
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

324 | P a g e

www.ijacsa.thesai.org

A Method to Prevent SQL Injection Attack using an

Improved Parameterized Stored Procedure

Kamsuriah Ahmad
1
, Mayshara Karim

2

Center for Software Technology and Management

Faculty of Information Science and Technology

Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia

Abstract—Structured Query Language (SQL) injection is one

of the critical threats to database security. The effects of SQL

injection attacks cause the data contained in the database to be at

risk of being exploited by irresponsible parties, compromising

data integrity, disrupting server operations and in return

affecting the organization's image. Although SQL injection is an

attack performed at the application level, SQL injection

prevention requires security controls at all levels, namely

application level, database level and network level. The absence

of SQL injection prevention measures at the application level

makes the database vulnerable to attack. Reviews indicate that

the current approaches still not sufficient in addressing these

three issues, which are i) improper use of dynamic SQL, ii) lack

of input validation process and iii) inconsistent error handling.

Currently, program and database code security is based solely on

basic security measures that are focused at the network level

such as network firewalls, database access control and web

server request filtering. Unfortunately, these measures are still

inadequate and not sufficient to safe guard the program code and

databases from the attack. To overcome this shortcoming as

addressed by these three issues, a new comprehensive method is

proposed using an improved parameterized stored procedure to

enhance database security. Experimental results prove that the

proposed method is able to prevent SQL injection from

occurring and able to shorten the processing time when

compared with existing methods, hence able to improve database

security.

Keywords—SQL injection prevention; database security;

parameterized stored procedure; network firewall

I. INTRODUCTION

The sophistication of information technology makes life
easier but at the same time poses a threat if the security aspect
is not given special attention [1]. The internet that connects
people around the world carries the threat of hackers. SQL
injection is used as a method to steal and exploit information
on the database [2]. SQL injection can affect organizational
data security, and now they start to realize the importance of
preventing this attack before it happens [3]. The prevention
from this injection has become the focus of database
administrators, network administrators, application code
programmers, database system providers, software developers
and the top management of the organization. The problems
brought by SQL injection have been around for a long time
and are still a hot topic in information security issues [4] [5].
Web application security and database security are inter-

dependent. If a web application is manipulated by hackers,
databases that have been equipped with security features can
still be exploited. There are a number of threats to database
security: among them are i) excessive privilege which refers to
users who are given permission to access or carry out various
transactions in the database but abuse the permission instead,
and ii) SQL injection which is the entry of unauthorized input
into the database to carry out any instructions that are not
valid [6]. In addition, weak audit trails or automatic recording
of database transactions that are not performed properly and
media used as storage for backups such as hard disks and
tapes are also prone to theft [7]. Therefore to improve
database security, this paper aims to propose a new method in
preventing SQL injection. To discuss the existing prevention
methods on SQL injection and the motivation of this work,
this paper is organized as follows: section II discusses the
issues of SQL injection attack. Section III describes various
ways that cause web applications to be attacked by SQL
injection. Section IV highlights the impact of SQL injection
on database security. Section V reviews the existing SQL
injection prevention method. Based on the limitations faced by
the existing methods, a new method is proposed in Section VI.
Section VII explains the experiment conducted to prove the
efficiency of the proposed method and Section VIII concludes
the study and future work suggestion.

II. SQL INJECTION ATTACK

SQL is a standard programming language used to access
databases. SQL injection is the act of putting malicious code
as an input to a web application and sending it to a database to
execute various commands [8]. An attack occurs when a
hacker exploits an SQL injection to execute an unauthorized
command [9]. Examples of common exploits are: stealing
confidential information that can bring profits such as credit
card numbers, bank savings account numbers, passwords,
business transaction records and medical records. In addition,
exploitation can also involve data modification [10]. For
example; students trying to change grades or exam marks.
There are also cases which are not personal attacks; such as
sabotage the database by deliberately deleting certain tables,
shutting down database operations and disrupting network
traffic [4]. The term ‗injection‘ is used because malicious code
which considered as a non-valid input is injected into a valid
SQL statement. The database will execute this command
because it is valid in terms of the syntax and rules [11]. Fig.1
explains the scenario of SQL injection attack.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

325 | P a g e

www.ijacsa.thesai.org

Fig. 1. SQL Injection Attack [2].

The term attack in the context of SQL injection is defined
as an unauthorized access to applications or systems which
normally done by hackers [12]. This access is obtained
through SQL injection mechanisms derived from SQL query
modifications [9]. Web applications that have user input can
be attacked by SQL injection because the application code has
certain vulnerabilities that expose to the attacks.

