
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 8, 2021

276 | P a g e

www.ijacsa.thesai.org

On the Training of Deep Neural Networks for

Automatic Arabic-Text Diacritization

Asma Abdel Karim, Gheith Abandah

Computer Engineering Department

The University of Jordan

Amman, Jordan

Abstract—Automatic Arabic diacritization is one of the most

important and challenging problems in Arabic natural language

processing (NLP). Recurrent neural networks (RNNs) have

proved recently to achieve state-of-the-art results for sequence

transcription problems in general, and Arabic diacritization in

specific. In this work, we investigate the effect of varying the size

of the training corpus on the accuracy of diacritization. We

produce a cleaned corpus of approximately 550k sequences

extracted from the full dataset of Tashkeela and use subsets of

this corpus in our training experiments. Our base model is a deep

bidirectional long short-term memory (BiLSTM) RNN that

transcribes undiacritized sequences of Arabic letters with fully

diacritized sequences. Our experiments show that error rates

improve as the size of training corpus increases. Our best

performing model achieves average diacritic and word error

rates of 1.45% and 3.89%, respectively. When compared with

state-of-the-art diacritization systems, we reduce the word error

rate by 12% over the best published results.

Keywords—Arabic text; automatic diacritization; bidirectional

neural network; long short-term memory; natural language

processing; recurrent neural networks; sequence transcription

I. INTRODUCTION

The Arabic language is vastly spoken and written in many
countries around the world. Arabic scripts mainly exist in two
forms: Classical Arabic (CA) represented in holy scripts and
old books, and Modern Standard Arabic (MSA) which is a
contemporary form of CA used nowadays to write stories,
books, newspapers, and formal speeches. Moreover, people use
dialects that differ from one region to another, to communicate
in their everyday lives [1].

Arabic sentences consist of sequences of words, written
from right to left, composed of letters and diacritics. Diacritics
are generally zero-width characters that appear in the form of
marks added above or below the letters. They provide syntactic
and semantic distinction that is essential to pronounce and
understand Arabic texts [2]. However, diacritics are optional in
most texts, especially MSA texts. This causes problems in
understanding the text for non-native speakers and children
since they may not be able to infer diacritics from the context.
Moreover, it poses challenges on automatic Arabic language
processing applications which require text to be diacritized
such as automatic speech recognition (ASR), text to speech
(TTS), and machine translation (MT) [1].

The Arabic language consists of 28 letters and eight basic
diacritics. A total of 36 variants of the Arabic letters result
from adding the six Hamza letters (ئ، إ، ؤ، أ، آ، ء), the Teh
Marbuta (ة), and the Alef Maksura (ى) to the basic 28 letters.
These variants have the Unicode hexadecimal codes 0621–
063A and 0641–064A. The eight basic Arabic diacritics are:
three short vowel diacritics (Fatha, Damma, Kasra), three
nunation (Tanween) diacritics, double consonant diacritic
(Shadda), and the no-vowel diacritic (Sukun). Arabic diacritics
have the Unicode hexadecimal codes 064B–0652. The
nunation diacritics are Fathatan, Dammatan, and Kasratan.
They can only appear on the last letter of the word. Shadda
diacritic is usually combined with either a short vowel or
nunation diacritic. With these combined forms, we get a total
of thirteen possible different diacritization of a letter in the
Arabic language. Table I show the Arabic diacritics along with
their transliterated names and list their shapes and sounds when
written on the letter Beh (ب).

Diacritics can be classified into two categories: lexemic
diacritics and inflectional diacritics. Lexemic diacritics
distinguish between words in Arabic morphology that have the
same orthography (spelling) but different pronunciations and
meanings [3]. Example 1 in Table II shows how adding
diacritics to the word كتب in two different ways results in two
different pronunciations and meanings. The diacritized word
 .”pronounced “kataba”, is a verb which means “he wrote ,كـتَـَبَ
The diacritized word ُكـتُب, pronounced “kutub”, is a plural noun
which means books. Specifying which diacritization form to
use for a word depends on the context.

TABLE I. ARABIC DIACRITICS, THEIR TRANSLITERATED NAMES, AND

PRONUNCIATIONS

Diacritic Transliterated Name Shape Sound

Short Vowels

Fatha َب /ba/

Damma ُب /bu/

Kasra ب /bi/

Nunation
(Tanween)

Fathatan ب /ban/

Dammatan ب /bun/

Kasratan ب /bin/

Double Consonant
Diacritic

Shadda ب /bb/

No-vowel Diacritic Sukun ب /b/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 8, 2021

277 | P a g e

www.ijacsa.thesai.org

Example 2 in Table II shows how diacritizing the word كتب
using one of the two mentioned forms depends on the context it
appears in. More specifically, it differs based on the third word
in the sentence. In the first case, it is diacritized as the verb
“kataba” since the third word is the noun lesson (الدرس)
indicating that this is a verb-subject-object sentence. In the
second case, it is diacritized as the noun “kutubu” since the
third word is the adjective useful (مفيدة) indicating that this is a
nominal sentence. In more complex sentences, diacritizing a
word may expand to depend on words even further away in the
sentence.

Inflectional diacritics distinguish different inflected forms
of the same word. The diacritic of the last letter in the word
depends on the position and role of the word in the sentence
[3]. Example 1 in Table III shows how placing the noun ُكُتب
“kutub” in three different positions changes the last letter ب
diacritic between Fatha, Damma, and Kasra. The last letter
diacritic is often referred to as end case diacritic. Restoring this
diacritic is considered a challenging task even when performed
manually since it depends on the way the sentence is formed
syntactically. Moreover, words (both nouns and verbs) may be
inflected by appending suffixes that add features such as voice,
number, person, tense, case, and other categorical information
[1].

