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Abstract—The most significant limitation of stand-alone 
microgrid systems is the challenge of meeting unexpected 
additional demands. If demand exceeds the capacity of a stand-
alone system, the system may be unable to satisfy demand. This 
issue is alleviated in grid-connected technology since the utility 
system will provide more power if it is demanded. As a result, 
load scheduling is an integral element of the demand response of 
a standalone system. There are two components to this problem. 
If the capacity of a battery-supported power system is restricted, 
for the period of time that the source is available, it will not be 
able to meet the entire demand. Appropriately the demand is 
dispersed across a period of time until the next charge becomes 
available. Some demands may be disregarded in order to 
accomplish peak load trimming or if the system is incapable of 
meeting demand without compromising other important 
technical and consumer objectives. This is a challenging 
assignment. This article aims to develop an Adaptive Demand 
Response Management System (ADRMS) capable of load 
scheduling and load shedding using an interwoven 
multidimensional Bayesian inference supported by multiple 
mathematical models. A two-stage hardware architecture is 
being developed, with the first hardware measuring demand and 
source capacity before sending the data to the second hardware 
via LPWAN for mathematical analysis. In the first phase, two 
approaches are used to forecast demand:  Gaussian Naive Bayes 
Model (GNBM) and Bayesian Structural Time Series analysis. 
GNBM is rapid but fails to properly forecast the output when 
there is zero frequency error whereas BSTS can offer more 
precise results than GNBM but is slower.  Hence two approaches 
are employed in tandem. The next stage is to assign demand 
source integration. This is accomplished using Bayesian 
Reinforcement Learning (BRL), which is based on a number of 
incentives, including anomaly, cost factors, usefulness, reliability, 
and size. All Bayesian models are subjected to much of the 
common Bayes rule, resulting in the formulation of a blended 
polymorphism model that reduces computing time and memory 
allocation, and improves processing reliability. The Isolation 
Forest (IF) method is used to identify and avoid vulnerable loads 
by determining demand anomalies. The last step employs a 
Dynamic Preemptive Priority Round Robin (DPPRR) algorithm 
for preemptive priority based load scheduling based on 
forecasted data to allocate the next loads to be added. 

Keywords—Adaptive control; Bayesian; demand response; 
energy management system; load scheduling 

I. INTRODUCTION 

A. Background 
Increased Solar Photovoltaic Generation System (SPVGS) 

installations have enabled many residential, commercial, and 
industrial facilities to operate as stand-alone microgrids [1][2]. 
In such systems, SPVGS will deliver energy to demand 
throughout the day, with a portion of it being stored in battery 
systems [3]. When solar energy is in short supply, especially at 
night, the stored energy from the Battery Energy Storage 
System (BESS) is used to satisfy demand [4]. Because of 
limited power capacity, demand response management is a key 
challenge in standalone solar-powered battery systems [5]. If 
demand rises in a grid-connected system, additional power can 
be pulled from the utility grid [6]. However, the capacity of the 
standalone system is constrained [7]. If the load exceeds supply 
limit, the system will have to drop certain loads in order to 
maintain the demand-supply balance [8]. The watt hour 
capacity of a BESS limits the amount of power it can supply 
[9]. Consequently, if several loads are connected and the total 
watt hour demand exceeds the watt hour capacity of the entire 
storage system, some of the loads must be bypassed. The BESS 
is charged from the additional supply from the SPVGS [10]. As 
a result, if the load is close enough to the SPVGS supply, the 
BESS will be drained because there will not be enough power 
to charge it. A portion of the load is evacuated in these 
circumstances to free up energy to charge the BESS [11]. It is a 
significant challenge to develop demand response models that 
satisfy all of the above characteristics while remaining 
efficient, cost-effective, and consumer-friendly [12]. 
Thereupon, numerous researches on load scheduling and 
intelligent demand management for stand-alone systems are 
now being undertaken. 

