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Abstract—The emerging new technologies, such as 
autonomous vehicles, augmented reality, IoT, and other aspects 
that are revolutionising our world today, have highlighted new 
requirements that wireless communications must fulfil. Wireless 
communications are expected to have a high optimisation 
capability, efficient detection ability, and prediction flexibility to 
meet today's cutting-edge telecommunications technologies' 
challenges and constraints.  In this regard, the integration of 
deep learning models in wireless communications appears to be 
extremely promising. However, the study of deep learning models 
has exhibited inherent vulnerabilities that attackers could 
harness to compromise wireless communication systems. The 
examination of these vulnerabilities and the evaluation of the 
attacks leveraging them remains essential. Therefore, this 
paper's main objective is to address the alignment of security 
studies of deep learning models with wireless communications' 
specific requirements, thereby proposing a pattern for assessing 
adversarial attacks targeting deep learning models embedded in 
wireless communications. 
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I. INTRODUCTION 
Wireless communication represents an exciting and 

evolving field of study. It has significantly contributed to the 
development of telecommunications and had been at the source 
of LTE and 5G network implementations, and it continues 
today to lead advancement in 6G generation development. 
Nevertheless, this field of study has recently encountered 
several challenges to meet emerging telecom technologies' 
requirements. The necessity of optimisation and adaptability is 
crucial today to guarantee highly efficient wireless 
communications [1]. In this context, the researchers have 
immediately turned to the rapidly growing techniques of 
artificial intelligence, especially the deep learning models that 
have received considerable interest for their reliability in 
computer vision and object detection. 

Deep Learning models have revolutionised many fields of 
study. Their expressivity and generalisation potentials have 
shown impressive outcomes in several areas, including 
wireless communications [2]. The latter have utilised deep 
learning models in the radio frequency spectrum and have 
harnessed their adaptability and flexibility to improve the 
wireless communication capacity. An obvious application of 
Deep Learning in Wireless Communications is spectrum 
estimation and detection and modulation classification. These 
two functionalities contribute significantly to enhancing the 

transmission quality while handling the channel effects 
encountered at the receiver [3,4]. 

However, several research studies have revealed that Deep 
Learning models contain inherent vulnerabilities that an 
attacker could eventually harness to perform malicious actions 
compromising wireless communications systems. 
Nevertheless, researchers usually opt for different hypotheses 
and follow different methods when testing adversarial attacks, 
rendering confronting, and comparing the latter challenging 
and complicated since the platform used in literature while 
testing adversarial attacks are not standardised. Whereas some 
researchers hypothesise a scenario where the attacker possesses 
complete knowledge of the system, known as white-box 
attacks, others deal with attacks where the attacker's knowledge 
is constrained, known as grey-box attacks. This disparity in 
assumptions provides a complex platform to make an accurate 
comparison of attacks on various algorithms. 

Since no unified scheme has been developed for assessing 
attacks robustness, we have proposed a framework to analyse 
and evaluate the robustness of adversarial attacks in the context 
of wireless communication [27-30].  This paper aims to 
provide a standardised and unified platform for comparing 
different adversarial attack strategies against wireless 
communication systems. Through our study of adversarial 
attacks in literature, we have derived a list of criteria that we 
have considered to evaluate the complexity of the attack and its 
impact on the target system to obtain a global view of its 
robustness. 

In this paper, we will extensively review the work devoted 
to studying the particularities of adversarial attacks targeting 
wireless communications to propose a pattern designed to 
evaluate the robustness of these attacks while incorporating the 
specifications related to this field of study. 

First, we will introduce the applications of deep learning 
models in wireless communications. Then we will discuss the 
theoretical aspect of these attacks as well as the different 
factors involved in their identification and classification. 
Afterwards, we provide a review of the work highlighting 
certain particularities of wireless communications that could 
impact adversary attack success. Finally, we will elaborate on a 
pattern being proposed to evaluate the adversarial attacks' 
robustness in the context of wireless communications. 
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II. RELATED WORKS 
A new research field has been conducted to extensively 

study the security of deep learning models and adversarial 
attacks leveraging their flaws [5]. Adversarial learning 
addresses the empirical evaluation of adversarial attacks by 
testing them in the physical world to experience them in a 
realistic scenario [6]. This research field is similarly focused on 
studying the theoretical aspect of these attacks by proposing a 
taxonomy for their classification and a threat model to describe 
the different aspects of the attack. However, the multiple 
suggestions carried out towards assessing adversarial attacks 
have mainly focused on attacks targeting computer vision or 
object detection models. Few works have addressed adversarial 
learning in the wireless communications context [27-30]. 
Indeed, the latter presents certain specificities to be considered 
in the study of attacks targeting the models they employ. 
Hence, it is necessary to adapt threat models and methods for 
evaluating adversarial attacks' robustness to wireless 
communication's technical and functional specifications. 