Example 2 in Table III shows how the diacritic of the last
letter changes when the verb َكَـتب is inflected in three different
ways to represent masculine second narration using Fatha in
the word تَ كَـتـَب , feminine second narration using Kasra in the
word كَـتـَب ت, and first narration using Damma in the word ُكَـتـَب ت.
Inflected words make syntactical position of the word affect
the diacritization not only of the last letter, but even the letters
before. Example 3 in Table III shows the plural noun كُتبُه which
is inflected by adding the possessive masculine pronoun ـه. The
diacritization of the letter ب which is the letter before the
pronoun ـه is the one affected by the position of the word in the
sentence.

Consequently, recovering diacritics of undiacritized Arabic
text is a challenging yet an important task. Many models have
been proposed to automate the process of diacritizing Arabic
texts. The performance of these models has been measured
using two main metrics that represent the accuracy of the
model in providing correct diacritics for the input undiacritized
text. These metrics are the diacritics error rate (DER) and word
error rate (WER). DER is computed by finding the percentage
of wrong diacritics to the total number of characters in the
input sequences. WER is computed by finding the percentage
of words with at least one wrong diacritic to the total number
of words in the input sequences.

TABLE II. EXAMPLES OF LEXEMIC DIACRITICS

Example

Number
Forms Meaning Pronunciation

1
 /he wrote /kataba كَــتـَـبَ

 /Books /kutub كُـتـُب

2
 .Ahmad wrote the lesson كَـتـَبَ أحمد الدرس.

 .Ahmad’s books are useful كُـتـُبُ أحمد مفيدة.

TABLE III. EXAMPLES OF INFLECTIONAL DIACRITICS

Example

Number
Forms Meaning Pronunciation

1

 /Ahmad’s books are useful. /kutubu كُـتـُبُ أحمدَ مفيدة.

قرأتُ كُـتـُبَ أحمدَ

 جميعها.
I read all Ahmad’s books. /kutuba/

أعجبت بكُـتـُب أحمدَ
 جميعها.

I liked Ahmad’s books. /kutubi/

2

 /You wrote (masculine) /katabta ـتـَب ـتَ كَ

ـتبَ ـت كَ You wrote (feminine) /katabti/

 /I wrote /katabtu كَـتـَب ـتُ

3

 /His books are useful. /kutubuhu كُـتـُبـُهُ مفيدة.

 /Ahmad read his books. /kutubahu قرأ أحمد كُـتـُبهَُ.

ـه .بكُـتـُب اعتنى أحمد
Ahmad took care of his

books.
/kutubihi/

Although the best previous solutions have shown steady
improvement in accuracy over time, we think that the latest
accuracies can be improved further using better models and
training datasets. In most cases, the accuracy is restricted due
to the lack of large, cleaned training dataset with acceptable
diacritization to character rate. In this work, we extend the
cleaning process performed in [4] to include the entire
Tashkeela dataset. We concentrate on finding the effect of the
training dataset size on the diacritization accuracy and on
reducing the error rates through using larger datasets. Finding
the effect of the dataset size on model accuracy and the best
training size would hopefully help interested researchers to
reach even better accuracies. The cleaning process was
performed in steps such that eight corpora are extracted and
cleaned with incremental sizes in terms of number of
sequences. We perform experiments that use these corpora to
explore and analyze the effect of increasing the training dataset
size on the accuracy of our baseline model.

We build on our previous experience in designing a model
that exploits the efficiency of bidirectional long short-term
memory (BiLSTM) recurrent neural networks in automatic
diacritization of Arabic texts. These networks are characterized
with their ability to utilize long-term past and future contexts to
predict diacritics. Our work produces a cleaned dataset of
543,364 sequences with diacritization to character rate of at
least 80%. This dataset can be used to experiment training
more sophisticated diacritization models. Moreover, our best-
performing BiLSTM model achieves DER of 1.45% and WER
of 3.89%.

The rest of this paper is organized as follows. The next
section reviews systems proposed to automate the diacritization
of Arabic text. Section III provides background information of
sequence transcription and recurrent neural networks.
Section IV illustrates our experimental setup. Section V
presents and discusses the results of our experiments and
compares our best results with the results of previous best
performing models. Finally, we conclude our work in
Section VI.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 8, 2021

278 | P a g e

www.ijacsa.thesai.org

II. LITERATURE REVIEW

Diacritization is the process of adding diacritics to the
letters of undiacritized texts. This operation is essential to
many applications that involve translation and text-to-speech
(TTS) conversion. Many models have been proposed over the
years to automate the process of diacritizing Arabic text. These
models involve rule-based models, statistical models, and
hybrid models. Rule-based natural language processing (NLP)
systems depend on using a set of well-defined language-
dependent rules which are formed by exploiting solid linguistic
knowledge. These systems are based on dictionaries and/or
morphological and syntactic analyzers/generators [5][6].
Although rule-based approaches achieve acceptable results,
their main drawback is the difficulty of maintaining and
including all aspects of the language in a comprehensive set of
rules. This is even more significant with a complex language
morphologically and syntactically like the Arabic language [7].

Statistical approaches use large corpora of diacritized texts
to predict the probability distribution of diacritics for a
sequence of characters. The main advantage of these
approaches is that they do not depend on a set of rules to solve
the problem and hence do not require solid linguistic
knowledge. Statistical methods that have been applied to
Arabic text diacritization include hidden Markov models
(HMM) [8][9], n-grams [10], finite state transducers (FST)
[11], conditional random fields (CRF) [12], and neural
networks. Recently, most proposed systems combined
statistical approaches with linguistic knowledge such that the
stochastic process is guided by language specific rules,
introducing hybrid approaches [3, 13-19].