B. Literature Review 
Sharda et.al. investigate the overview, problems, and 

potential of Demand Management (DM) in standalone systems 
[13]. They also address real-world problems encountered while 
implementing DM with load scheduling for home energy 
management systems. Lu, Xinhui, et. al. investigated supply 
and demand side optimal load scheduling in a smart grid 
system, with an emphasis on economic, social, and 
environmental benefits for all market participants [14]. 
O'Shaughnessy et. al. looked into the end-user economics of 
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BESS and DM that boost the value of SPVGS by regulating 
and temporally altering their output [15]. The preceding papers 
offer an overview of the factors that go into load scheduling for 
stand-alone systems. The topologies of reconfigurable battery 
management systems are investigated by Viswanathan et. al., 
with an emphasis on load interface protocols and load 
scheduling optimization approaches [16]. Sanjari et. al. 
developed an optimum control approach for battery-integrated 
energy systems that uses analytical rather than numerical 
approximation methods to account for load demand 
unpredictability [17]. Md Masud et. al. developed a model for a 
hybrid gas turbine  generator, SPVGS, and Battery Energy 
Storage System (BESS) for isolated microgrids [18]. Jonathan 
T. Lee et.al. experimented with non-intrusive load control in 
energy-constrained microgrids under unpredictable load 
conditions [19]. To address load management concerns, the 
aforementioned articles use a wide range of methods, and 
many of the solutions use time-based optimization 
methodologies. Traditional time series analysis techniques use 
historical data to forecast model parameters. Because the loads 
are only coupled for a short period of time, in most 
circumstances, the load gradients comprise zero values across 
the curve. Standard time series approaches for load forecasting 
are contentious due to the difficulty in distinguishing 
seasonality or stationarity in the zero gradient curve. This 
problem can be solved using a structural model, in which the 
parameters are expressed as the composite of individual 
parameter contributions, or probabilistic prediction procedures. 
Bruce G. Marcot et. al., provide a great deal of information on 
recent advances in Bayesian network modeling and integration 
of Bayesian rule engine for series analysis [20]. Steven L et. al. 
demonstrate how to integrate a structural time series model for 
the target series with a regression component that takes real-
time search query data inputs into account [21]. The 
application of a spike-and-slab prior on the regression 
coefficients results in sparsity, which significantly reduces the 
size of the regression problem. As a result, in the event of 
uncertainty, Bayesian modeling will be an appropriate 
approach for load forecasting. 

C. Objectives 
The ideal goal of a Demand Response Management System 

(DRMS) is to ensure that the load receives consistent 
electricity. However, if the sources' capacity is limited, 
especially in a freestanding grid, a portion of the load is 
dropped or rescheduled over time to satisfy the demand via 
peak load cutting. An intelligent DRMS should be capable of 
load scheduling and load shedding in order to achieve 
maximum power efficiency, optimum economic gain, and user 
satisfaction. In order to perform load scheduling and shedding, 
the system should be able to distinguish between loads and 
determine which loads should be maintained or discarded. The 
DRMS should have the potential to ascertain when and for how 
long each load should be scheduled and shed. This is a difficult 
undertaking that might be accomplished utilizing a variety of 
mathematical methods. Because of the non-uniform zero 

gradients in the load curve, utilizing time spectrum analysis 
alone is less successful. As a consequence, a new hybrid 
mathematical model for analysis that combines the properties 
of time series analysis, spectrum analysis, and probabilistic 
regression is to be established. 

D. Contributions 
The objective of this project is to establish a multi-layer 

DRMS hardware that uses a two-stage hardware architecture 
for energy monitoring and decision making. An edge controller 
transforms a Wi-Fi module into an energy monitoring circuit 
that monitors demand and source capacity and delivers the data 
to a Centralized Data Processing Unit (CDPU). CDPU will 
save this information in a database and analyses it using a 
blend of mathematical models. To begin with, the Isolation 
Forest (IF) algorithm will be utilized to evaluate anomalies in 
load data. This data is used to construct a Bayesian prior. A 
two-stage time-series analysis is employed in the following 
step, using Gaussian Naive Bayes Model (GNBM) and 
Bayesian Structural Time Series (BSTS). One of the 
weaknesses of Naive-Bayes is frequency error, which causes 
the probability estimate to be zero if there are null-gradients in 
load data. BSTS can address this issue and is more accurate 
than GNBM, but it is also slower. Therefore, GNBM is 
frequently used for load forecasting, with BSTS employed in 
tandem if there is a zero frequency error or a significant 
RMSE. A Bayesian Reinforcement Learning (BRL) algorithm 
is utilized to identify the optimal load-source assignment 
combination based on the projected values. In a preemptive 
priority assessments approach, a Round Robin algorithm 
supplemented by a Dynamic Programming model is used to 
select the best sources from all available sources and schedule 
loads. 