III. DEEP LEARNING APPLICATION IN WIRELESS 
COMMUNICATIONS 

Wireless communications represent an essential field of 
study for developing networks and meeting innovative 
technologies' specific requirements. The evolution of 
telecommunications stems from this research field since it has 
brought LTE and 5G networks to the surface. It is also 
contributing significantly today to waveform design for 6G 
emerging networks. Wireless communications have been based 
on classical probabilistic and analytical methods. However, 
such an approach involves several limitations regarding 
channel modelling, interference handling, traffic management, 
error detection and correction, and security [7]. 

Wireless communications have evolved systems built on 
deep learning models to overcome the complexities 
encountered in earlier network generations.  Wireless 
Communications leverage the expressiveness and capacity for 
generalisation of Deep Learning models toward addressing 
detection, classification, optimisation, and prediction problems 
and consequently guarantee quick, reliable, and secure 
communications. 

A. Deep Learning for Communication Systems 
The primary purpose of wireless communication is to 

ensure a message's reception in an optimal state by deploying 
resources efficiently. The transmission mechanisms deployed 
by wireless communications are handled through independent 
blocks, each dedicated to the specific functionality of the data 
transmission process, as shown in “Fig. 1”. Conventional 
approaches have focused on enhancing each block's 
functionality separately, thereby failing to achieve a proper 
optimisation of the overall system. Nevertheless, deep learning 
models flexibility currently provides the ability to address the 
optimisation needed for different blocks in parallel [8]. 

 
Fig. 1. Wireless Communication Architecture. 

Moreover, Deep Learning in the end-to-end communication 
process has been employed significantly in implementing 
MIMO techniques. This technology involves integrating 
multiple antennas during the transmission and reception of 
signals to boost the spectrum's performance. Moreover, the 
implementation of multiple antennas appears to be 
computationally expensive and challenging in system 
optimisation. Thus, the use of Deep Learning in innovative 
studies [9,10] regarding the MIMO technique has overcome 
these challenges. The application of deep learning models has 
proven to be important when managing multiuser 
communication systems as well.  These techniques could be 
applied to optimise the spectrum's exploitation for multiple 
users, yet they remained restrained by channel interferences. 

Accordingly, an emerging technique known as Non-
Orthogonal Multiple access NOMA has contributed to solving 
this trade-off by improving spectrum efficiency while 
minimising interference [11]. Currently, a new approach is also 
being considered for addressing these three issues in a 
synergistic scheme. It involves dealing with both emitter and 
receiver as one system designed as a single autoencoder [12], 
requiring a comprehensive optimisation. 
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B. Deep Learning for Spectrum Estimation, Detection, and 
Classification 
Wireless communications have employed Deep Learning 

models' powerful capabilities in adaptability and flexibility to 
arm their systems with cognition. Cognitive radio could learn 
from collected data to adjust dynamically and rapidly the 
spectrum to performance and throughput demands. Among the 
crucial tasks that cognitive radios need to carry out, we cite 
signal detection and classification, although it is complex for 
classical feature-based algorithms that lack the flexibility to 
accommodate different types of signals. Deep learning model-
based systems can overcome such problems since they have a 
high generalisation ability to classify and detect several types 
of signals, as shown in “Fig. 2”. 

 
Fig. 2. Deep Learning Applications in Wireless Communications Systems. 

1) Channel modeling and estimation: Channel modelling 
becomes essential to enhance the communication system's 
performance. For instance, autoencoders require a training 
phase approaching as closely as possible the real channel 
conditions. However, because of the channel effect, performing 
an efficient autoencoder training enfold several complexities. 
Hence reliance on GAN [13] to approximate interferences, 
noise, and multi-path effects to depict a channel model 
representing accurate and realistic behaviour [14]. 