More recently, RNNs have been successfully used to solve
restoring diacritics of Arabic texts as a sequence transcription
problem. Our previous work in [20] proposed, trained, and
tested a bidirectional LSTM network that transcribes raw
undiacritized Arabic sequences with fully diacritized ones.
Error correction techniques were used as a post processing step
to the output of the network to overcome some transcription
errors. We also experimented preprocessing the RNN input
using a morphological and syntactical analyzer in [21].
Mubarak et al. [22] implemented a sequence-to-sequence
model using an encoder-decoder LSTM RNN with content-
based attention. They used a fixed length sliding window of
character-based n-words in the training process and a voting
algorithm of n-gram probabilistic estimation to select the most
likely diacritic form of a word. They trained their model using
4.5 million tokens and tested it using the freely available
WikiNews corpus of 18,300 words.

In [4], Fadel et al. tested and compared a few existing web-
based automatic diacritization tools. They produced a cleaned
subset of 55K sequences from the Tashkeela dataset which is
split into training, testing, and validation sets. In [23], they
implemented and tested several neural network models that
belong to two main approaches, feed forward neural networks
and recurrent neural networks. They explored several models
using different types of input layers, using a CRF classifier
instead of the softmax layer, and optimizing gradients
normalization using block-normalized gradient (BNG).

Darwish et al. [24] proposed an approach to automatic
diacritization that consists of two bidirectional LSTM RNNs.
The first network is responsible for core-word (i.e., all letters
other than the last letter of the word) diacritics and the second
is responsible for case-ending (i.e., last letter) diacritics. They
trained and tested their approach on two sets: one that
represents MSA texts and the other represents CA texts. Their
model included post correction using a unigram language
model.

In our most recent work [25], we trained and tested RNN
models using two datasets: Linguistic Data Consortium’s
Arabic Treebank part 3 (LDC-ATB3) [26], and the cleaned
subset of Tashkeela [4]. We performed extensive experiments
to explore and analyze the effect of tuning several network
parameters, such as the number of network layers and using
dropout, on the accuracy and execution time of the tested
models. We also experimented models built using different
network architectures, alternative approaches to handle
problems in sequence lengths, and multiple encoding methods
for the diacritized output sequences.

Madhfar and Qamar [27] implemented and experimented
automatic diacritization using three character-level deep
learning models. The first model is a network that consists of
six layers: an embedding layer, followed by three bidirectional
LSTM layers, a projection layer, and finally, a softmax layer.
The second model consists of an encoder and decoder with
location-based attention. The third model consists only of the
encoder part of the second model. Its core architecture is
implemented using a 1-D convolution bank, a multi-layer
highway network, and a bidirectional GRU network. The
model is named CBHG (1-D Convolution Bank + Highway
network + Bidirectional GRU).

In this paper, we experiment training a deep BiLSTM
model using several datasets with incremental sizes extracted
from the Tashkeela dataset. Our goal is to test the accuracy of
the trained model in each case, thus investigating the effect of
the training set size on the accuracy of diacritization.
Moreover, our work includes extracting a cleaned corpus of the
full dataset of Taskeela which includes only sequences with
diacritization to letter rates greater than 80%.

III. SEQUENCE TRANSCRIPTION

Many machine learning tasks can be implemented as a
sequence transcription problem, in which input sequences are
translated into corresponding output sequences. These include
speech recognition, machine translation, and text to speech
[28]. Arabic text diacritization has been expressed successfully
as a sequence transcription problem as well [20-27]. In our
work, an input sequence X consists of characters
x1, x2, x3, … . , xT that represent the undiacritized sequence.
The output sequence Y is a sequence of diacritics
y1, y2, y3, … . , yT such that yi is the diacritic of the letter xi.

Recurrent neural networks (RNNs) have proved to perform
best on sequence transcription problems. This is because cells’
hidden states are functions of all previous states with respect to
time. This provides RNNs with their ability to maintain
correlations between data points in the input sequence and the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 8, 2021

279 | P a g e

www.ijacsa.thesai.org

capability of pointing backward in time [28]. Basic recurrent
neural networks are generalization of feedforward neural
networks to sequences [29]. Given a sequence of inputs
(𝑥1, 𝑥2, … , 𝑥𝑇) , a standard RNN computes a sequence of
outputs (𝑦1, 𝑦2, … , 𝑦𝑇). At each time step, a recurrent neuron
receives the output vector from the previous time step 𝑦𝑖(𝑡−1),

in addition to the input vector 𝑥𝑖(𝑡). Hence, 𝑦𝑖(𝑡) is a function of

𝑥𝑖(𝑡) and 𝑦𝑖(𝑡−1) , which is a function of 𝑥𝑖(𝑡−1) and 𝑦𝑖(𝑡−2) ,

which is a function of 𝑥𝑖(𝑡−2) and 𝑦𝑖(𝑡−3) , and so on.

Consequently, 𝑦𝑖(𝑡) is a function of all input vectors since 𝑡 =
1 [30].

Sequence transcription problems solved using RNNs can be
classified into four categories based on the lengths of input and
output sequences [30]. One-to-one networks take an input
sequences and produces an output sequence of the same length.
Sequence-to-vector networks transcribe input sequences into
one final output by ignoring all previous outputs. Vector-to-
sequence networks take one input vector and produce an output
sequence. The general sequence-to-sequence network has
output sequence that is generally not of the same length as the
input sequence. This type is often implemented using the
encoder-decoder architecture [31]. In this work, we implement
automatic Arabic diacritization as a one-to-one sequence
transcription problem since for each input sequence of
characters; the output sequence of diacritics is of the same
length.

