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Abstract—The paper proposes an approach based on higher 

order statistics and phase synchronization for detection and 

classification of relevant features in electroencephalographic 

(EEG) signals recorded during the subjects are performing 

motor tasks. The method was tested on two different datasets and 

the performance was evaluated using k nearest neighbor 

classifier. The results (classification rates higher than 90%) have 

shown that the method can be used for discriminating right and 

left motor imagery tasks as an offline analysis for EEG in a brain 
computer interface system. 

Keywords—Brain computer interface; motor imagery; higher 

order statistics; phase synchronization; EEG 

I. INTRODUCTION 

The brain computer interface (BCI) system has aroused a 
real interest, as it has become an important tool in translating 
the measured brain activity into control commands. 

The BCI was developed for biomedical applications, which 
led to the development of assistive devices for restoring 
movement and communication force for patients with 
disabilities. The use of electroencephalography (EEG) in the 
state-of-the-art of brain-computer interface technology has 
expanded to enhance quality of life, with medical and non-
medical applications [1]. Various BCI innovations, such as the 
BCI wheelchair [2], spellings, BCI exoskeleton [3], BCI 
prosthesis, BCI robot [4] and others are the result of this huge 
interest in BCI [5]. 

The electroencephalogram is a source of information often 
used in BCI because it records the electrical activity of the 
brain with the help of the attached electrodes on the scalp. The 
BCI system amplifies the collected signals, notifies these 
changes and transforms them into control signals for 
communication or control of external equipment. BCI allows 
patients with paralysis or motor disorders to have an alternative 
method of communication and control.  

Compared with other existing neuroimaging modalities, 
electroencephalogram has higher time resolution, portability, 
availability, and, so it is more commonly used. 

EEG based BCI systems are centered on several paradigms 
[6-7]: Steady State Visual Evoked Potential (SSVEP), P300, 
Slow Cortical Potential (SCP) and Motor Imagery (MI). Motor 
imagery implies imagination of hand/arm/finger/foot 

movement. More precisely, motor imagery is the translation of 
the motor intention into control signals for a BCI device. After 
imagination, event-related synchronization (ERS) and 
desynchronization (ERD) are produced over the sensorimotor 
cortex region [8]. Brain activity recorded via EEG is classified 
into five different rhythms: Delta (0-4 Hz), Theta (4-7 Hz), Mu 
(8-12 Hz), Beta (12-30 Hz), Gamma (30-70 Hz). Mu and Beta 
rhythms are associated with actions like preparation and 
movement of limbs. 

Methods like autoregressive model [9], independent 
component analysis [10], wavelet transform [11] have been 
applied in order to extract relevant features contained in the 
EEG signal while a motor imagery task was performed. 

The aim of the paper is to propose a combination of 
features which includes higher-order statistics (HOS) based on 
bispectrum and bicoherence and phase synchronization based 
on phase locking value and phase lag index. The features can 
be used for discriminating motor tasks in a motor imagery 
paradigm. 

In Section II the handled datasets are described and 
Section III presents the methods, features extraction and 
classification. Section IV belongs to results and Section V to 
conclusions. 

II. DATASETS DESCRIPTION 

Dataset I contains EEG signals acquired in our laboratory. 
The brain activity was recorded using a gMobilab+ module 
[12] and BCI 2000 platform [13]. Dataset II was downloaded 
from the internet [14]. Table I presents the information 
regarding the manipulated datasets. 

TABLE I. DATABASES SUMMARY 

Database information Dataset I Dataset II 

Number of subjects 57 9 

Channels C3, C4, CP3, CP4, P3, P4, Cz 

Number of Trials 60 90 

Sampling frequency 256 Hz 100 Hz 

Paradigm description 

On a monitor screen right and left arrows were 

displayed.  

The subjects had to perform the motor task 

indicated by the arrow (left hand and right hand 

motor imagery).  
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III. METHODS 

Higher order spectra are expressed in terminologies of 
higher order statistics such as moments and cumulants of a 
random process, in this case EEG signals [15-16]. 

Bispectrum is commonly applied in the biomedical area 
mainly for EEG signal processing. Bispectrum is d in the bi-
frequency domain [15]: 

𝐵(𝑓1 , 𝑓2) = 𝐸[𝑋(𝑓1)𝑋(𝑓1)𝑋∗(𝑓1 + 𝑓2)]           (1) 

where 𝑋(𝑓) is the Fourier transform of a windowed portion 
of a single realization of the EEG signal 𝑥(𝑛𝑇), 𝑛 is an integer 
index, 𝑇  is the sampling period and 𝐸[. ]  represents the 
expectation operation. 

