
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 6, 2021

From User Stories to UML Diagrams Driven by
Ontological and Production Model

Samia Nasiri1, Yassine Rhazali2, Mohammed Lahmer3, Amina Adadi4
LMMI Laboratory of ENSAM, Moulay Ismail University

ISIC Research Team of ESTM
Meknes, Morocco

Abstract—The User Story format has become the most
popular way of expressing requirements in Agile methods.
However, a requirement does not state how a solution will be
physically achieved. The purpose of this paper is to present a new
approach that automatically transforms user stories into UML
diagrams. Our approach aims to automatically generate UML
diagrams, namely class, use cases, and package diagrams. User
stories are written in natural language (English), so the use of a
natural language processing tool was necessary for their
processing. In our case, we have used Stanford core NLP. The
automation approach consists of the combination of rules
formulated as a predicate and an ontological model. Prolog rules
are used to extract relationships between classes and eliminate
those that are at risk of error. To extract the design elements, the
prolog rules used dependencies offered by Stanford core NLP.
An ontology representing the components of the user stories was
created to identify equivalent relationships and inclusion use
cases. The tool developed was implemented in the Python
programming language and has been validated by several case
studies.

Keywords—Ontology; prolog rules; natural language
processing; UML diagrams; user stories

I. INTRODUCTION
Requirements engineering (RE) represents an important

role in all types of software development processes. They aim
to define the scope of development together with customers
[1]. In agile software development, requirements are presented
in documents named user stories. These documents are an
efficient way to express requirements from the user. User
stories are written in natural language that renders them easily
understandable to stakeholders, indeed they are short text that
depicts a semi-structured specification. A user story often uses
the following format type: As <role>, I want <feature> to
<reason> [2, 3].

Recently, agile software development has become more
and more widely used. However, unlike the extensive
automation research on RE in traditional software
development, the automation of RE in agile development has
not yet been investigated sufficiently, especially in the area of
requirements modeling [4]. Requirements modeling is a critical
process in the software engineering life cycle. It is a multi-
faceted and time-consuming process. However, it provides a
solid guide for the final product. The success of software
projects depends mainly on careful and timely analysis and
modeling of system requirements. In [5], the authors propose
an approach to generate a conceptual model using heuristic

rules and the NLP tool, but this model is not complete as it
lacks the attributes of each entity. In [6], the authors also
analyzed user stories in order to generate a UML use case
diagram, but their approach is limited as they did not extract
the relationships between the use cases. Furthermore, the
authors of both approaches have not refined the relationships in
the conceptual model or in the use cases in the use case
diagram.

Our contribution aims to automate RE in agile development
in order to generate automatically three UML diagrams which
are class diagram, use case diagram, and package diagram with
the refinement of results. To achieve the refinement task, at
first, ontology engineering is created for defining synonyms
and relationships between actions, given that action is a
relationship or part of the use case, secondly, Prolog rules are
used to eliminate the relationships that are at risk of error in the
class diagram. Our purpose is to minimize the errors of the
relationships extraction and to avoid the redundancy of the
associations not taken into account by Wordnet in the class
diagram. Prolog rules are applied at first to determine the
relationship between engineering requirements. All statements
are converted to rules and facts in the SWI-Prolog language. A
user story is made up of three elements: the role which
represents the actor who acts, then the action represented by a
verb, and finally the object which has undergone the action.
Ontology is created to describe the components of user stories
as the role, the action and the object. This ontology represents
the field of agile methods by focusing on the part of user
stories.

After the creation of the classes in ontology editor, we
proceeded to the stage of filling the ontology by enriching it
with vocabulary and equivalent of class instances; we
concentrated on the class "action" which represents the relation
between the classes in a diagram of UML. The object
properties reflect the relations that can be established between
instances of the ontology classes.

The structure of this paper is as follows: This section
introduces agile methods and our proposed approach. In
Section 2, we present the related work of our proposal.
However, we detail our proposal approach, and we present the
main of the platform in Section 3. Then, we present a generated
UML diagrams in Section 4. In Section 5, we present the
discussion and analysis. At finally, conclusion is presented in
Section 6.

333 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 6, 2021

II. RELATED WORK
Several research projects have been carried out to automate

the requirement engineering, but few researchers have
developed a tool to automate the agile requirement presented in
user stories. Since the agile method is the most used in
software engineering, it was necessary to think about
developing a solution to automate the design phase in the
software development Life cycle. A user story is a very
effective means of communication between future users of the
software and developers and designers.