Long short-term memory (LSTM) RNNs were first
proposed in [32] to deal with the basic RNNs’ problem of
decaying or slowly changing weights. This results in their
disability to learn long dependencies in the input sequences.
LSTM networks, on the other hand, which use purpose-built
memory cells, can converge faster, and detect long-term
dependencies in the sequences [28]. Each memory cell has two
states, the short-term state (also used as the cell output) h(t)

and a long-term state c(t). These states are updated using an

input gate, a forget gate, an output gate, and a cell activation
unit. The operation of these gates collectively enables the
LSTM cell to capture long term patterns by recognizing
important inputs, preserving them as long as they are needed,
and extracting them whenever they are needed. Fig. 1 shows a
basic RNN cell and an LSTM cell.

Conventional unidirectional RNNs can make use only of
previous context. However, many sequence transcription
problems, including diacritization, require exploiting future
context as well. Bidirectional RNN layers achieve this by
comprising two unidirectional layers that process the sequence
in both time directions producing two hidden vectors. The
output is a function of both vectors and, consequently, exploits
past and future contexts [33]. Fig. 2 shows the general structure
of the bidirectional neural network unfolded for three time-
steps. RNNs are made even more powerful by stacking
multiple layers on top of each other forming a deep RNN.
Deep networks are necessary to solve complex transcription
functions. In such architectures, the output sequence of one-
layer acts as the input sequence for the next layer.

Fig. 1. (a) Basic RNN Cell, (b) LSTM Cell.

Fig. 2. General Structure of the Bidirectional Neural Network Shown

unfolded for Three Time Step.

IV. EXPERIMENTAL SETUP

In this section we provide the details of the experiments
conducted in this work. We illustrate the methodology used,
how datasets were extracted and preprocessed, the scheme used
to encode sequences, and the structure of our baseline model.
We performed all experiments on the Cyclone supercomputer
of the High-Performance Computing Facility of The Cyprus
Institute [34]. The processing and memory specifications of the
used resources on the platform are listed in Table IV.

TABLE IV. PROCESSING AND MEMORY SPECIFICATIONS OF THE

EXPERIMENTAL PLATFORM

CPU
Intel Xeon Gold 6284 @ 2.5 GHz, 20 cores (40 threads), 27.5

MB cache

GPU
Nvidia Tesla V100-SXM2 @ 1.53 GHz, 5120 CUDA cores, 32
GB memory

Memory 192 GB DDR4-SDRAM

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 8, 2021

280 | P a g e

www.ijacsa.thesai.org

A. Methodology

We performed several experiments which involved training
of our baseline model using corpora with different sizes. All
experiments went through two phases: the first phase is
training the model and the second phase is testing its
diacritization accuracy. In the training phase, diacritics are
removed from diacritized training sequences to generate
undiacritized sequences. Generated undiacritized sequences
represent the model input sequences whereas diacritic
sequences are the model target sequences. Both undiacritized
input sequences and diacritic target sequences are fed to the
model after being encoded. Fig. 3 shows the steps performed in
the training phase of the performed experiments.

Fig. 3. Training Phase of Experiments.

In the testing phase, diacritics are removed from diacritized
testing sequences. The trained model takes the generated
undiacritized sequences as input to predict their diacritics. We
perform minor corrections to the output sequences according to
rules developed in our previous work in [20]. Corrected output
sequences are stored in a text file named diacritized_output.txt.
We test the accuracy of the model by comparing the model
diacritized sequences, in the file diacritized_output.txt, with the
correctly-diacritized target sequences, stored in a file named
target_output.txt, in measures of DER and WER rates. Fig. 4
shows the steps performed in the testing phase of the
performed experiments.

B. Training Datasets

The Tashkeela dataset [35] consists of 75 million
diacritized words. In its main part, it is collected from 97 books
filtered from 7079 books of Shamela library which is an
Islamic electronic library. These books are example of CA
text. Only 1.15% of the Tashkeela dataset consists of MSA
texts which is drawn from modern books and crawled from the
Internet. This makes Tashkeela mainly an example of CA. In
[4], Fadel et al. extracted a subset of 55,000 sequences from
the Tashkeela dataset with diacritization to character rate of at
least 80%. The subset was cleaned by removing English letters
and extra whitespaces, fixing some diacritization issues, and
separating numbers from words, among other techniques. The

subset was divided into 50,000 sequences for training, 2,500
sequences for validation, and 2,500 sequences for testing. This
subset was used in our previous work in [25] to train and test
the developed model.

In this work, we use the cleaning and filtering scripts
developed by Fadel et al. [4] to extract the larger datasets used
in our experiments. In addition, we wrap sequences such that
they have maximum lengths of 400 characters. This step is
performed to reduce the training time and memory usage and is
based on experiments we conducted in our previous work [25].
One of the main goals of this work is to study the effect of
incrementing the training data size on the diacritization
accuracy. We use the 50k training sequences of Fadel et al. as a
base dataset from which smaller training sets are derived and
larger training sets are formed by adding more sequences to it.
Three smaller subsets are derived by randomly selecting 6,250,
12,500, and 25,000 sequences from the basic dataset. Since the
basic dataset is cleaned and filtered to meet the diacritization to
character rate of 80%, except for wrapping to 400-character
length, no further work was needed for these subsets.

In order to construct larger datasets, we randomly select
sequences from the Tashkeela corpora to be added to enlarge
our sets, starting with the 50K set. The sequences are selected
to have at least 80% diacritics to characters rate. Then, they are
processed using the cleaning scripts. To avoid duplication of
sequences in our sets, the selected sequences are checked not to
be already included in the set to be enlarged. Finally, we wrap
sequences lengths to 400 characters. By repeating this process,
we extracted datasets that consist of 100,000, 200,000, and
400,000 sequences. We also obtain the largest set used in our
experiments which results from including all available
sequences from Tashkeela that satisfy the above criterion,
which is 543,364 sequences.