Bicoherence is given by the following relationship [15-16]: 

𝐵𝑛𝑜𝑟𝑚 (𝑓1 , 𝑓2) =
𝐸[𝑋(𝑓1)𝑋(𝑓1)𝑋∗(𝑓1+𝑓2)] 

√𝑃(𝑓1)𝑃(𝑓2)𝑃(𝑓1+𝑓2)
           (2) 

where 𝑃(𝑓) is the power spectrum of 𝑥(𝑛𝑇). 

When the oscillatory phases from two brain regions are 
correlated the phase synchronization appears. The phase 
synchronization from the motor imagery period is different 
from the phase synchronization in the relaxation period so it 
can be exploited by BCI applications [17]. 

Large scale synchronization appears between brain signals 
acquired from electrodes located in the primary motor area and 
from electrodes located in the additional motor area. 

Phase locking value (PLV) [17] and phase lag index (PLI) 
[18] are calculated in order to detect changes in the large scale 
synchronization and in order to measure the synchronization 
between two signals 𝑥(𝑡) and 𝑦(𝑡). 

PLV represents the lastingness of the phase difference 

between instantaneous phases 𝜑𝑥(𝑡) and  𝜑𝑦(𝑡): 

𝑃𝐿𝑉 = |〈𝑒𝑗∆𝜑(𝑡)〉|             (3) 

∆𝜑(𝑡) =  𝜑𝑦(𝑡) −  𝜑𝑥(𝑡) 

The phase lag index is defined by: 

𝑃𝐿𝐼 = |〈𝑠𝑖𝑔𝑛[∆𝜃(𝑡𝑘) ]〉|             (4) 

 𝑠𝑖𝑔𝑛 is the signum function and  <. > denotes the time 
average. 

A. Data Processing for Higher Order Statistics 

Two sets of data were formed: one related to right hand 
movement imagery and the other corresponding to left hand 
movement imagery. 

First, the EEG signals aquired from channels C3, C4, CP3, 
CP4, P3, P4 when the subject imagined the right hand 
movement were segmented in 30 (Dataset I) and 45 (Dataset 
II). The bispectrum and bicoherence were estimated using 
functions from HOSA toolbox [19]. Two different frequency 
ranges were extracted for analysis in the bi-frequency plane (f1 
– f2): Mu – Mu, Beta – Beta. The module of the bispectrum 
was calculated for these frequency ranges. In the next step only 
the elements above the main diagonal (those below the main 

diagonal being equal to those above) were extracted for the two 
frequency ranges. 

A direct method is applied to estimate the bicoherence. 

Four quantity measures for each frequency range were 
settled: the sum of the bispectrum modules, the sum of the 
squares bispectrum modules, the sum of the bicoherence 
modules, the sum of the squares bicoherence modules. 

The steps described above were followed for the EEG 
signals corresponding to left hand motor imagery. 

B. Data Processing for Phase Synchronization 

Four sets of data were created: the right hand movement 
imagery, the rest after right hand movement imagery,  the left 
hand movement imagery and rest after left hand movement 
imagery. In order to compute PLV and PLI, the instanteneous 
phase of the EEG signals must be determined. The 
instanteneous phase of the EEG signals is computed using 
Hilbert transform. The Hilbert transforms were calculated for 
the EEG channels mentioned. 

One electrode from the auxiliary motor imagery area, Cz, 
three electrodes from the right hemisphere, C4, CP4, P4 and 
three electrodes from the left hemisphere, C3, CP3, P3 were 
utilized in order to establish the combinations. The completed 
pairs of electrodes were: Cz-C4, Cz-CP4, Cz-P4, Cz-C3, Cz-
CP3, Cz-P3. The differences between PLVs of the rest period 
and motor imagery period were formed for the above pairs of 
electrodes. 

The steps mentioned above were repeated for PLI. 

C. Feature Vectors 

Nine feature vectors were created by bringing together two, 
three or four of the already mentioned measures. So, the first 
feature vector is formed by bicoherence and PLV, the second 
by bicoherence and PLI, the third by bicoherence, PLV and 
PLI, the fourth by bispectrum and PLV, the fifth by bispectrum 
and PLI, the sixth by bispectrum, PLV and PLI, the seventh by 
bicoherence, bispectrum and PLV, the eighth by bicoherence, 
bispectrum and PLI and the ninth by bicoherence, bispectrum, 
PLV and PLI. These nine feature vectors were named 
according to their way of grouping:  Bicoherence_PLV was 
attributed for the feature vector combining bicoherence and 
PLV, Bicoherence_PLI for the feature vector merging 
bicoherence and PLI, and so on. 