Our approach automates the design phase, i.e. from several
user stories; our tool generates several diagrams as output: the
class diagram, package diagram, and use cases. The tool is
carried out by developing prolog language rules allowing the
extraction of design elements such as actors and associations
between classes, and subsequently refining the associations
obtained by using ontology. The created ontology represents
the user stories and based on looking for the synonyms of the
associations that are found in the ontology. The use of ontology
was primordial, firstly, in order to avoid the redundancy of the
associations in a generated class diagram, secondly, in order to
detect the inclusion between use cases in the use case diagram.

To analyze requirement engineering most of the researchers
used the ontology domain to achieve their goal. Our approach
combines prolog rules and the domain of ontology. The
majority of the researchers have tended to analyze the
requirement engineering [1] but in our approach, we start with
the extraction of the design elements constituting the UML
diagrams, and then we analyze the requirements using the
ontology that represents the strong point of our approach. In
[7], the authors propose the business process ontology design
scheme. The built ontology is considered as a knowledge base
by collecting the user stories to reuse them from previous
projects. Classes are created in ontology according to Role-
Action-Object relations. In [8], the authors used an NLP tool
named “OpenNLP Parser” and Wordnet in order to analyze the
requirements. Their aim is to extract concepts to constitute a
class diagram. The authors developed a desktop tool named
“RAPID”, the limitation of this tool is that each sentence in the
requirements must match a specific structure. In [9], the
authors develop a formal Web Ontology Language ontology
for the standard representation of engineering requirements.
The proposed ontology uses explicit semantics that makes the
ontology amenable to automated reasoning. The approach
allows the evaluation and classification of engineering
requirements. In [10], the author’s Approach allows to Test
Case Generation Based on Inference Rules. In [11], the authors
are built an automated tool named “ABCD” for class diagram
generation from user requirements. They used NLP techniques
to extract class diagram concepts and generate an XMI file
representing a class diagram. The limitation of their tool is that
the system does not focus on the problem of concept
redundancy. In [12], the authors have developed a framework

to automate the documentation by elaborating the ontology. 60
percent is a percentage of their automation. In [5], a conceptual
model is generated from a set of user stories, their tool named
visual narrator, this tool does not extract attributes of entities in
the conceptual model, and they focus on detecting entities and
relationships. In [13], the conceptual model is generated from
an unrestricted format such as general requirements, user
stories, or use cases; but the attribute extraction rule is based on
a set of previously designed verbs. In [14], the searchers
suggest an approach that generates a class diagram from use
case specifications, parts of speech tags (POS tags), and typed
dependencies (TD), were used to reach their objective,
however, the developed tool analyses simple sentences. The
rules used to extract attributes are not valid in most sentence
structures, due to the failure of consecutive names processing.
In [6], the authors used the NLP tool named TreeTagger
analyzer and developed a JAVA plugin to generate the use case
diagram from the user stories; their tool does not handle
sentences containing compound nouns. Also; it does not
support inclusion or exclusion relationships between use cases.
In [15], the authors analyze the requirements by combining the
ontological model with prolog rules. This analysis relies on
tracing the requirements, eliminating duplicate requirements,
and identifying conflicting requirements. The authors used
agile requirements. In [16], an NLP-based tool is implemented
to generate an Entity Relationship diagram from requirement
specification. The machine-learning module is implemented by
using a supervised learning mechanism. In [17], through a
linguistic analysis of sentence structures and action verbs in
user stories, the authors discover patterns of labeling
refinements. The refinement goal is a transformation of User
Stories into Backlog Items. In [18] the authors propose a
technique to automatically transform textual user stories into
visual use case scenarios.

III. AN APPROACH TO EXTRACT DESIGN ELEMENTS AND
ANALYSE RELATION BETWEEN THE CLASSES AND USE CASES

In our previous approach [19], our objective was to define
the extraction rules of the object-oriented design elements,
such as actors, classes, attributes, operations of classes, and
associations. These components were essential to generate a
class diagram, presented in an XMI file and also in a PNG
image. We used a natural language processing (NLP) tool
named "Stanford CoreNLP" and python language to achieve
our goal. After extraction of associations, we have used
Wordnet to delete the redundancy associations between the two
classes. The use of Wordnet was not sufficient to avoid
Redundancy that’s why we have thought of another approach
that integrates artificial intelligence materialized firstly in the
use of prolog language for the definition of production rules to
generate associations. Secondly in the use of requirement
ontology in which we have defined synonyms of verbs
presenting associations. The ontology is created in Protégé
editor.