2) Signal detection: Signal detection and classification is 
crucial functionality in wireless communications. It allows the 
control of system components and provides an up-to-date 
overview of the communications and events occurring in the 
system. Indeed, it ensures reliable detection of spectrum users 
and arising events, such as identifying interference sources for 
immediate response. Nevertheless, the spectrum is often shared 
for multiple simultaneous applications (TV, GSM, LTE, Radar, 
Etc.), which is challenging when identifying the wide variety 

of waveforms used. The conventional general and specialised 
detection methods lack scalability and depend on the SNR for 
signal detection and classification. Therefore, detection using 
these methods is difficult to perform, especially when the SNR 
signal to noise ratio is low [15]. 

3) Consequently, many studies consider employing CNN 
models that have proven their high performance in object 
detection and recognition, specifically in computer vision. 
O'Shea et al. [16] have examined the application of CNN 
models for signal detection and classification in the radio 
frequency spectrum. Their study utilised Gradient-Weighted 
Class Activation Mapping (Grad-Cam) for spectral event 
localisation and have achieved high performing results. 

4) Modulation classification: O'Shea et al. [17] have 
evaluated the performance of CNN models in modulation 
classification by experimenting with channel effects such as 
multi-path fading to test the accuracy rate obtained under real-
world conditions. Following the study carried out on a dataset 
of 11 types of modulations often used in wireless 
communication, the results obtained by CNN models vastly 
exceeded those produced by SVM or Naive Bayes, even for all 
used SNR ratios. 

Although deep learning delivers considerable potential 
advantages, most recent studies have shown that they contain 
many vulnerabilities that attackers can harness to perform 
malicious manipulations [18]. Many researchers have recently 
examined the security of deep learning models. Some have 
considered the practical aspect by testing these attacks in the 
physical world, particularly in computer vision and object 
detection, while others have focused on studying the theoretical 
aspect of adversarial attacks. In the following section, we will 
present the taxonomy of these attacks and the different 
classifications proposed for their study. 

IV. THREAT MODEL 
Recently, several research studies have focused on 

scrutinising the security of Deep learning models. Experiments 
conducted in a variety of fields of study have shown that these 
models are vulnerable. Their high flexibility potential and their 
adaptability have contributed considerably to their weakness 
[19]. Today, several types of attacks have been tested to reveal 
the security flaws of deep learning models. Indeed, an attacker 
potentially poisons the model by introducing malicious data 
during the training phase to affect its behaviour to the new 
input data. The attacker could also severely compromise the 
model even in the prediction phase through carefully designed 
inputs to exploit its inherent flaws to mislead it into producing 
inaccurate results [20]. All these considerations have motivated 
researchers to explore deep learning models' security using 
conventional security approaches, especially the study of their 
confidentiality, integrity, and availability (CIA). In this regard, 
a group of researchers, namely Barreno et al. [21], have 
developed a taxonomy dedicated to the security of these 
models, providing a comprehensive classification of 
adversarial attacks by highlighting the opponent's goals, his 
knowledge of the targeted system, his capabilities and the 
strategy he may employ to carry out the attack as illustrated in 
“Fig. 3”. 
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Fig. 3. Adversarial Learning Threat Model. 

A. Attacker’s Goal 
While the same motivations might not necessarily guide 

attackers, their aims tend to converge around three main axes: 
espionage, sabotage, or fraud [22]. 

1) Espionage: In this context, the attacker seeks to derive 
sensitive information by exploiting vulnerabilities in the 
system. The leakage of sensitive information can compromise 
the confidentiality and the privacy of the system since the 
received information can be utilised to plan more advanced 
attacks and consequently cause very severe incidents. 

2) Sabotage: The attacker can obstruct the system by 
either disabling important functionalities or by denying normal 
operations. Usually, this occurs when the adversary attempts to 
flood the model with incorrectly classified examples to 
increase the working time on false positive, or he can just as 
easily overload the system with a massive number of requests 
that require more computation time. 

3) Fraud: Fraud in the Deep Learning system refers to the 
adversary's action of causing misclassifications or inaccurate 
predictions. In this case, the attacker takes advantage of 
existing vulnerabilities in the system to inject malicious inputs 
in the dataset or even modify the model's behaviour, and in this 
way, he causes severe damages. 

B. Attacker’s Knowledge 
Regardless of the adversary's goals, the complexity of the 

attack he intends to carry out depends significantly on his 
knowledge of the targeted system. Papernot et al. [23] have 
elaborated a classification of the attacker's knowledge that can 
be represented in the following three levels: 

1) Perfect knowledge level: in this scenario, the attacker 
knows everything about the model and the training dataset and 
can carry out white-box attacks. Nevertheless, this scenario 

remains unrealistic because it is almost impossible to have 
perfect knowledge about the target system. 