This will lead to the occurrence of bugs, loopholes,
vulnerabilities or defects. These weaknesses shall be
manipulated by unauthorized users to gain unrestricted access
to stored data [10]. Therefore, a proper mechanism is needed
to prevent the attack, such as validate the user input both at the
client and server side [13] [14]. Since lack of proper
mechanism in preventing the attack at the application and
database level exists in the literature, therefore it has become
the motivation of this study. In order to understand in details,
next section will discuss the types of SQL injection that
usually attack databases.

III. SQL INJECTION MECHANISM

Web applications have many loopholes and make them
vulnerable to SQL injection attacks. There are various ways
that cause web applications to be attacked by SQL injection.
Among them are discussed as follows.

 SQL Injection through error messages.

An error-based injection is a type of SQL injection derived
from an error message to figure out the structure and the type
of database [15]. The attacker intentionally enters wrong input
logically in order to allow database generates an error
message. This error message contains information that allows
the attacker to identify the parameters vulnerable to the
injection.

 Boolean-based blind SQL injection

The term blind means that the SQL injection is performed
when the programmer has set a generic custom error message
in case web application encounters an error [16]. Without
displaying error messages, database vulnerabilities can be
protected. The hacker has to deal with a database system that
does not display error messages and as an alternative, hackers
submit a series of "TRUE" and "FALSE" queries via SQL
queries [17]. Information about the database will be revealed
through the results of these queries.

 Time-based blind SQL injection

Time-based SQL injection means hackers obtain
information on database based on response times. SQL

command is sent to database with code to force the database to
wait for a specified amount of time during the execution of the
queries. The response time indicates whether the result of the
query is true or false. While waiting for the query to be
processed, the attacker able to execute another query and
might inject malicious code in the query [18].

 UNION-based SQL injection

The hacker connects the SQL injection to the original SQL
query by using the UNION clause to retrieve data from
another table. The result of this injection is that the database
provides a data set that contains a combination of the results
of the original query and the results of the SQL injection
query [19].

To avoid SQL injection through error messages will be the
focus of this study. Hackers have a variety of reasons and
motivations when it comes to hacking. Hackers gain access
and control to databases illegally through SQL injection. With
such access hackers can perform various actions to manipulate
the data stored in the database. The main impact when SQL
injection occurs is the disruption of the confidentiality and
integrity of the data in the database [20]. Table I describes the
actions that hackers can take and the consequences of the
actions taken.

TABLE I. THE ACTION AND THE EFFECTS OF SQL INJECTION ATTACKS

 Action Effects

1
Identify parameters that
can be injected

Attackers able to find input parameters
that are vulnerable to SQL injection

2
Perform a fingerprint on
the database

An attacker can find out the type and

version of the database being used. Easier

to devise a more specific attack strategy.

3 Identify database schema
Attackers able to extract the information
on database schema accurately

4 Extraction of data
Attackers able to extract complete data

from database table

5
Add, remove and edit

data

Attackers can alter certain data for their

own benefit

IV. THE IMPACT OF SQL INJECTION ATTACK ON DATABASE

SECURITY

Most organizations are unaware that their web applications
are vulnerable to SQL injection attack or have been attacked
by SQL injection [21]. Awareness and knowledge of SQL
injection is still lack in the organization, any prevention steps
are mostly at the basic level such as network firewall
installation, the use of Secure Socket Layer (SSL) and
network access control [2]. However, these measures only
provide protection at the network level, and not at the
application level [11]. Reviews state that the weakness in
preventing SQL injection lies in the programming code of the
web application itself [15]. Although various types of
techniques have been introduced, most of the researchers
insist that the application program code needs to be ensured its
security first [22]. Firewalls and protocol information unable
to protect web applications from hackers due to their position
are behind the web application infrastructure [12]. The risks of
attacks are increased due to the exposure of web application,
firewall-friendly HTTP protocols and lack of database security
[23].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

326 | P a g e

www.ijacsa.thesai.org

Even though, there are approaches to improve database
security through SQL injection prevention both at application
and database level, however they are not capable to protect
database against these three attacks which are:

1) vulnerabilities triggered when using dynamic

SQL[13][18].

2) malicious code entered through input data [5][6].

3) inappropriate error handling message [10][14].

The cause of these attacks is explained as follows:

 Dynamic SQL usage

Dynamic SQL is a query language to build SQL
statements and performs functional logic such as data search,
user login and others, where this query is created dynamically
at run-time. Although, these language are beneficial and user-
friendly; but at the same time they expose the web
applications to SQL injection. Often web applications are
vulnerable to the attacks when dynamic SQL statements are
being used [7]. Because, this language is dynamic in nature,
therefore, an unauthorized user can modify the original query
by injecting a malicious code to the query at run-time [24].
The following shows the impact of using dynamic SQL on
database security. An example is used to show how SQL
injection attacks might occur when using dynamic SQL.
During runtime, the following dynamic SQL statement is sent
by the web server to the database server:

SELECT * FROM program WHERE ID = 9

The intention of this query is to list the data from all the
columns in a table named program; where column ID is 9.
Since the query is dynamic, an hacker with a good knowledge
of programming able to manipulate the query by injecting
malicious code and modify the query dynamically at runtime,
for example adding the symbol (‘) after the number 9. SQL
statement is changed to

SELECT * FROM program WHERE id = 9‘

This example shows that the use of dynamic SQL gives an
opportunity to the unauthorized user to perform attack on
database. Therefore the used of dynamic SQL should be
avoided [18]. Since most organization used stored procedure
with dynamic SQL [10], therefore, a preventive step at the
database level is needed to avoid SQL injection attempts.