334 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 6, 2021

Fig. 1. Architecture of the Proposed Approach.

All treating was done in python language, even access to
ontology to search for synonyms. Prolog language is used
firstly to define the Production rules for extraction of the
design elements. Secondly to define rules to detect errors in
association extraction. The output of our framework is three
diagrams: class diagram presented in XMI file, use case, and
package diagrams presented in a PNG image. This image is
carried out by using Plant UML.

The processing of a text in user stories goes through several
steps: Splitting, Tokenizing, POS, Lemmatization, and typed
dependencies. The user stories analysis was done using the
NLP tool named Stanford core NLP. Fig. 1 shows the
architecture of the proposed approach.

A. Prolong Rules for Extracting Relations
To extract the design elements which constitute the class

diagram, from a set of user stories, we followed the steps
described in the algorithm presented below:

Algorithm: Design elements extraction

1: Procedure (Stories S, Actors A, Classes C, Rels R,
Attributes ATT, Operations Op)

2: for each s in S

3: p=POS(s)

4: Word_tokenize(s)

5: Dependency_parse(s)

6: Extract_Nouns(s)

7: Extract_Verbs(s)

8: A=Extract_Actor(s)

9: C=extract_class(s)

10: R= Extract_all_relationships(s) [prolog rules:
Association(X,Y,Z); X is association name, Y and Z are
classes]

11: Comp= filtrate_composite_rel (R)

12: for each c in C

13: if c in comp then ATT=extract_attribute (Comp)

14: for each r in R

15: If ATT in r

16: Op=r

Based on rules previously defined in [19], we have defined
a production rules written in prolog language to extract actors,
classes, and associations which connect classes (lines 8-10).
The facts are provided from NLP tool that provide the nouns,
the verbs and typed dependencies (lines 3-7). To extract
attributes of classes we have followed the same approach of
[19] i.e. from the resulting classes we do a refinement; some
classes become attributes and thereafter some associations
become operations of a class (lines 10-16).

The rules are presented in this form: Association(X, Y, Z);
The objective of these prolog rules is to extract X which
represents the association name, and Y and Z which are classes
in the UML class diagram.

B. Prolog Rules for Detecting Errors in Relation Extraction
After extraction of association between classes, we proceed

to the refining step by applying some prolog rules which detect
errors in the list of association.

Rule1: if two or more actors have the same action to
execute.

Rule2: if there is an association between A class and B
class and the same association between B class and C class
then there isn’t an association between A class and C class.
This rule avoids transitivity between associations which can
clutter the class diagram with several unsuccessful relations.

C. Ontology for Analysis of Relations between the Classes in
Class Diagram and use Cases in use case Diagram
Our ontology is important to represent knowledge of the

application domain and to identify the relations between
requirements such as composition or synonyms. USOn is an
ontology that describes an agile requirement; we have created
ontology classes and instances through Protégé ontology
editor.

335 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 6, 2021

Fig. 2 shows the hierarchy of the ontology USon. Table I
presents the description of some classes.

Fig. 2. Hierarchy of the Ontology USon.

TABLE I. DESCRIPTION OF SOME CLASSES

Class name Description

Action class whose elements are verbs which represent the
associations in class diagram

Object class whose elements are nouns which represent the classes
in class diagram

Actor

Class whose elements are nouns which represent the role in
user story (As role,…).
The actor is who perform the action. Actors are present in
the use case diagram.

Association Symantec link between classes in the class diagram

Class class whose elements are nouns which represent the classes
in class diagram

Attribute class whose elements are nouns which represent the
attributes of classes in class diagram

Word class whose elements are tokens which represent part of user
story

We have defined a set of Synonyms to Action class in order
to refine association name. The same process is for the Actor
class. Fig. 3 shows an example of defined synonyms and
inclusion action.

Our tool accesses the USon ontology in order to compare
the names of the associations obtained using the prolog rules
with those defined as synonym of the Action class.
Subsequently, the associations will be refined. The refinement
of actors in use case diagram is done by browsing synonyms of
Actor instances.

Fig. 3. Synonyms of Change Action.

Consider an example of user stories:

US1: As a manager, I want to manage account of users.

US2: As a manager, I can create a new account.

US3: As a user, I can modify login account.

US4: As a user, I can update my login.

In US1 the action is the verb “manage”, according to our
approach the following association is extracted: Manage
(manager, account).

