlation Comparisons

Fig. 9 presents the bridge histograms of original and
encrypted images. The vertical line indicates the pixel available
in the image, and the horizontal axis refers to image intensity.
The histogram of the image shows the uniform relationship that
ensures the strength of the cipher image. So any statistical
attacks will not be effective to predict the plain image from the
cipher image without using the correct keys.

Fig. 10 shows the correlation graph of the considered
original images and the encrypted images. The correlation
graph of plain image shows linear relationship that is higher
positive correlated value. However, the correlation graph of
cipher image shows highly randomness that is the negative
values. Hence, the negative correlation values of encrypted
images indicate the strong security strength of proposed cipher.

D. Power Consumption

For calculating the total power consumed by an algorithm
on a particular device, first we need the execution cycle of that
algorithm. By using the following equation (6), we can
compute the power consumption of an algorithm on a
particular device:

 (6)

Where, denotes the operating voltage and indicates
operating current used up for T seconds (unit in Ampere).
refers to the clock period as well as N indicates the required
number of execution cycle. If be the operating frequency of

the particular device in Hertz then we can calculate the time

period of the particular device that is
 ⁄

According to the absolute maximum rating (AMR) of
dataset, usually maximum operating voltage of [19] Atmel
Atmega128 is 5V, Maximum current is 40mA and operates at
16 MHz. Fig. 11 demonstrates the of energy consumption of
different reported ciphers along with the proposed NN
approach for a single block of data. The bat chart shows that
NN approach consume less power than that of others.

Fig. 9. Bridge Histogram.

Fig. 10. Bridge Correlations for Encrypted and Decrypted Image.

Fig. 11. Energy Consumption Comparison of Ciphers.

2.82

1.68

2.36

3.49

2.39

1.38
0.84 0.77 0.64 0.61

0
0.5

1
1.5

2
2.5

3
3.5

4

P
o

w
er

 i
n
 m

il
i-

w
at

t

 Power Consumption(mili-Watts)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

216 | P a g e

www.ijacsa.thesai.org

V. CONCLUSION AND FUTURE WORK

The security, as well as performance of resource-limited
devices, is an important issue. For this purpose, a lightweight
cryptographic algorithm using NN is proposed in this paper.
This NN-cipher algorithm has lower key generation cycles and
less power consumption than the existing ciphers. The bridge
histogram and the bridge correlation plot indicate that the NN-
cipher can reliably encrypt images. Moreover, the key
sensitivity results indicate that for NN-ciphers, encrypted
images can only be successfully decrypted using the actual
key. Hence, the proposed cipher will be an excellent solution
of security for those devices that are resource-limited. Besides,
We intend to perform more mathematical analysis as well as
hardware implementation on our proposed algorithm to
investigate its security strength as future work. More
evaluation metrics like the randomness of generated keys using
the Chi-square test can be considered for further evaluation.

REFERENCES

[1] William Stallings "Cryptography and Network Security Principles and
Practices", Fourth Edition, Publisher: Prentice Hall, November 16, 2005.

[2] Sohel Rana, Saddam Hossain, Hasan Imam Shoun and Dr. Mohammod
Abul Kashem, "An Effective Lightweight Cryptographic Algorithm to
Secure Resource-Constrained Devices" International Journal of
Advanced Computer Science and Applications (IJACSA), 9(11), 2018.
DOI: 10.14569/IJACSA.2018.091137.

[3] Riguang Lin, Sheng Li, "An Image Encryption Scheme Based on Lorenz
Hyperchaotic System and RSA Algorithm", Security and
Communication Networks, vol. 2021, Article ID 5586959, 18 pages,
2021. https://doi.org/10.1155/2021/5586959.

[4] Kostas Papapagiannopoulos."High throughput in slices: the case of
PRESENT, PRINCE and KATAN64 ciphers". Radboud University
Nijmegen, Department of Digital Securi-ty.2016.

[5] Muhammad Usman, Irfan Ahmed, M. Imran Aslam, Shujaat Khanand
Usman Ali Shah. "SIT: A Lightweight Encryption Algorithm for Secure
Internet of Things" Iqra Universi-ty, Defence View and Department of
Electronic Engineering (IJACSA) International Journal of Advanced
Computer Science and Applications, Vol. 8, No. 1, 2017.