Fig. 4. Testing Phase of Experiments.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 8, 2021

281 | P a g e

www.ijacsa.thesai.org

Except for the largest dataset, the sizes of the datasets are
incremented by doubling the number of sequences from one set
to the next. Moreover, the incremental process by which a new
set is formed by adding sequences to the current set maintains
the inclusion property, such that each dataset is a subset of the
next. Table V shows size statistics of the used datasets in terms
of word count, letters per word, words per sequence, and the
number of sequences after the dataset is wrapped. All used
subsets have close letters per word and words per sequence
rates. For all experiments, we use the same validation set of
2,500 sequences, and testing set of 2,500 sequences to test the
DER and WER of the trained model in each experiment.

TABLE V. SIZE STATISTICS OF THE EXTRACTED DATASETS

Dataset Size

(# of sequences)
Word Count

Letters
per

Word

Words per

Sequence

of

Sequences

after
Wrapping

6,250 259,847 3.98 41.5 7,675

12,500 522,502 3.97 41.7 15,334

25,000 1,059,573 3.97 42.4 30,847

50,000 2,103,071 3.97 42.1 61,453

100,000 4,180,191 3.97 41.8 122,817

200,000 8,410,559 3.97 42.1 245,994

400,000 16,854,689 3.97 42.1 492,288

543,364 22,729,365 3.97 41.8 667,990

C. Data Encoding

Sequences used in our experiments are either undiacritized
consisting of letters only, or diacritized consisting of both
letters and their diacritics. Undiacritized sequences are encoded
using the Unicode representations of their letters. For
diacritized sequences, we experimented using different
encoding schemes in our previous work [25]. A one-to-one
encoding scheme which represents each diacritic produced the
best results in all performed experiments. Hence, we use this
encoding scheme in this work. This scheme benefits from the
fact that letters must not change between the input and the
output sequences. Only diacritics must be added. Hence, it
limits the classes at the output to the number of possible
diacritics codes which is 16. Table VI shows the binary codes
used for the eight Arabic diacritics. In Arabic, a letter may
have two diacritics if one of them is Shadda. In this case, the
diacritic code is formed by ORing the Shadda code (1000) with
the other diacritic code. Fig. 5 shows an example of encoding
the diacritized word صَيَّاد (hunter) which includes letters with
no, one, and two diacritics.

D. Base Model

For building our models, we use Keras (Python deep
learning library) with TensorFlow at the backend [36]. Our
baseline model is an BiLSTM that consists of an embedding
layer of 32 dimensions, four bidirectional LSTM layers each
consisting of 256 cells, followed by a 16-cell fully-connected
output layer. The Softmax function is used for activating the
diacritic class with the highest probability at the output layer.
Adam optimizer is used in training, and the sparse categorical
cross entropy is used as the loss function. The batch size is set

to 128 sequences for all experiments. In addition, the
maximum number of epochs used in training is 100 with early
stopping such that training stops if the validation accuracy does
not improve for five consecutive epochs. Fig. 6 shows the
structure of our baseline model.

TABLE VI. BINARY BIT CODES USED TO ENCODE DIACRITICS IN OUR

EXPERIMENTS

Diacritic Bit Code

No diacritic 0000

Fathatan (ً) 0001

Dammatan (ً) 0010

Kasratan (ً) 0011

Fatha (ًَ) 0100

Damma (ًُ) 0101

Kasra (ً) 0110

Sukun (ً) 0111

Shadda (ً) 1000

Fig. 5. Example Encoding the Diacritized Word صَيَّاد (Hunter).

Fig. 6. The Structure of the base Model used in our Experiments.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 8, 2021

282 | P a g e

www.ijacsa.thesai.org

V. EXPERIMENTS AND RESULTS

The following subsections present the experiments
performed and discuss their results. We also compare our best
results with previous work.

A. Experiments

We experimented training our baseline model using the
eight corpora we extracted from the Tashkeela dataset. We
evaluated the trained model in each experiment in terms of
time required to train the model and the model accuracy. We
report the training time both in terms of the training total
execution time and the average training time per epoch for
each of the eight experiments. Table VII shows the total
training time, average execution time per epoch, and number of
executed epochs for each of the eight experiments. As
expected, larger corpus size results in longer training time.
However, the increase in the execution time is not directly
proportional to the increase in number of sequences. This is
dependent on the number of epochs which vary from one
experiment to another based on when the early stop occurs. On
the other hand, it can be observed that the increase in average
time per epoch is proportional to the corpus size.

We report the performance of the models during training
using the validation set in terms of validation loss and
validation accuracy. Fig. 7 shows the validation accuracy and
Fig. 8 shows the validation loss as functions of the training
epochs for each experiment. In all reported results, we refer to
each experiment by the number of sequences of its training
dataset (i.e., 6,250, 12,500, 25,000, …). Training using larger
number of sequences generally results in slower learning,
higher values of accuracy and lower loss values. The best
validation accuracy and validation loss achieved are 0.988 and

0.016, respectively, using the largest dataset of 543,364
sequences.

We tested the diacritization accuracy of the trained models
using the eight extracted corpora. For all testing experiments,
we use the test set of 2,500 sequences defined by Fadel et al.
[4]. Fig. 9 shows diacritization error rates and word error rates
for the eight models. The results show that both DER and
WER improves as the number of sequences used in training
increases. The best improvement, which is 22%, is observed
when the training set increases from 6,250 sequences to
12,500. The improvement decreases gradually as we move
towards larger datasets. No improvement is observed in the
error rates when increasing the training set from 400,000 to
543,364 sequences. The best DER and WER achieved are
1.45% and 3.89%, respectively.