 Input validation

Web applications allow users to log in into the system.
However, the data entered by the user may contain some
malicious code and can easily exploit through SQL injection
[25]. The inputs need to be checked and validated beforehand.
The absence of an input validation process will contribute to
the vulnerability of SQL injection. When a web application
ensures that the received input is within the expected range,
the malicious code could be prevented from entering the
database server thereby preventing SQL injection. Therefore,
a proper mechanism is needed to validate the input in order to
prevent malicious code from entering the database server.

 Error handling process

During data processing, system will prompt an error
message if they encounter problems. However, the default
error messages reveal sensitive information and weaknesses of
the database. The intruder of the system will learn from these
errors, and this will give an opportunity for them to breach the
system [14].

The limitations of the existing prevention methods at the
application and database levels in the organization have
become the motivation of the study. An improved method that
able to overcome these three issues discussed above is needed
in enhancing organization security level.

V. AN OVERVIEW OF THE EXISTING SQL INJECTION

PREVENTION METHOD

Measures to improve the security of web applications and
databases can be done at the server, network, database and
application levels. However, most organizations take the basic
security measures at the server and network level only [26].
The server and ICT network level is the physical level which
is also an asset subject to the security procedures set by the
existing policies. For example, organizations in the public
sector need to comply with the Security Policy which outlined
rules for internet access control, use of firewalls, server
configuration settings, user access control and others.

Since this study focuses on the improvement of SQL
injection prevention at the application and database level, the
reviews of the existing methods are based on these two levels,
which are summarized in Table II. Existing methods are
reviewed based on their ability to address the threats causes by
the three issues discussed namely i) dynamic SQL usage,
ii) data validation at both client and server side, iii) error
handling process. These three issues need to properly address
to prevent SQL injection.

As Table II indicates, the existing methods did not address
the three issues highlighted in one single method; therefore
they are not sufficient in securing the database from SQL
injection attacks. The method proposed by [4][12][21][24]
validates the data at the client side and ignore the validation
process at the server side. Therefore malicious code might
enter the database. Even though methods proposed by
[6][23][27][28] used parameterized query however dynamic
SQL is still used. Therefore, this method is unable to prevent
unauthorized user from modifying the original query by
injecting malicious code. The used of dynamic SQL should be
avoided to increase database security [2]. Dynamic analysis as
used in [25] increases the query processing response time. As
an organization that constantly deals with users through web
applications, fast response times are essential. There are
previous researchers who embedded handled error messages
in their approaches, but the usage is inconsistent since the data
is not validated at the application and database level [2][14].
Therefore these approaches are not sufficient in dealing with
SQL injection attacks.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

327 | P a g e

www.ijacsa.thesai.org

TABLE II. EXISTING APPROACHES IN SQL INJECTION

Author Method used Remarks

[2]
Error

handling

Users are able to access database

information through error messages.

However, the error handling messages are
not done consistently

[4]
Input

Validation

The validation is only at the application

side

[6]
Parameterized
query

The data given by the users is encoded.
However since this approach used dynamic

SQL to encode the data, therefore the

method did not prevent the system from the
attack.

[12]
Input
Validation

Input validation is only at the application

or client side and ignores the validation at

the server side.

[13] Dynamic SQL
The data is not properly validated and error

messages are not handled consistently.

[14] Error handling

Proposed signature-based detection to
handle error messages. However, this

approach did not embed the input

validation at both client and server side.

[18] Dynamic SQL
Validate the input at both client and server.
However, SQL injection is still being used

and error handling is not properly done.

[21]
Input

Validation

Input validation is only at the application

or client side and ignores the validation at
the server side.

[23]
Parameterized

query

This approach did not validate the input
data; therefore invalid data might enter the

database.

[24]
Input

validation

Use dynamic SQL to separate between

normal data and malicious data. However,
this process still vulnerable to the attack.

[25]
Dynamic

SQL

This method uses combined static and

dynamic analysis to prevent malicious code

produced by dynamic SQL. However, the

process will increase the query processing

time. The data is not properly validated and

error messages are not handled consistently.