The discrimination between right and left motor imagery 
was evaluated with k nearest neighbor (kNN) [20]. The 
performance of classifier was assessed through classification 
rate, sensitivity and specificity. The classification rate, the 
specificity and the sensitivity are characterized using the 
following terms: true positive (TP), true negative (TN), false 
negative (FN) and false positive (FP) [21]: 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =
𝑇𝑁+𝑇𝑃

𝑇𝑁+𝑇𝑃+𝐹𝑁+𝐹𝑃
           (5) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
             (6) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
             (7) 
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IV. RESULTS 

In Fig. 1 is displayed the bispectrum of an EEG signal 
corresponding to right hand motor imagery for channel C3 
(Dataset I) and Fig. 2 illustrates the bispectrum of an EEG 
signal corresponding to left hand motor imagery for channel 
C4 (Dataset I). The bicoherence of an EEG signal 
corresponding to right hand motor imagery for channel C3, 
respectively the bicoherence of an EEG signal corresponding 
to left hand motor imagery for channel C4 are shown in Fig. 3 
and Fig. 4. 

 

Fig. 1. The Bispectrum of an EEG Signal Corresponding to Right Hand 

Movement Imagery for Channel C3 - Datatset I. 

 

Fig. 2. The Bispectrum of an EEG Signal Corresponding to Left Hand 

Movement Imagery for Channel C4 - Datatset I. 

From the above figures we can see that the bispectrum and 
the bicoherence yielded to different graphs for EEG signal 
corresponding to right versus left hand motor imagery and this 
suggests that can be used as feature vectors for classification. 

Fig. 5 shows the box plots for the classification rate, the 
sensitivity and the specificity using as feature vectors 
Bicoherence_PLV, Bicoherence_PLI and 
Bicoherence_PLV_PLI for Dataset I. The highest value (90%) 
of the median for classification rates was obtained for 

Bicoherence_PLV_PLI and all the subjects attained 
classification rates in the range 84% to 94%. 

 

Fig. 3. The Bicoherence of an EEG signal Corresponding to Right Hand 

Movement Imagery for Channel C3 - Datatset I. 

 

Fig. 4. The Bicoherence of an EEG Signal Corresponding to Left Hand 

Movement Imagery for Channel C4 - Datatset I. 

 

Fig. 5. The Box Plots for Classification Rate, Sensitivity and Specificity 

using Feature Vector Bicoherence_PLV, Bicoherence_PLI and 

Bicoherence_PLV_PLI – Dataset I. 
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The box plots for the classification rate, the sensitivity and 
the specificity using as feature vectors Bispectrum_PLV, 
Bispectrum_PLI and Bispectrum_PLV_PLI - Dataset I are 
displayed in Fig. 6. The medians for the classification rates, the 
sensitivities and the specificities obtained were above 88% for 
Bispectrum_PLV_PLI. The outliner marked in blue color 
represents the highest classification rate attained (the value 
isn’t relevant since belongs to a single subject). 

 

Fig. 6. The Box Plots for Classification Rate, Sensitivity and Specificity  

using Feature Vector Bispectrum_PLV, Bispectrum_PLI and 

Bispectrum_PLV_PLI - Dataset I. 

In Fig. 7 are presented the box plots for the classification 
rate, the sensitivity and the specificity using as feature vectors 
Bicoherence_Bispectrum_PLV, Bicoherence_Bispectrum_PLI 
and Bicoherence_Bispectrum_PLV_PLI – Dataset I. The 
highest classification rates, sensitivities and specificities were 
realized for Bicoherence_Bispectrum_PLV_PLI. 

 

Fig. 7. The Box Plots for Classification Rate, Sensitivity and Specificity  

using Feature Vector Bicoherence_Bispectrum_PLV, 

Bicoherence_Bispectrum_PLI and Bicoherence_Bispectrum_PLV_PLI – 
Dataset I. 

Fig. 8 shows the box plots obtained for the classification 
rate, the sensitivity and the specificity using as feature vector 

Bicoherence_PLV, Bicoherence_PLI and 
Bicoherence_PLV_PLI - Dataset II. The highest classification 
rates were for Bicoherence_PLV_PLI. The outliners marked 
with “*” for all the figures are for Subject 9. 

 

Fig. 8. The Box Plots for Classification Rate, Sensitivity and Specificity  

using Feature Vector Bicoherence_PLV, Bicoherence_PLI and 

Bicoherence_PLV_PLI - Dataset II. 

Fig. 9 displays the box plots achieved for the classification 
rate, the sensitivity and the specificity using feature vector 
Bispectrum_PLV, Bispectrum_PLI and Bispectrum_PLV_PLI 
- Dataset II. Overall, the best classification rates (85%), 
sensitivities and specificities were obtained for 
Bispectrum_PLV_PLI .  