[6] Tomer Ashur, Atul Luykx. "An Account of the ISO/IEC Standardization
of the Simon and Speck Block Cipher Families." Security of Ubiquitous
Computing Systems.Edited by © 2020 Springer Nature Switzerland AG.
Part of Springer Nature, Vol License CC BY 4.0, pp. 63-78 Switzerland,
DOI: 10.1007/978-3-030-10591-4_4 2021.

[7] Biao Xing1, DanDan Wang1, Yongquan Yang1, Zhiqiang Wei2, Jiajing
Wu1, Cuihua He . "Accelerating DES and AES Algorithms for a

Heterogeneous Many-core Processor." International Journal of Parallel
Programming (2021) , Int., pp. 49:463–486 ,
https://doi.org/10.1007/s10766-021-00692-4. (2021).

[8] S. A. Kumar, T. Vealey, and H. Srivastava, "Security in Internet of
Things: Challenges, solutions and future directions", in 2016 49th
Hawaii International Conference on Sys-tem Sciences (HICSS), IEEE,
2016, pp.5772-5781.

[9] Eva Volna , Martin Kotyrba,Vaclav Kocian, Michal Janosek,
CRYPTOGRAPHY BASED ON NEURAL NETWORK, Proceedings
26th European Conference on Model-ling and Simulation ©ECMS
Klaus G. Troitzsch, Michael Möhring.

[10] Chigozie Enyinna Nwankpa, Winifred Ijomah, Anthony Gachagan, And
Stephen Mar-shall, "Performance Analysis Of Various Activation
Functions In Artificial Neural Net-works",Journal Of Physics
Conference Series 1237:022030, June 2019; DOI: 10.1088/1742-
6596/1237/2/022030.

[11] Sohel Rana, Wadud, Ali Azgar, Dr. M Abul Kashem, "A Survey Paper
of Lightweight Block Ciphers Based on Their Different Design
Architectures and Performance Metrics" International Journal of
Computer Engineering and Information Technology, June 2019, Volume
11, Issue 6.

[12] P. Wang, Professor S. Chaudhry, S. Li, T. Tryfonas and H. Li, "The
internet of things: a security point of view", Internet Research, vol. 26,
no. 2, pp. 337-359, 2016.

[13] S. Wang, Z. Zhang, Z. Ye, X. Wang, X. Lin, and S. Chen, "Application
of environmen-tal internet of things on water quality management of
urban scenic river", International Journal of Sustainable Development &
World Ecology, vol. 20, no3, pp. 216-222, 2013.

[14] Vikash Kumar Jha," Cryptanalysis of Lightweight Block Ciphers" Aalto
University School of Science Degree Programme of Computer Science
and Engineering, Master's Thesis, November 18, 2011.

[15] D. Dinu, A. Biryukov, J. Großschädl, D. Khovratovich, Y. L. Corre, L.
Perrin, "FELICS – Fair Evaluation of Lightweight Cryptographic
Systems", University of Luxembourg, July 2015.

[16] Bohun Kim,Junghoon Cho,Byungjun Choi,Jongsun Park,and Hwajeong
SeoHindawi."Compact Implementations of HIGHT Block Cipher on IoT
Platforms. Hindawi, Security and Communication Networks, Volume
2019, Article ID 5323578.

[17] Tope Komal, Rane Ashutosh, Rahate Roshan, S.M.Nalawade,
Encryption and Decryp-tion using Artificial Neural Network,
International Advanced Research Journal in Sci-ence, Engineering and
Technology, Vol. 2, Issue 4, April 2015,

[18] Kerry A. McKay, Larry Bassham, Meltem Sönmez Turan, Nicky
Mouha. Report on Lightweight Cryptography, National Institute of
Standards and Technology,USA, March 2017.

[19] Utsav Banerjee, Lisa Ho, and Skanda Koppula."Power-Based Side-
Channel Attack for AES Key Extraction on the ATMega328
Microcontroller". Massachusetts Institute of Technology. ResearchGate.
December 201.