TABLE VII. TOTAL TRAINING TIME, AVERAGE EXECUTION TIME PER

EPOCH, AND NUMBER OF EXECUTED EPOCHS FOR THE EIGHT EXPERIMENTS

Dataset Size

(# of sequences)

Total Training

Time (hours)

Epoch Average

Training Time (hours)

 # of

Epochs

6,250 5.1 0.05 100

12,500 9.2 0.09 88

25,000 10.6 0.18 58

50,000 21.4 0.36 60

100,000 32.1 0.63 51

200,000 56.3 1.22 46

400,000 191.0 2.27 85

543,364 336.0 3.43 98

Fig. 7. Validation Accuracy Recorded during Training the Model using Datasets with different Number of Sequences.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

V
al

id
at

io
n

 A
cc

u
ra

cy

Epochs

6,250 12,500 25,000 50,000 100,000 200,000 400,000 543,364

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 8, 2021

283 | P a g e

www.ijacsa.thesai.org

Fig. 8. Validation Loss Recorded during Training the Model using Datasets with different Number of Sequences.

Fig. 9. DER and WER Values for Models Trained with different Number of Sequences.

We analyze errors of our system by enumerating the errors
according to the number of errors per word and presence of
end-case diacritization errors. The results of this analysis are
shown in Fig. 10 and 11. Fig. 10 shows that for all dataset
sizes, most of the miss-diacritized words have one diacritic
error. Words with three or more diacritic errors are not frequent
contributing to less than 6% of the errors in all experiments.
Moreover, the ratio of multiple errors per one word decreases

with larger datasets. Fig. 11 shows the end-case diacritization
errors contribution in the DER and WER ratios. As explained
earlier, end-case diacritization depends on the context and is
subject to complex inflection rules. In our results, end-case
diacritization errors contribute to about half of the word errors
in all experiments. The best DER and WER values when
ignoring end-case diacritization errors are 0.91 and 1.95,
respectively.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

V
al

id
at

io
n

 L
o

ss

Epochs

6,250 12,500 25,000 50,000 100,000 200,000 400,000 543,364

3.93

3.07
2.60

2.08 1.82 1.61 1.45 1.46

10.08

7.98

6.74

5.54
4.82

4.27
3.89 3.90

0

2

4

6

8

10

6,250 12,500 25,000 50,000 100,000 200,000 400,000 543,364

P
e

rc
e

n
ta

ge

Number of Sequences

DER WER

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 8, 2021

284 | P a g e

www.ijacsa.thesai.org

Fig. 10. Number of Errors per Word for each Experiment as a Percentage of the Total Number of Errors.

Fig. 11. Contribution of the End-case Diacritization Errors in the DER and WER Ratios.

B. Comparison with Previous Work

Our best results are reported here are for the model trained
using 400,000 sequences. Table VIII summarizes the
comparison of the best results in this work and best published
systems. For each system, the table shows its publication year,

the database used in evaluating it, and its DER and WER
values both when including all diacritics errors (i.e., with case
ending) and when ignoring last-letter diacritization errors (i.e.,
without case ending). The last column shows DER resulting
from last letter diacritization errors only.

72.6 73.7 74.7 75.6 75.1 75.1 75.8 75.8

21.6 20.9 20.2 19.9 20.7 20.6 20.4 19.9

5.1 4.9 4.6 4.2 3.9 4.1 3.5 3.8

0

10

20

30

40

50

60

70

80

90

100

6,250 12,500 25,000 50,000 100,000 200,000 400,000 543,364

P
e

rc
e

n
ta

ge

Number of Sequences

One Error Two Errors Three Errors Four+

35.11% 35.83%
37.31% 37.98% 37.91% 37.89% 37.24% 36.99%

49.80% 50.25% 50.74% 51.08% 51.24% 50.82% 49.87% 50.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

6,250 12,500 25,000 50,000 100,000 200,000 400,000 543,364

P
e

rc
e

n
ta

ge

Percentage of End Case DER Percentage of End Case WER

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 8, 2021

285 | P a g e

www.ijacsa.thesai.org

TABLE VIII. COMPARISON OF OUR BEST DER AND WER RESULTS WITH PREVIOUS WORK

System Dataset
 All Diacritics Ignore Last DER Last

DER WER DER WER

Zitouni et al. (2006) [15] ATB3 5.5 18 2.5 7.9 3.0

Habash&Rambow (2007) [3] ATB3 4.8 14.9 2.2 5.5 2.6

Rashwan et al. (2011) [17] ATB3 3.8 12.5 1.2 3.1 2.6

Said et al. (2013) [18] ATB3 3.6 11.4 1.6 4.4 2.0

Fadel et al. (2019) [23] Tashkeela 2.18 4.44 1.76 2.66 0.42

Abandah et al. (2020) [25]
ATB3 2.46 8.12 1.24 3.81 1.22

Tashkeela 1.97 5.13 1.22 3.13 0.75

Madhfar and Qamar (2021) [26] Tashkeela 1.13 4.43 0.84 2.47 0.29

This work Tashkeela 1.45 3.89 0.91 1.95 0.54

Most previous work used either LDC’s Arabic Treebank
Part 3 (ATB3) [26], which represent an example of MSA, or
Tashkeela, which represents an example of CA, or both. To the
best of our knowledge, our previous work in [25] achieves the
best published results for ATB3. The size of the ATB3 dataset
is limited to 22,170 training sequences, which makes it
unsuitable for the experiments we perform in this work. We do
not include the results of Darwish et al. [14] since they use
different training and testing datasets in both their MSA and
CA experiments and hence comparison would not be fair. They
used the training dataset of the RDI diacritizer in [18] and a test
set of WikiNews for their MSA experiments. For their CA
experiments, they used data from an undefined publisher.

The best DER and WER achieved in this work are 1.45%
and 3.89%, respectively. This improves over our previous work
which used a subset of the Tashkeela dataset and reported a
DER of 1.97% and a WER of 5.13%. We compare our results
with the best results of Fadel et al. [23] and Madhfar and
Qamar [26] since both works use the Tashkeela dataset for
training and testing. We outperform the model developed by
Fadel et al. in DER and WER both with and without case
ending. However, they achieve better last letter diacritization
error rate.