[26] dynamic SQL

Used dynamic SQL in the methodology,
therefore not efficient in preventing SQL

injection

[27]
Parameterized

query

Use Knuth-Morris-Pratt matching algorithm
and parameterized query to detect and

prevent SQL injection. However, the error

messages are not handled properly.

[28]
Parameterized

query

Use signature-based approach to prevent
the attack. However, the error messages are

not handled properly.

Based on the comparative analysis and to overcome the
limitations of the existing methods this study proposed a
comprehensive method to address the highlighted issues. The
existing stored procedure methods is referred and improved by
incorporating parameterized queries as a SQL injection
prevention mechanism at the database level and developing
input validation and error handling as a preventive mechanism
at the application level. The proposed method intends to
address the issues highlighted in Section IV. The details on the
proposed method are discussed in the next section.

VI. AN IMPROVED STORED PROCEDURE WITH

PARAMETERIZED QUERY

Currently, most organization used stored procedure as a
prevention method at the application level [23][27][28].

Stored procedures are subroutines which contain a set of
predefined SQL code that can be saved and reused over and
over again when needed. The code is written, compiled and
executed before it is being used by the web application to
communicate with databases. Frequently used queries can be
saved in a stored procedure and can be recalled when
requested. Since the location of stored procedure is within the
database server, therefore the interaction between the program
code and the table containing the data can be avoided [29].
This will improve the security of application program code
because it can add another layer of abstraction before
interacting with database [19]. With these features, stored
procedure is able to provide high security feature to the
database.

A parameterized query (or a prepared query statement) is a
pre-compiling SQL statement. One or more parameters (or
variables) need to embed into the statement for it to be
executed. Parameters are sent to the query as soon as the user
presses the ‗Submit‘ button or presses the link in the web
application. Normally, the existing code for the web
application contains dynamic SQL statements when
performing a query in the search functions. Due to limitation
in dynamic SQL, parameter queries will be used instead, in
conjunction with stored procedures. Parameter queries have
program code security features that can be used instead of
dynamic SQL. Parameters containing embedded user input
will not be interpreted as commands to execute, thus will not
allow code to be injected by SQL injection. The use of these
parameterized queries is intended to replace dynamic SQL
queries that can cause vulnerabilities to SQL injection.
Application code will be more secured because functional
logic is defined first and input parameters are entered after
functional logic is processed [2].

Therefore this study proposed a comprehensive method to
overcome the three issues highlighted earlier as discussed in
Section 4. The proposed method makes an improvement based
on these three steps:

1) use stored procedure with parameterized query instead

of SQL dynamic,

2) validate the input at both client and server to reduce

vulnerabilities to SQL injection. This is to ensure the input

parameters sent to the database server do not contain

malicious code and to prevent the code from accessing and

harm the stored procedure,

3) improve the error handling process by not displaying

confidential database information. Since error messages may

reveal the limitation of the system to the intruder.

Fig. 2 shows the workflow of the proposed method. The
workflow consists of four components which are:

1) the search page where the user enters the data to

search,

2) the data validation at the client and the server site,

3) the error message if problems encountered during the

process, and

4) the output of the query.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

328 | P a g e

www.ijacsa.thesai.org

Search Page

Program Code

Program Name

University

Search

Sorry, the search is discontinued since it

contains illegal characters

Send error message

Valid parameter

input?

Search Findings

The findings are as follows:

1

2

3

Stored

Procedure

(parameter

query)

Error Message

searching

valid

not valid

WEB & APPLICATION SERVER DATABASE SERVER

Sending output

table

Fig. 2. The Workflow of the Parameterized Stored Procedure Improvement.

Fig. 3. The Proposed Method using Parameterized Stored Procedure.

USE [ProgDB]

GO

/******Object: StoredProcedure [dbo].[search_programmes] ******/

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

ALTER PROCEDURE [dbo] [search_programme]

@arg_programmecode NVARCHAR(10),

@arg_programmename NVARCHAR(25),

@arg_instname NVARCHAR(25),

AS

BEGIN

DECLARE @sql NVARCHAR(max),

DECLARE @a NVARCHAR(100),

DECLARE @b NVARCHAR(100),

DECLARE @c NVARCHAR(100),

SET @sql ‗SELECT programme_code,

autoID

inst_name_E,

inst_name_ML,

inst_name_EL,

prog_name_EN,

programme_name_E,

Category,

Status,

Valid_date, AA_yes,

FROM Q_search where 1=1‘

SET @a = ‗ % ‗ + @arg_programmecode + ‗ % ‘

SET @b = ‗ % ‗ + @arg_programmename + ‗ % ‘

SET @c = ‗ % ‗ + @arg_instname + ‗ % ‘

IF (@arg_programmecode is not NULL)

SET @sql @sql + ‗ AND programme_code LIKE ‗ + ‘ @a ‘

IF (@arg_programmename is not NULL)