In US2 the action is the verb “create”, according to our
approach the following association is extracted: Create
(manager, account).

Our tool, at first looks for the relationships between the
same classes as in US1 and US2, and US3 and US4, after
Wordnet is used in order to avoid redundancies, then browsing
of USon ontology is mandatory to detect synonym and
inclusion relations between use cases; in the example, the
actions modify and update are synonyms as shown in Fig. 3 so
an association will be removed from the list of associations in
order to avoid duplicate associations.

In USon Create is part of Manage as shown in Fig. 4, then
there is an inclusion between two use cases extracted from US1
and US2: “manage account” and “create account”.

Consider these user stories:

As a user, I can change the account information.

As a user, I am able to edit account information.

336 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 6, 2021

Fig. 4. Composition of Manage Action.

Our tool with the help of the Stanford NLP tool and prolog
rules allows extracting two use cases: “change account
information” and “edit account information”.

According to the ontology USon, the update action is part
of Edit. In Fig. 3 the update action is a synonym of change
action then change is part of the Edit action.

We can deduce from this combination between ontology
and prolog rules that there is an inclusion between two use
cases: “change account information” and “edit account
information”.

IV. GENERATION OF UML DIAGRAMS

A. Generated Class Diagram
After extracting the design elements, the next task was to

regroup these elements to constitute the class diagram. The
developed tool generates an XMI file which is an Ecore file.
Ecore file is the Eclipse Modeling Framework (EMF) meta-
model, which illustrates the names of the classes, their
attributes, and their types, as well as the methods and
relationships with their classifications. Also, PlantUML API is
used to visualize the class diagram. These treatings were done
in python language. To implement our new approach, we used
the same case studies1,2 from article [19] and compared the
results. We found that in our old approach, the class "people"
(case study1 number 2) was detected, yet in our approach; there
is an association of inheritance between "people" and all the

1 https://drive.google.com/file/d/1wk8yCa9wS12ooeEwR0UjWDsK0_b4k
aKG / view?usp=sharing

actors thanks to our ontology. This association has been added
to the generated class diagram.

Regarding the first case study2, there is redundancy in the
operations obtained (filtrate (type) and choose (type)) which
are at the origin of associations before refinement. Wordnet
could not detect that these verbs are equivalent, so we used the
ontology.

We noted that the associations obtained from the old
approach are all obtained using the extended rules of our
second approach.

B. Generated Package and use Case Diagrams
A package diagram offers many advantages to designers

who want to create a graphical representation of their UML
system or project. This diagram simplifies the complex class
diagram into a tidy visual form. In our case, we used the
package diagram to organize the class diagram.

After generating the class diagram, the next task was to
generate the package and use case diagrams. To do this, we
based on the design elements already extracted such as:
classes, associations, and actors.

To extract a package, we first use the associations that link
the actor and another class, and secondly, we add the term
"manage" before each class to form a package. To detect the
dependency between the packages, we take into consideration
the relationship between the classes that make up the packages.
The use cases are formed from the associations between classes
provided that one of the classes is an actor. PlantUML API is
used to visualize the package and use case diagrams. All
treatings were done in python. Fig. 5 shows the generated
package diagram of the case study1 which represents inline
course management: videos, quizzes, and others.

The generated package diagram is based on associations
and classes of the class diagram. The red arrows between the
packages represent the dependencies between them. Table II
represents some use case diagrams for each package presented
in Fig. 5.

Fig. 5. The Generated Package Diagram.

2 https://github.com/MarcelRobeer/StoryMiner/blob/master/example_storie
s.txt

337 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 6, 2021

TABLE II. USE CASE DIAGRAMS OF PACKAGES

Package name Use case diagrams

Manage Course

Manage Element

Manage Quiz

Manage Event

Manage Video

By comparing the results obtained manually with those
which are automatic, we noted that our approach extracts 99%
of the relationships. Generating the package and use case
diagrams based on the associations of the class diagram has
revealed its effectiveness.

Regarding the class diagram, the USon ontology allows
firstly detecting inheritance association between actors such as
actor named People and other actors, secondly determining the
synonyms of associations.

Regarding the use case diagram, the USon ontology allows
firstly determining the synonyms of use cases, secondly the
inclusion relationships between two use cases.

Our approach remains very effective thanks to the strong
point of the combination of the domain of ontology and prolog
rules. We can say that the ontology we created complements
the prolog rules in order to obtain better results.