 

Fig. 9. The Box Plots for Classification Rate, Sensitivity and Specificity  

using Feature Vector Bispectrum_PLV, Bispectrum_PLI and 

Bispectrum_PLV_PLI - Dataset II. 

The box plots for the classification rate, the sensitivity and 
the specificity using as feature vector 
Bicoherence_Bispectrum_PLV, Bicoherence_Bispectrum_PLI 
and Bicoherence_Bispectrum_PLV_PLI – Dataset II are 
presented in Fig. 10. Comparing to the other feature vectors, 
the smallest classification rates, sensitivities and specificities 
were obtained for the feature vectors from Fig. 10. 
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Fig. 10. The Box Plots for Classification Rate, Sensitivity and Specificity  

using Feature Vector Bicoherence_Bispectrum_PLV, 

Bicoherence_Bispectrum_PLI and Bicoherence_Bispectrum_PLV_PLI – 

Dataset II. 

In Table II are summarized the maximum and the median 
of  the classification rates for Dataset I and Dataset II attained 
with the mentioned feature vectors. The best classification rates 
were attained for feature vector Bicoherence_PLV_PLI for 
both datasets. 

In [22] where a framework for achieving subject transfer 
strategy is proposed, the classification rates obtained for 
subject 9 were in the range 57.93% to 70.93% with linear 
discriminant analysis. The results are consistent with the results 
obtained with our feature vectors.  

In [23] where was investigated a method based on multiple 
frequency spatial synthesized features with support vector 
machine classifier, the classification accuracies were smaller 
than the results reported in this paper. 

TABLE II. THE MAXIMUM AND THE MEDIAN CLASSIFICATION RATES FOR 

THE FEATURE VECTOR USED – DATASET I AND DATASET II 

Feature Vector 

Dataset I Dataset II 

Classification  rate 

Max  Median  Max  Median  

Bicoherence_PLV 90.62% 86.43% 87.28% 84.08% 

Bicoherence_PLI 91.74% 86.15% 87.45% 84.00% 

Bicoherence_PLV_PLI 93.90% 89.79% 91.86% 88.44% 

Bispectrum_PLV 90.31% 82.74% 78.35% 76.00% 

Bispectrum_PLI 88.45% 82.79% 81.73% 74.04% 

Bispectrum_PLV_PLI 92.76% 88.15% 86.37% 84.11% 

Bicoherence_Bispectru

m_PLV 
84.73% 80.88% 74.79% 72.31% 

Bicoherence_Bispectru

m_PLI 
85.41% 79.98% 76.39% 72.28% 

Bicoherence_Bispectru

m_PLV_PLI 
89.34% 85.71% 83.08% 79.70% 

In [24], [25] were manipulated only PLV and PLI without 
being in combinations with other methods, but more channels 
were taken into account.  The results achieved in these two 
cited works are approximately the same with the results stated 
in this paper with feature vector Bicoherence_PLV_PLI. The 
maximum classification rates of 86% are attained using PLI 
and SVM classifier. 

V. CONCLUSION 

An offline analysis was performed on two datasets that 
contained 57 subjects and 9 subjects. Using combinations of 
bispectrum, bicoherence, phase locking value and phase lag 
index, nine features vectors were formed. 

By means of Bicoherence_PLV_PLI as feature vector and 
kNN as classifier, the highest classification rates, sensitivities 
and specificities achieved for Dataset I were 93.90%, 94.35% 
and 94.29% respectively and for Dataset II were 91.86%, 
94.56% and 90.67%, respectively. 

The best classification rate attained with 
Bicoherence_PLV_PLI for both datasets highlights that, 
regardless of the database and of the conditions in which the 
electroencephalographic signals were recorded, the grouping of 
the three measures that compose this feature vector 
discriminates the best the two classes. The explanation might 
be linked to the fact that there are taken into account both the 
information of nonlinear interaction described by bicoherence 
and of the large scale synchronization described by PLV and 
PLI, and together they discriminate better than alone the two 
tasks. 

The subjects from Dataset II were trained and the subjects 
from Dataset I were untrained. Even if the subjects from 
Dataset II were trained, the results obtained were worse than 
those for Dataset I. This fact suggests that the method used for 
creating feature vector Bicoherence_PLV_PLI is adequate to be 
used for discrimination of motor imagery tasks in a BCI, no 
matter the degree of subjects’ training. 

The future work implies testing the method on other 
available datasets that provide EEG signals recorded from the 
subjects while performing motor imagery tasks. 
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