SET (@sql @sql + ‗ AND programme_name LIKE ‗ + ‘ @b ‘

IF (@arg_instname is not NULL)

SET (@sql @sql + ‗ AND inst_name_E LIKE ‗ + ‘ @c‘

EXECUTE sp_executesql @sql,

N ‗@a NVARCHAR(100) , @b NVARCHAR(100), @c NVARCHAR(100)

‘,

@a = @a , @

-

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

329 | P a g e

www.ijacsa.thesai.org

A stored procedure with parameterized query will be
constructed that consists of the search function and the four
components described above. SQL dynamic is not used in the
query. For instance, the user will enter data regarding the
program code, program name and university in the search
page and the search button is clicked when finished. The input
parameter will be validated at both the application and the
database site. If the input data is not valid at the application
site then an error message will be displayed. If the input data
is valid then parameters of the search function will be sent to
the stored procedure. The query will search from the table for
the answers and displays the result.

The stored procedure that has the search function and the
four components used in this study is shown in Fig. 3. This
stored procedure consists of validating features and a proper
error handling process.

VII. EXPERIMENTAL DESIGN

Since most approaches used dynamic SQL in preventing
SQL injection attacks [13][18][25]; therefore this study
intends to prove that the proposed method using parameterized
query stored procedure is better than the existing approaches.
To evaluate the effectiveness of the proposed approach, two
experiments are conducted. The purposes for evaluation are to
prove that:

1) The stored procedures that have parameterized queries

are better than dynamic SQL in terms of preventing databases

from SQL injection attacks.

2) The proposed approach has a shorter query processing

time when compared the approaches that used dynamic SQL.

To achieve the aims, the experiment is conducted in two
versions, which are:

 Experiment 1: the simulation attacks on web
applications with dynamic SQL queries, and

 Experiment 2: the simulation attacks on web
applications with stored procedures.

In this study, the web application that used as a case study
will be represented by a pseudo-version web application. This
application is developed to simulate and to prove the existence
of web application vulnerabilities to SQL injection and
subsequently became a medium for the experiment. A pseudo
web application is considered a basic replica of the original
web because it is developed with the same program code and
functional logic as the original web application. Fig. 4
explains the used of pseudo-version web application in
identifying the SQL injection attacks.

Pseudo-version web application is developed and
experiment is conduct to simulate the SQL injection attacks.
The experiment is run in a computer using the Microsoft
Windows 7 Enterprise Edition operating system, 4GB of
RAM, Intel (R) Core (TM) i5-2320 CPU @ 3.00GHz
processing chip. Pseudo web applications are developed using

Microsoft SQL Server 2008 database. The web server
operating system used is Windows 2008 R2 with ASP.Net,
Coldfusion and Microsoft IIS 7.5 web application
technologies. The stored procedures are written in the
Transact-SQL language in Microsoft SQL Server.

SQLMap is used in the experiment which works in
conjunction with the Python library and Netsparker Trial
Edition software. SQLMap is chosen as the SQL injection
vulnerability scanner instrument in this study due to its
availability as open source software. This software is the most
effective and popular among hackers and web application
penetration testers [25]. Both experiments used the same test
plan and software namely SQLMap, Netsparker and web
browser. The query used for these experiments are based on
the search query as in the stored procedure in Fig. 3. The
setting for these experiments is explained in Fig. 5.

A. Experiment 1

The purpose of experiment 1 is to investigate the
capabilities of dynamic SQL and the proposed parameterized
stored procedure in preventing SQL injection attacks. To
accomplish this experiment, two testing are required.

 Test 1: to evaluate SQL Injection attack on web
application with the existence of dynamic SQL queries,
and.

 Test 2: to evaluate SQL Injection attack on web
application with parameterized stored procedures.

End

Start

Construct Pseudo Web Application

Perform SQL injection simulation

using SQLMap on pseudo web

application

Record any occurrence of

vulnerabilities or attacks

Fig. 4. Process Flow to Identify Web Application Vulnerabilities against

SQL Injection.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

330 | P a g e

www.ijacsa.thesai.org

SQL Map

Netsparker

Web Browser

Pseudo Web

Application

+

Query A

(Dynamic SQL

statement)

Pseudo Web

Application

+

Query B

(stored procedure

with parameterized

query)

OutputOutput

SQL Map

Netsparker

Web Browser

SQL Injection Attack SQL Injection Attack

Test 1 Test 2

Fig. 5. The Setting for Experiment 1.

SQL which contains a malicious code is injected to
SQLMap, Netsparker and web browser separately. SQL
injection will penetrates web applications with queries
containing dynamic SQL. Web applications that have strong
defenses will be able to prevent attacks caused by SQL
injection. Upon completion of the experiment, the outputs
from these two tests were compared to investigate whether
web application with dynamic SQL and stored procedures
successful prevent SQL injection attacks. The results of this
experiment are displayed in Table III.