2) Limited knowledge level: This scenario is more realistic 
and practical; nevertheless, it presents a range of possibilities: 
1) Limited Knowledge attacks with surrogate model: when the 
attacker has limited knowledge of the model, he can use an 
alternative model with features similar to the targeted system's 
model's features in order to craft effective attacks, 2) Limited 
knowledge attacks with the surrogate dataset: when the 
adversary has no access to the training data he can use 
substitute dataset with similar characteristics to carry out 
efficiently the attacks. 

3) Oracle or no knowledge: In this case, the attacker has 
no prior information about the training set, the model, or its 
features; he can perform black-box attacks. 

C. Attacker’s Capabilities 
Besides factors seen in the previous sections, the 

opponent's means and potentials contribute largely to 
determining the attack's success [24]. The adversary's 
potentials could be categorised according to the following three 
main axes: 

1) Influence: The attacker can compromise the targeted 
system using either a causative attack to introduce malicious 
data into the algorithm's training set or by exploiting the 
model's weaknesses by introducing specific inputs, often called 
adversary examples. The causative attack influences the 
model's behaviour contrary to the exploratory attack, where the 
adversary does not affect the model's behaviour [25]. 

2) Security violation: The security infraction committed 
by the adversary relies on the actions taken to compromise the 
targeted system. The attacker can cause integrity violations by 
crafting false-negative inputs that bypass the model without 
altering the usual tasks. However, the adversary causes an 
availability violation when he conducts false positives, leading 
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to a denial of service. Moreover, the adversary can also 
perform privacy violation attacks that aim to derive sensitive 
information about the users of the targeted system, the training 
dataset, or the features of the model [26]. 

3) Specificity: This characteristic determines how much 
the adversary is specific while performing the attack. Indeed, 
when the attacker has intentions to mislead the model for 
specific instances, he can perform targeted attacks, whereas, if 
he chooses to compromise the predictions or the classifications 
carried out by the model for a broad range of inputs, he must 
implement indiscriminate attacks [22]. 

D. Attacker’s Strategy 
An attack strategy can be elaborated by leveraging the 

model's vulnerabilities and flaws by considering the attacker's 
goals, knowledge of the targeted system, capabilities, and 
potentials. Therefore, the attack strategy in question is nothing 
more than an optimisation problem aiming to minimise the 
model performance by carefully crafting efficient and 
imperceptible perturbations to achieve its malicious objectives 
successfully [21]. 

V. EVALUATING ADVERSARIAL ATTACKS IN WIRELESS 
COMMUNICATION 

The study of adversarial learning in Wireless 
Communications presents new aspects beyond the scope of the 
examination of attacks targeting computer vision. Indeed, the 
adversarial attacks must be meticulously studied in this 
context. In the following paragraphs, we will examine the types 
of attacks targeting wireless communication systems. Then we 
will highlight important metrics that must be considered while 
assessing their robustness [27]. 

A. Type of Adversarial Attacks 
Adversarial attacks in Wireless communications could be 

classified into two categories: 

1) Direct Access Attacks (DAC): This category of attacks 
exploits the direct access to the classifier’s input dataset to 
carry out malicious actions. The results obtained in [27] for this 
type of attack have shown that for symbol energy and jamming 
signal ratio Es/Ej of 30db, the FGSM attack produces a higher 
degradation than the one caused by the addition of AWGN 
Gaussian noise. 

2) Over the Air Attacks (OTA): In computer vision, the 
attack reliability depends on selecting the perturbations that 
lead the model into misclassifications while remaining 
imperceptible to human eyes. Similarly to computer vision, 
Self-protect attacks are also interested in misleading the 
classifier while guaranteeing information transmission to the 
receiver with a defined modulation. 

B. Metrics to Evaluate Adversarial Attacks in Wireless 
Communications 
Besides, the evaluation of attacks and their success rates in 

Wireless Communications must adopt additional metrics 
aligned with signal transmission performance measures. 
Therefore, it is essential to consider the Bit Error Rate (BER) 
computation and the ratio of perturbing noise and modulated 

signal to estimate the opponent's attack's success rate, among 
other metrics. 