Among the models they experimented, Madhfar and Qamar
report the best DER and WER values for their CBHG model.
In our comparison, the CBHG model of Madhfar and Qamar
achieves the best DER in all cases. However, our best-
performing model word error rates outperform those of the
CBHG model indicating that our model results in less
percentage of wrongly diacritized words. Noting that they
perform their own cleaning and filtering process, but with
different rules, to extract datasets used in training their models.
It’s worth mentioning that our best-performing model
outperforms the baseline model of Madhfar and Qamar, which
is a deep BiLSTM RNN. DER and WER values reported for
their baseline model are 2.24% and 8.74%, respectively.

It can be observed that our base model achieves results that
are comparative to more complex models such as the CBHG
model proposed by Madhfar and Qamar. This shows that
training using a large clean dataset with high diacritization to

letter rate provides competitive diacritization accuracy.
Training more-sophisticated models using such a dataset would
certainly provide even better results. Although this work
involves experimentations using a basic BiLSTM RNN, it
generates cleaned corpora with incremental sizes that can be
used to experiment with several other models. Moreover, it
shows that state-of-the-art error rates could be achieved when
training using large clean corpora.

VI. CONCLUSION

Automating diacritization of Arabic texts is a crucial
operation for many Arabic NLP applications. In this paper, we
have conducted several experiments to study the effect of
changing the training data size on performance. Our work
included generating several cleaned subsets of the Tashkeela
corpora with incremental size in terms of number of sequences.
Our largest subset, which consists of 543,364 sequences, can
be used for training other models and comparing them, such as
the model used by Madhfar and Qamar [26]. Our baseline
model is a deep LSTM bidirectional RNN. We evaluated the
performance of our baseline model during training using each
of the generated corpora by monitoring the validation loss and
accuracy using the validation set. We tested the diacritization
accuracy of the model after being trained using each corpus by
finding its DER and WER values when diacritizing the 2,500-
sequence testing set.

Our experiments indicate that performance of the trained
model improves as training set size increases. However,
improvement in DER and WER values decreases as the
number of sequences increases. Best achieved DER and WER
values are 1.45% and 3.89%, respectively, using a training
dataset size of 400,000 sequences (about 17 million words).
Our WER value is the best when compared with other state-of-
the-art results. In order to further improve the performance, we
aim to experiment with other proposed models and to develop
a loss function that considers unharmful differences between
the output and target sequences when training is performed.

ACKNOWLEDGMENT

This work was supported by computing time granted on the
Cyclone supercomputer of the High Performance Computing
Facility of The Cyprus Institute.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 8, 2021

286 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] Farghaly, and K. Shaalan, “Arabic natural language processing:
challenges and solutions,” ACM Transaction on Asian Language
Information Processing, vol. 8, no. 4, pp. 1–22, Dec. 2009.

[2] N. Y. Habash, “Introduction to Arabic natural language processing,” in
Synthesis Lectures on Human Language Technologies. Morgan and
Claypool Publishers, 2010.

[3] N. Habash and O. Rambow, “Arabic diacritization through full
morphological tagging,” in Conference on North American Chapter of
the Association for Computational Linguistics, Rochester, New York,
USA, 2007, pp. 53-56.

[4] A. Fadel, I. Tuffaha, B. Al-Jawarneh and M. Al-Ayyoub, “Arabic text
diacritization using deep neural networks,” 2019 2nd International
Conference on Computer Applications & Information Security
(ICCAIS), Riyadh, Saudi Arabia, 2019, pp. 1-7, doi:
10.1109/CAIS.2019.8769512.

[5] Y. El-Imam, “Phonetization of Arabic: rules and algorithms,” Computer
Speech and Language, vol. 18, no. 4, pp. 339–373, Oct. 2004.

[6] K. Shaalan, “Rule-based approach in Arabic natural language
processing,” International Journal on Information and Communication
Technologies (IJICT), vol. 3, no. 3, Serial Publications, pp. 11–19, 2010.

[7] A. M. Azmi and R. S. Almajed, “A survey of automatic Arabic
diacritization techniques,” Natural Language Engineering, vol. 21, no. 3,
pp. 477-495, 2013, doi:10.1017/S1351324913000284.

[8] Y. Gal, “An HMM approach to vowel restoration in Arabic and
Hebrew,” In Proceedings of the ACL-02 Workshop on Computational
Approach to Semitic Languages (SEMITIC ‘02), Philadelphia,
Pennsylvania, USA, 2002, pp. 27-33,
doi.org/10.3115/1118637.1118641.

[9] E. Elshafei, H. Al-Muhtaseb, and M. Alghamdi, “Statistical methods for
automatic diacritization of Arabic text,” In Proceedings of Saudi 18th
National Computer Conference (NCC18), Riyadh, Saudi Arabia, 2006,
pp. 301-306.

[10] Y. Hifny, “Smoothing techniques for Arabic diacritics restoration,” In
Proceedings of the 12th Conference on Language Engineering
(ESOLEC ‘012), Cairo, Egypt, 2012, pp. 6-12.

[11] R. Nelken, and S. Shieber, “Arabic diacritization using weighted finite-
state transducers,” In Proceedings of the ACL Workshop on
Computational Approaches to Semitic Languages (SEMITIC ’05), Ann
Arbor, MI, 2005, pp. 79–86.

[12] A. S. Azim, X. Wang, and K. C. Sim, “A Weighted Combination of
Speech with Text-Based Models for Arabic Diacritization,” In 13th
Annual Conference of International Speech Communication
Association, Portland, OR, USA, 2012, pp. 2334-2337.