TABLE III. THE RESULTS FOR EXPERIMENT 1

Attack
Experimental Results

Test 1 Test 2

SQLMap Prevention Fail Successful prevention

Netsparker Prevention Fail Successful prevention

Web Browser Prevention Fail Successful prevention

It is found that web applications with dynamic SQL is
unable to prevent the attack cause by SQL injection when
using SQLMap, Netsparker or web browser as stated in Test 1.
The same instruments are used to test the web applications
equipped with parameterized query, error handling and input
validation. However when using the proposed approach, the
web application able to prevent the attack. This proves that the
proposed parameterized stored procedure is able to prevent
web applications from SQL injection attacks.

B. Experiment 2

The purpose of Experiment 2 is to evaluate the
performance of the proposed method and dynamic SQL in
terms of time processing. This study used two evaluation
instruments, namely

 Microsoft SQL Server Client Statistics and

 SQLQueryStress.

Client Statistics is a facility available in Microsoft SQL
Server while SQLQueryStress is a standalone tool available as
open source.

1) Evaluation using microsoft SQL server client statistics:

This evaluation use MS SQL Server Client Statistics as an

instrument to investigate the amount of data transmitted from

server to client side. The intention is to evaluate whether SQL

statement contributes to high traffic workload. The client

execution time and processing time will be recorded during

this evaluation.

a) Measuring client execution time: Client execution

time is the cumulative amount of time used at the client side to

execute query. To obtain the average execution time, ten trials

were performed. In this evaluation, Test 1 represents the

pseudo-web application which uses dynamic SQL during the

trial, while Test 2 represents web-application which uses the

proposed parameterized stored procedure. The output from

this evaluation is displayed in Fig. 6.

Fig. 6 states that for each execution, Test 1 generates high
execution time when compared with Test 2. This is due to a
stored procedure which located at the database server. The
SQL query is executed first before the web application
submits the request. As such, the client is able to shorten the
execution time by calling SQL queries that are already
executed at the database server. In contrast, dynamic SQL are
executed at runtime when the requests are submitted by the
user. However, the query execution can be influenced by
various factors. Such as, network traffic conditions as well as
web and database server workloads. This will increase client
execution time during query processing when using dynamic
SQL. As the results show, the proposed parameterized stored
procedure is better than dynamic SQL in terms of processing
time.

Test 1 Test 2

Fig. 6. Query Processing Time at the Client Side.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

331 | P a g e

www.ijacsa.thesai.org

b) Measuring Time Statistic: Time statistics provide

information on the amount of time used during query

processing at the client side versus the time used to wait for

the server. Three metrics that can be used to measure time

statistics namely client processing time, server response time

and total execution time.

 Client processing time- to measure query processing
time at the client side.

 Wait-time on server replies - is the time spent by the
client waiting to receive the response from a database
server after submitting the request.

 Total execution time - the time spent by the system to
execute the query, including the time spent waiting for
the server to respond. Using the same instrument, the
results from this experiment are shown in Table 4.
Comparison of time statistics between Test 1 and
Test 2.

TABLE IV. THE OUTPUT FOR TEST 1 AND TEST 2

Evaluation Criteria Test 1 (ms) Test 2 (ms)

i. client processing time 3.5 1.9

ii.server response time 40.2 39.6

iii.total execution time (i+ii) 43.5 41.5

As can be seen in Table IV, web applications that use
stored procedures are able to process queries at the client side
in a shorter time. Also in the second and third evaluation
criteria, the applications with stored procedure are able to
improve query processing time at the server and total
execution time both at the client and server when compared
with the applications with dynamic SQL. This is due to the
query in the stored procedure is executed first before the web
application submits the request. Using this improvement
method, the time taken to process the queries will be reduced.

2) Evaluation using SQL query stress: This evaluation

uses SQLQueryStress software and used as a benchmark to

investigate the performance of the query when given heavy

workload. The intention is to investigate the impact of SQL

queries (whether dynamic SQL queries, parametric queries or

stored procedures) towards system performance. The

differences in the structure of dynamic SQL queries and stored

procedures make the query executed in different ways.

Therefore, it is important to know the impact of both SQL

queries on the system performance. Based on the result in

Table V, it is found that the time taken by Test 2 is less than

the time taken by Test 1.

The results state that Test 2 has a logic reading of 1547
compared to 1620 in Test 1. SQL queries that have low logic
readings were more efficient than SQL queries that produced
high logic readings. This is because high logic readings have
negative implications to system memory. In other words, high
logic readings place heavy workload to computer systems.
The results show that query embedded in stored procedures
produce less workload than dynamic SQL when using the
same data hence improve query performance. This is due to

the query is processed earlier at the database server rather than
at the runtime. Thus, it will reduce the elapsed time, the CPU
time, the actual processing time and the client time as well.