Table III shows a comparison between my old approach
[19] and my proposal. However, Table IV depicts a
comparison between related work and my proposed.

Our approach is the unique method that defined extraction
rules for associations of class diagram using prolog language.
Subsequently, the association and use cases are analyzed and
refined using our built ontology named “USon”. The
associations are the key for building the UML diagrams: use
case and package diagram.

338 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 6, 2021

TABLE III. COMPARISON BETWEEN MY OLD APPROACH AND MY PROPOSAL

 Association Composition
relationship

Inheritance
relationship Synonyms Output

Old approach
[19]

NLP tool:
Stanford
coreNLP

Python
heuristic rules

Python heuristic
Rule s: H1, H2, H3

Python heuristic H4
and H5

Wordnet:
Synonym of associations
(verb which link two
classes)

Class diagram: XMI file

Proposal
approach

- python
language
- Prolog rules

- Prolog rules
- Ontology USon Ontology USon

- Wordnet
- Ontology USon:
1. synonym of use cases
(action in use case)
2. synonym of
associations

- Class diagram: XMI
 file and PNG image
 (using plant UML)
- Package diagram: PNG
 image(using plant UML)
- Use case diagram: PNG
 image(using plant UML)

TABLE IV. COMPARISON BETWEEN SOME RELATED WORK AND MY PROPOSED

Related work Input Output Approach and tool

[7] User stories Business process ontology Reuse of user stories

[8] Business document Concept-classes - Wordnet
- Linguistic rules

[9] Engineering requirements Formal Web Ontology Evaluation and classification of Engineering
requirements

[5] User stories Conceptual model
without attributes Visual narrator tool

[14] Text requirement and user
stories Conceptual model Visual C # language and Stanford CoreNLP

[15] User stories

- Elimination of duplicate requirements, and
identification conflicting requirements
- not any generation of the UML diagram or
conceptual model

- Prolog and python language
- Ontology

[19] User stories Class diagram Python language and Stanford CoreNLP

My proposal User stories
- Class diagram
- Package diagram
- Use case diagram

- Standford coreNLP
- Python and prolog language
- Ontology

V. CONCLUSION
This paper have proposed an approach to automate the

analysis phase in an agile context, to extract the design
elements which are essential to constitute the generated UML
diagrams: the class diagram, the package and use case
diagrams.

Our approach is based on the combination of prolog rules
and an ontology which present the user stories. The prolog
rules used dependencies offered by Stanford core NLP. This
combination is the strong point of our approach. The main
advantages of the proposed technique are:

• Improvement of the results obtained from our previous
approach by Applying artificial intelligence presented
in prolog rules and ontology.

• Generation of three UML diagrams which facilitate the
design of analytical tasks in the team.

• Refined classes have been obtained following a
transformation of some classes into attributes using
composition relationships, and some relationships to
operations.

• Definition of prolog rules for detecting errors in relation
extraction.

Our proposed approach is very useful to ease the analytical
tasks in the design team. Next, minimize time and costs. The
benefits of our approach are the utilization of agile requirement
to automate them, these requirement named user stories are the
best way to describe the engineering requirement. In the future,
our work will be completed by generating user interfaces and
code of the software.

REFERENCES
[1] D. Pandey and V. Pandey, “Requirement Engineering: An Approach to

Quality Software Development,” Journal of G--lobal Research in
Computer Science, vol. 3, no. 9, pp. 31-33, 2012.

[2] M. Cohn, User Stories Applied: for Agile Software Development.
Redwood City, CA, USA: Addison-Wesley Professional, 2004.

[3] Y. Wautelet, S. Heng, M. Kolp, and I. Mirbel, “Unifying and extending
user story models,” Lect. Notes Comput. Sci. (including Subser. Lect.
Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8484 LNCS, pp.
211–225, 2014, doi: 10.1007/978-3-319-07881-6_15.

[4] I. K. Raharjana, D. Siahaan, and C. Fatichah, “User Stories and Natural
Language Processing: A Systematic Literature Review,” IEEE Access,
vol. 9, pp. 53811–53826, 2021, doi: 10.1109/ACCESS.2021.3070606.

[5] G. Lucassen, M. Robeer, F. Dalpiaz, J. M. E. M. van der Werf, and S.
Brinkkemper, “Extracting conceptual models from user stories with
Visual Narrator,” Requir. Eng., 2017, doi: 10.1007/s00766-017-0270-1.