1) Frequency offset: Before classifying the wideband 
signal, the systems initially identify the frequency of the 
signals and the time of transmission to convert these signals 
back to the baseband. Nevertheless, such operations may 
induce errors, as shown in [13], especially in centre frequency 
estimation, leading to frequency offset. The authors in [13] 
have noticed that raw-IQ-based AMC model accuracy 
dramatically decreases after adding frequency offsets. This 
encouraged Flowers et al. to examine frequency offsets' impact 
on adversarial attacks' success rate. The obtained results for 10 
and 20 dB SNRs showed that even the most minor errors in 
frequency offset estimation could reduce the effect of 
adversary examples by increasing the model's accuracy by 
approximately 10%. 

2) Time offset: To estimate transmission start and end 
times, the system employs an energy detection pattern that 
utilises a specific threshold of frequency power to determine 
the signal's existence in each instant. Incorrect evaluation of 
this threshold can result in false alarms or delays in the 
estimated transmission start time. In [28], the authors studied 
the impact of these parameters on the model accuracy rate. 
Indeed, in the absence of adversarial examples, the time offset 
does not significantly affect the model's accuracy rate. 
However, under adversarial conditions, they have noticed that 
translating the time-offset by four samples enhances the model 
accuracy rate by 20% for an Es/Ej ratio of 12 dB. Thus, they 
have concluded that the time offset can considerably reduce 
adversarial perturbations' impact on modulation classifier. 

3) Multiple antenna usage: In [29], the authors have 
examined a wireless communication system in which the 
transmitter emits signals to receivers using several different 
modulation types. The receiver identifies the modulation types 
using a deep learning model classifier. In this context, an 
opponent can potentially introduce adversarial noise by 
employing multiple antennas to mislead the classifier and 
decrease its accuracy. They have demonstrated that using 
multiple antennas could enhance the opponent's attack 
robustness using a technique used in previous work [30] known 
as the maximum received perturbation power MRPP. They 
have evaluated this attack by emulating two different scenarios. 
In the first one, they have attacked while using adversaries 
operating in separate locations with only a single antenna. In 
the second scenario, they have performed the Elementwise 
Maximum Chanel Gain EMCG attack involving a single 
opponent yet with multiple antennas. These two scenarios have 
applied different techniques for power allocation. Kim et al. 
[29] also considered the opponent's attack on modulation 
classifiers while maintaining two essential requirements: 1) the 
perturbations introduced to the signal must be conceived to 
drive the targeted model to misclassify the modulations; 2) the 
power of the perturbations must not exceed maximum 
permissible levels so that they remain imperceptible to the 
receiver. The experimental findings indicated that the use of 
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multiple opponents would not degrade the classifier's 
performance significantly as a single adversary had employed 
the same antenna power [31]. The reason behind the obtained 
results is the lack of coordination and collaboration between 
multiple opponents in the second case since they do not focus 
on the same adversarial goal. The authors have demonstrated in 
their study the efficiency of EMCG attack. The EMCG attack 
associated with Gaussian noise gives the weakest results 
proving that Gaussian Noise's presence makes the adversarial 
perturbations detectable by the signal receiver. 

VI. THE PROPOSITION OF ASSESSMENT PATTERN OF 
ADVERSARIAL ATTACKS ROBUSTNESS FOR WIRELESS 

COMMUNICATION 
Considering the results obtained in the study of adversarial 

attacks in the context of wireless communications, we will 
propose in this section a pattern to evaluate attack robustness, 
as shown in “Fig. 4”. This pattern is inspired by our previous 

works [32] related to adversarial examples robustness 
assessment in computer vision. It is more adapted to the 
specificities of wireless communications. 

The process is initiated by evaluating the attacker's 
knowledge of the targeted system. Attacks requiring complete 
knowledge of the targeted system are the least robust, while 
those designed with limited knowledge of the target system are 
proven to be the most robust. Afterwards, the attacker's 
potential and capabilities are analysed. Indeed, we have 
extensively detailed through Kim et al.'s [30] experience the 
impact of this factor in enhancing the robustness of the 
opponent's attack. In the previous section, we have already 
demonstrated that the adversary can improve the attack 
robustness by maximising the used antenna's power or 
increasing the number of antennas employed to carry out the 
adversarial attack. 