TABLE V. COMPARISON OF SQL QUERYSTRESS CRITERIA ON WEB

APPLICATIONS USING DYNAMIC SQL QUERIES (TEST 1) AND STORED

PROCEDURES (TEST 2)

Criteria (average) Test 1 Test 2

 elapsed time (ms) 1.3600 0.7350

 CPU seconds (ms) 0.0996 0.0167

 actual seconds (ms) 0.2834 0.0401

 client seconds (ms) 0.1009 0.0475

logical reads 1620.0 1547.0

VIII. CONCLUSIONS

This study successfully proposed a new comprehensive
method using an improved parameterized stored procedure to
overcome the three issues highlighted in preventing web
application from SQL injection attack. These three issues are
i) improper use of dynamic SQL, ii) lack of input validation
process and iii) inconsistent error handling. Unfortunately, the
existing approaches did not properly address these issues.
Hence they are not able to prevent SQL injection attacks at
both the application and database side. In this study, a stored
procedure is constructed that consists of a comprehensive
method to address these three issues which are built in the
code. To prove the effectiveness, the proposed method was
evaluated through three approach of attack simulation, namely
using SQLMap software, Netsparker and web browser. The
experiments conclude that SQL injection does not successfully
penetrate web applications and databases when the proposed
method is implemented hence able to overcome the limitations
faced by the existing methods. This indicates that the SQL
injection prevention method developed has successfully
prevents SQL injection from occurring. The proposed method
is also evaluated from the perspective of time used and its
impact on the overall system. Evaluations using Microsoft
SQL Server Client Statistics and SQLQueryStress software
have concluded that although there are slight differences in
time processing, the proposed method uses a shorter query
processing time when compared with dynamic SQL. It can be
concluded that the SQL injection prevention method used does
not generate high overhead that may lead to high response
time. This study can be further improved by focusing the
prevention of SQL injection in network systems. There are
various factors to be considered such as the types of server
used, network traffic and the attacks from various sources.
More efforts are needed and further enhancements are
required to improve database security.

ACKNOWLEDGMENT

This research was sponsored by the Research Incentive
Grants (Grant No. GGP-2019-024), Centre for Software
Technology and Management (SOFTAM) of Faculty of
Information Science and Technology, National University of
Malaysia (UKM).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

332 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] A.Jamil and Zawiyah Mohammad Yusof, ―Information Security
Governance Framework of Malaysia Public Sector‖, Asia-Pacific
Journal of Information Technology and Multimedia, vol. 7 no. 2, 2018,
pp.85 – 98.

[2] L.Ma, D.Zhao, Y.Gao and C. Zhao, ―Research on SQL Injection Attack
and Prevention Technology Based on Web", International Conference
on Computer Network, Electronic and Automation (ICCNEA), Xi'an,
China, 2019, pp. 176-179.

[3] N. Singh, M. Dayal, R. S. Raw and S. Kumar, "SQL injection: Types,
methodology, attack queries and prevention," 3rd International
Conference on Computing for Sustainable Global Development
(INDIACom), New Delhi, India, 2016, pp. 2872-2876.

[4] Z. C. S. S. Hlaing and M. Khaing, "A Detection and Prevention
Technique on SQL Injection Attacks", IEEE Conference on Computer
Applications (ICCA), Yangon, Myanmar, 2020, pp. 1-6.

[5] H. Gupta, S. Mondal, S. Ray, B. Giri, R. Majumdar and V. P. Mishra,
"Impact of SQL Injection in Database Security", International
Conference on Computational Intelligence and Knowledge Economy
(ICCIKE), Dubai, United Arab Emirates, 2019, pp. 296-299.

[6] M.Malik, and Patel, T., ―Database Security - Attacks and Control
Methods‖, International Journal of Information Sciences and
Techniques, 6(1/2), 2016, pp.175–183.

[7] H. Gaikwad, Bhavesh B. Shah and Priyanka Chatte, ―SQLi and XSS
Attack Introduction and Prevention Technique‖, International Journal of
Computer Applications (0975 – 8887) May 2017 volume 165 – No.2,
23-27.

[8] J. Clarke, SQL Injection Attacks and Defense, Second Edition, 2012.
Syngress, pp.1–473.

[9] P. S. P. Pullagura and Gokilavani, ―Defeating SQL Injection on
Preventing Run Time Attacks‖, International Journal Of Science &
Technoledge, 2(5), 2014, pp. 93–96.

[10] Kindy, D. A. & Pathan, A. K.. A Detailed Survey on various aspects of
SQL Injection in Web Applications : Vulnerabilities , Innovative Attacks
and Remedies. International Journal of Communication Networks and
Information Security, 5(2), 2013, pp.80–92.