[13] D. Vergyri and K. Kirchhoff, “Automatic Diacritization of Arabic for
Acoustic Modelling in Speech Recognition,” In Workshop on
Computational Approaches to Arabic Script-based Languages, Geneva,
Switzerland, 2004, pp. 66-73.

[14] S. Ananthakrishnan, S. Narayanan, and S. Bangalore, “Automatic
diacritization of Arabic transcripts for automatic speech recognition,” In
Proceedings of the International Conference on Natural Language
Processing (ICON-05), Kanpur, India, 2005,

[15] I. Zitouni, J. S. Sorensen, and R. Sarikaya, “Maximum entropy based
restoration of Arabic diacritics,” In 21st International Conference on
Computational Linguistics, Sydney, Australia, 2006, pp. 577-584.

[16] K. Shaalan, H. Abo Bakr, and I. Ziedan, “A hybrid approach for
building Arabic diacritizer,” In Proceedings of EACL 2009 Workshop
on Computational Approaches to Semitic Language, Morristown, NJ,
2009, pp. 27–35.

[17] M. Rashwan, M. Al-Badrashiny, M. Attia, S. Abdou, and A. Rafea, “A
Stochastic Arabic diacritizer based on a hybrid of factorized and
unfactorized textual features,” IEEE Trans. Audio Speech Language
Proceedings, vol. 19, no. 1, pp. 166-175, Jan. 2011.

[18] A. Said, M. El-Sharqwi, A. Chalabi, E. Kamal, “A hybrid approach for
Arabic diacritization," In E. Mtai, F. Mezaine, M. Saraee, V.

Sugumaran, and S. Vadera (eds.) Natural Language Processing and
Information Systems, Lecture Notes in Computer Science, vol. 7934, pp.
53-64, Springer, 2013.

[19] M. Rashwan, A. Sallab, H. Raafat, and A. Rafea, “Deep learning
framework with confused sub-set resolution architecture for automatic
Arabic diacritization,” IEEE/ACM Transactions on Audio, Speech and
Language Processing (TASLP), vol. 23, no. 3, pp. 505-516, March 2015.

[20] G. A. Abandah, A. Graves, B. Al-Shagoor, A. Arabiyat, F. Jamour and
M. Al-Taee, “Automatic diacritization of Arabic text using recurrent
neural networks," International Journal on Document Analysis and
Recognition (IJDAR), vol. 18, no. 2, pp. 183-197, March 2015.

[21] S. Alquda, G. Abandah, and A. Arabiyat, “Investigating hybrid
approaches for Arabic text diacritization with recurrent neural
networks.” In Proceedings of the 2017 IEEE Jordan Conference on
Applied Electrical Engineering and Computing Technologies (AEECT),
Aqaba, Jordan, 2017.

[22] H. Mubarak, A. Abdelali, H. Sajjad, Y. Samih, and K. Darwish, “Highly
effective Arabic diacritization using sequence to sequence modeling,” In
Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language
Technologies, Minneapolis, Minnesota, USA, 2019, pp. 2390-2395.

[23] A. Fadel, I. Tuffaha, B. Al-Jawarneh, and M. Al-Ayyoub, “Neural
Arabic text diacritization: state of the art results and a novel approach
for machine translation,” in Proc. 6th Workshop Asian Transl.Hong
Kong: Association Computational Linguistics, 2019, pp. 215-225.

[24] K. Darwish, A. Abdelali, H. Mubarak, and M. Aldesouki, “Arabic
diacritic recovery using a feature-rich biLSTM model,” arXiv:
2002.01207v1, 2020.

[25] G. Abandah and A. Abdel-Karim, “Accurate and fast recurrent neural
network solution for the automatic diacritization of Arabic text,”
Jordanian Journal of Computers and Information Technology (JJCIT),
vol. 6, no. 2, pp. 103-121, 2020.

[26] M. Maamouri, A. Bies, T. Buckwalter, and W. Mekki, “The Penn
Arabic treebank: building a large-scale annotated Arabic corpus," In:
NEMLAR Conference on Arabic Language Resources and Tools, Cairo,
Egypt, 2004, pp. 102-19.

[27] M. A. H. Madhfar and A. M. Qamar, “Effective Deep Learning Models
for Automatic Diacritization of Arabic Text,” in IEEE Access, vol. 9,
pp. 273-288, 2021, doi: 10.1109/ACCESS.2020.3041676.

[28] A. Graves, “Sequence Transduction with Recurrent Neural Networks,”
In Proceedings of the 29th International Conference on Machine
Learning (ICML 2012), Edinburgh, Scotland, 2012, arXiv:
1211.3711v1.

[29] I. Sutskever, O. Vinyals, Q. V. LE, “Sequence to Sequence Learning
with Neural Networks,” In Advances in Neural Information Processing
Systems (NIPS), Montreal, Canada, 2014, pp. 3104-3112.

[30] A. Geron, “Recurrent neural networks,” in Hands-On Machine Learning
with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to
Build Intelligent Systems. USA: O’Reilly, 2017.

[31] K. Cho, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio,
“Learning phase representations using RNN encoder-decoder for
statistical machine translation," arXiv: 1406.1078v3, 2014.

[32] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[33] M. Schuster, and K. K. Paliwal, “Bidirectional Recurrent Neural
Networks,” IEEE Transactions on Signal Processing, vol. 45, no. 11, pp.
2673-2681, 1997.

[34] HPC Resources - High Performance Computing Facility (cyi.ac.cy),
accessed July 2, 2021.

[35] T. Zerrouki and A. Balla, “Tashkeela: Novel corpus of Arabic vocalized
texts, data for auto-diacritization systems,'” Data Brief, vol. 11, pp. 147-
151, Apr. 2017.

[36] Google, "TensorFlow," Available: https://www.tensorflow.org/,
accessed July 3, 2021.