[6] M. Elallaoui, K. Nafil, and R. Touahni, “Automatic Transformation of
User Stories into UML Use Case Diagrams using NLP Techniques,” in
Procedia Computer Science, 2018, vol. 130, pp. 42–49, doi:
10.1016/j.procs.2018.04.010.

339 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 6, 2021

[7] C. Thamrongchote and W. Vatanawood, “Business process ontology for
defining user story,” 2016 IEEE/ACIS 15th Int. Conf. Comput. Inf. Sci.
ICIS 2016 - Proc., pp. 1–4, 2016, doi: 10.1109/ICIS.2016.7550829.

[8] P. More and R. Phalnikar, “Generating UML Diagrams from Natural
Language Specifications,” Int. J. Appl. Inf. Syst., vol. 1, no. 8, pp. 19–
23, 2012, doi: 10.5120/ijais12-450222.

[9] A. Mukhopadhyay and F. Ameri, “An ontological approach to
engineering requirement representation and analysis,” Artif. Intell. Eng.
Des. Anal. Manuf. AIEDAM, vol. 30, no. 4, pp. 337–352, 2016, doi:
10.1017/S0890060416000330.

[10] H. Tan, M. Ismail, V. Tarasov, A. Adlemo, and M. Johansson,
“Development and Evaluation of a Software Requirements Ontology,”
SKY 2016 - 7th Int. Work. Softw. Knowledge, Proc. - conjuction with
IC3K 2016, pp. 11–18, 2016, doi: 10.5220/0006079300110018.

[11] W.B. A. Karaa, Z. B. Azzouz, A. Singh, N. Dey, A. S. Ashour, H. B.
Ghazala, “Automatic Builder of Class Diagram (ABCD): an Application
of UML Generation From Functional Requirements,” Journal of
Software Practice and Experience, vol. 46, no.12, pp. 1443–1458. 2016,
doi: 10.1002/spe.2384.

[12] M. P. S. Bhatia, A. Kumar, and R. Beniwal, “Ontology driven software
development for automated documentation,” Webology, vol. 15, no. 2,
pp. 86–112, 2018.

[13] M. Javed and Y. Lin, “Iterative process for generating ER diagram from
unrestricted requirements,” ENASE 2018 - Proc. 13th Int. Conf. Eval.

Nov. Approaches to Softw. Eng., vol. 2018-March, no. Enase, pp. 192–
204, 2018, doi: 10.5220/0006778701920204.

[14] J. S. Thakur and A. Gupta, “Automatic generation of analysis class
diagrams from use case specifications,” 2017.

[15] M. S. Murtazina and T. V. Avdeenko, “Requirements analysis driven by
ontological and production models,” CEUR Workshop Proc., vol. 2500,
pp. 1–10, 2019.

[16] P. G. T. H. Kashmira and S. Sumathipala, “Generating Entity
Relationship Diagram from Requirement Specification based on NLP,”
2018 3rd Int. Conf. Inf. Technol. Res. ICITR 2018, pp. 1–4, 2018, doi:
10.1109/ICITR.2018.8736146.

[17] L. Müter, T. Deoskar, M. Mathijssen, S. Brinkkemper, and F.
Dalpiaz,``Re_nement of user stories into backlog items: Linguistic
structure and action verbs,'' in Requirements Engineering: Foundation
for Software Quality (Lecture Notes in Computer Science), vol. 11412.
New York, NY, USA: Springer, 2019, pp. 109_116.

[18] F. Gilson, M. Galster, and F. Georis, ‘‘Generating use case scenarios
from user stories,’’ in Proc. Int. Conf. Softw. Syst. Processes, Jun. 2020,
pp. 31–40, doi: 10.1145/3379177.3388895.

[19] S. Nasiri, Y. Rhazali, M. Lahmer, and N. Chenfour, “Towards a
Generation of Class Diagram from User Stories in Agile Methods,”
Procedia Comput. Sci., vol. 170, pp. 831–837, 2020, doi:
10.1016/j.procs.2020.03.148.

340 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Related Work
	III. An Approach to Extract Design Elements and Analyse Relation between the Classes and use Cases
	A. Prolong Rules for Extracting Relations
	B. Prolog Rules for Detecting Errors in Relation Extraction
	C. Ontology for Analysis of Relations between the Classes in Class Diagram and use Cases in use case Diagram

	IV. Generation of UML Diagrams
	A. Generated Class Diagram
	B. Generated Package and use Case Diagrams

	V. Conclusion
	References