[11] Q. Li, W. Li, J. Wang and M. Cheng, "A SQL Injection Detection
Method Based on Adaptive Deep Forest," in IEEE Access, vol. 7, 2019:
pp. 145385-145394,

[12] V. Dwivedi , Himanshu Yadav and Anurag Jain, ―SQLas: Tool to Detect
And Prevent Attacks in PHP Web Applications‖, International Journal
of Security, Privacy and Trust Management (IJSPTM) Vol 4, No 1,
February 2015, pp.21-30.

[13] G. Deepa and Thilagam, P. S.. ―Securing Web Applications from
Injection and Logic Vulnerabilities: Approaches and Challenges‖,
Information and Software Technology, 74, 2016, pp.160–180.

[14] A.Jumaa and Omar, A.. ―Online Database Intrusion Detection System
Based on Query Signatures‖, Journal of University of Human
Development, 3(1), 2017, pp.282–287.

[15] M. Rami and F. Jnena, ―Modern Approach for WEB Applications
Vulnerability Analysis‖, Master of Science in Computer Engineering.
The Islamic University of Gaza Deanery of Graduate Studies Faculty of
Engineering Computer Engineering Department, 2013.

[16] M.Amirulluqman Azman, Mohd Fadzli Marhusin and Rossilawati
Sulaiman, ―Machine Learning-Based Technique to Detect SQL Injection
Attack‖, Journal of Computer Science, 17 (3), 2021, pp.296-303.

[17] J.Minhas and Kumar Raman, ―Blocking of SQL Injection Attacks by
Comparing Static and Dynamic Queries‖, International Journal of
Computer Network and Information Security; 5(2), Feb 2013, pp.1-9.

[18] M.Amin Mohd Yunus, Muhammad Zainulariff Brohan and Nazri Mohd
Nawi. ―Review of SQL Injection: Problems and Prevention‖.
International Journal On Informatics Visualization, vol 2, 2018, No 3 –
2.

[19] S. Choudhary and Nanhay Singh.. Safety ―Measures and Auto Detection
against SQL Injection Attacks‖, International Journal of Engineering
and Advanced Technology (IJEAT), Volume-9 Issue-2. 2019, pp. 2827
– 2833.

[20] P. Sadotra and Chandrakant Sharma. SQL ―Injection Impact On Web
Server And Their Risk Mitigation Policy Implementation Techniques:
An Ultimate Solution To Prevent Computer Network From Illegal
Intrusion‖, International Journal of Advanced Research in Computer
Science,Volume 8, No. 3, March – April 2017, pp. 678-686.

[21] K.G. Vamshi, V. Trinadh, S. Soundabaya, and A. Omar, ―Advanced
Automated SQL Injection Attacks and Defensive Mechanisms‖, in
Annual Connecticut Conference on Industrial Electronics, Technology
& Automation (CT-IETA), 2016, p. 1-6.

[22] A.Alazab and Ansam Khresiat, ―New Strategy for Mitigating of SQL
Injection Attack‖, International Journal of Computer Applications
154(11), 2016, pp.1-10.

[23] M.Horner and Hyslip, T.. ―SQL Injection: The Longest Running Sequel
in Programming History‖, Journal of Digital Forensics, 12(2), 2017,
article 10.

[24] R. Mohamed Thiyab, Musab A. M. Ali, Farooq Basil and Abdulqader,
―The impact of SQL injection attacks on the security of databases‖,
Proceedings of the 6th International Conference of Computing &
Informatics, 2017, pp. 323-331.

[25] I.Lee, Soonki Jeong, Sangsoo Yeo and Jongsub Moon, ―A novel method
for SQL injection attack detection based on removing SQL query
attribute values‖, Mathematical and Computer Modelling, volume 55,
issues 1–2, 2012, Pages 58-68.

[26] S. Nanhay, D. Mohit, R.S. Raw, and K. Suresh, ―SQL Injection: Types,
Methodology, Attack Queries and Prevention‖, in 3rd International
Conference on Computing for Sustainable Global Development
(INDIACom), 2016, p. 2872 – 2876.

[27] O.C. Abikoye, Abubakar, A., Dokoro, A.H. et al. ―A novel technique to
prevent SQL injection and cross-site scripting attacks using Knuth-
Morris-Pratt string match algorithm‖, EURASIP J. on Info. Security,
2020, 14.

[28] S. Choudhary, Arvind Kumar and Anil Kumar, ―A Detail Survey on
Various Aspects of SQLI‖, International Journal of Computer
Applications, 161(12), 2017, pp.34-39.

[29] A. Zhu and Wei Qi Yan, ―Exploring Defense of SQL Injection Attack in
Penetration Testing‖, International Journal of Digital Crime and

Forensics, 9(4), 2016, pp. 62-71.