 
Fig. 4. Adversarial Attacks Robustness Evaluation Pattern. 
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Subsequently, the focus is on investigating the specificity 
of the attack. Attacks aiming at specific targets appear to be 
more robust than those seeking to introduce errors into the 
model without focusing on a specific target. Further, we 
analyse the imperceptibility of the perturbations introduced 
into the targeted system. Indeed, this parameter remains highly 
relevant to the attack's success rate. Further, we analyse the 
imperceptibility of the perturbations introduced into the 
targeted system. Indeed, this parameter remains highly relevant 
to the attack's success rate.  It has been demonstrated in the 
studies conducted by [33] that as long as the crafted 
perturbations are perceptible, it is highly probable that they will 
be detected. This could be achieved in the context of wireless 
communications by keeping the power of the perturbations 
below the maximum permissible thresholds and thereby 
fooling the model without disrupting the signal transmission to 
the receiver. 

In addition, the proposed pattern also involves examining 
the channel effects of Additive White Gaussian Noise, sample 
time offsets, and centre frequency offsets on the receiver. As in 
[34], researchers have shown that adding AWGN would 
significantly impact the adversarial examples compared to the 
model's accurate input data. In the presence of AWGN, the 
success rate of the adversarial attack is significantly reduced 
due to the identified sensitivity of adversarial examples to 
additive white Gaussian noise. Therefore, it is essential to 
include channel effects in the assessment process of adversarial 
attacks to match conditions that reflect a realistic scenario 
perfectly. 

Finally, the pattern concludes with an estimation step of the 
attack's impact. To this end, we have proposed an analysis, 
including the adversary's objective and damaged components 
in the targeted system.  Indeed, if the attacker fails to carry out 
malicious actions, we consider the attack with no impact on the 
target system. However, if it allows unauthorised access to the 
system by the adversary, then the attack has a significant 
impact on the confidentiality of the target system, yet its 
impact remains limited. Nevertheless, when the adversary 
carefully designs malicious perturbations to reduce model 
confidence in its predictions by diminishing its accuracy rate, 
then the impact is higher than the previous case. On the other 
hand, if crafted perturbations alter the model's output or 
influence its behaviour regarding the input dataset, then the 
impact is considered high since the attack affects target system 
integrity [35]. 

VII. DISCUSSION 
The approach we proposed in the previous section is 

designed to guarantee several advantages, including evaluating 
adversarial attack robustness according to several metrics, such 
as the type of attack, its specificity, its imperceptibility, and its 
impact. Indeed, we have considered analysing the adversary's 
knowledge and capabilities since they directly affect the 
attack's success rate. As far as the attacker is familiar with the 
components of the system, he can perform attacks causing 
tremendous damage. This feature allows the attacker to design 
imperceptible adversarial examples to carry out the attack and 
increase its specificity by targeting precise targets. In addition, 
We have included the attack’s adaptability as an essential 

criterion for estimating its robustness. Indeed, the latter 
considerably affects the adopted attack strategy flexibility and 
therefore increases the challenge of the adopted defensive 
mechanism to mitigate the vulnerabilities of the targeted 
system. Moreover, we have conducted a comprehensive study 
of the attack's impact through an in-depth examination of the 
opponent's goal. Accordingly, we have developed a framework 
standardising the study and the assessment of different types of 
adversarial attacks. Our process provides the significant 
advantages of adaptability and generality since it can be 
applied to different models and can be tailored to different 
attacks and strategies that attackers may adopt in wireless 
communication systems. 

VIII. CONCLUSION 
Recently, growing attention in the scientific community has 

been dedicated to adversarial attacks. Throughout their studies, 
researchers have adopted several methods and established 
different hypotheses. This has made evaluating these attacks 
challenging since the platforms used in the experimentations 
are not standardised. Therefore, the proposed work suggests a 
unified method for evaluating adversarial attacks targeting 
deep learning models in wireless communications. This work 
has highlighted essential security aspects of the deep learning 
model used in wireless communications. In the different 
sections, we have explored the theory behind adversarial 
attacks as well as their practical application in the physical 
world. We have also examined the different studies carried out 
in this direction to draw a set of characteristics specific to 
wireless communications that greatly influence the success rate 
of the opponent's attack. At the end of this article, we have 
proposed a pattern devoted to evaluating adversarial attacks' 
robustness. Finally, the proposed model is designed to 
highlight the different characteristics of the attacks to provide 
an exhaustive evaluation that approximates the scenarios that 
can be encountered. Our future work will focus on 
implementing this framework using various Deep Learning 
models and different attacks to test its reliability in assessing 
adversarial attacks robustness in wireless communication 
systems. 
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