E. Organization 
The paper is split into three sections. The first part is an 

introduction that examines the context of the problem, 
conducts a thorough literature review, and formulates the 
problem. The described problem is used to establish the goals 
of the project. The following session will go over the strategies 
used to solve this problem in detail. The results and discussion 
section examine the implementation of the project in depth, 
and are found in the last section. The result and discussion 
session is split into two parts: the first looks at the data, and the 
second looks at the implementation approach and 
consequences. 

II. ADAPTIVE DEMAND RESPONSE MANAGEMENT SYSTEM 
(ADRMS) 

As illustrated in Fig. 1, this project develops a two-stage 
hardware architecture for a multilayer Adaptive Demand 
Response Management System (ADRMS). A switching relay 
circuit couples the loads to the battery, allowing any load or 
source to be added or disengaged independently at any time. 
The system's operation is structured down into different phases, 
as follows. 
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Fig. 1. Architecture of Adaptive Demand Response Management System. 

Stage 1 Energy monitoring and communication: Energy 
monitoring module is composed of an Atmega328 
microprocessor, a voltage measuring circuit based on a 
potential divider, an esp8266 module and an ACS712 current 
sensor. The energy monitoring circuit evaluates the power 
consumption of each load and the SOC of each battery using 
measured voltage and current. With the aid of a Wi-Fi module, 
this data is transferred to the CDPU. The CDPU is a Broadcom 
BCM2711 quad-core Cortex-A72 (ARM v8) 64-bit SoC with 
2GB RAM and 1.5GHz single board computer. Hardware in a 
Loop model is used to finish the execution of operational parts. 

Stage II Data storage: The data is initially saved in a 
PostgreSQL database using the Node-RED development tool 
as it reaches the CDPU. This approach is useful for analyzing 
real-time data. 

Stage III Data Pre-processing: A large volume of data 
would be captured because the system will record data every 
millisecond. Analyzing all of this raw data would result in 
longer computational costs. For faster processing, the data is 
resampled from milliseconds to second levels. Then the data is 
preprocessed which involves a number of steps, including 
replacing missing data with local standard deviations, 
normalizing the data, and converting it to categorical variables. 

Stage IV Anomaly with Isolation Forest (IF): Anomalies in 
the load curve indicate a fault or maybe a quantitative 
inaccuracy. Proper spotting anomalies in the load curve might 
help decision-making, for identifying faults and taking 
remedial action during forecasting. Because historical data aids 
in distinguishing anomaly from normal deviation, anomaly 
calculation is left out of the Bayesian engine. An unsupervised 
outlier time series analysis based on IF is used to discover 
anomalies. IF uses clusters of isolation trees for a given data 
collection, with data higher than the Euler-Mascheroni constant 
being deemed anomalies. When load consumption is 
represented as PL = {P1,.., Pn} , where PLF and PRR is the load 
to right and left element of tree, Pi consumption at ith load, th is 
the threshold, the isolation tree is built again every time a new 
value is added using the equation 1 and 2. Isolation forest 
provides the added benefit of allowing points that cannot be 
isolated to be classified as normal or abnormal to be easily 
detected. 

𝑃LF=PϵP𝑛 ∨ 𝑃𝑖<tℎ              (1) 

𝑃RR=PϵP𝑛 ∨ 𝑃𝑖⩽tℎ             (2) 

Stage V Bayesian inference and Knowledge base: The 
following step is to create a Bayes interference engine and 

knowledge base. In the comprehensive mathematical model, 
three distinct Bayesian oriented mathematical strategies are 
employed for three different applications: GNBM, BSTS, and 
BRL. Because the Bayes theorem governs all methods, each 
model undergoes numerous equivalent joint phases and 
processes during the operation. A polymorphism model 
produces a hybrid object engine that works as a centralized 
interference rather than adding different variables, memory 
assessments, and processes for each activity. Polymorphic 
objects are called when a common set of rules is followed, 
which reduces the computation cost. Independent mathematical 
procedures are employed in the final stages of computations. 
The Bayes theorem is represented as Equation 3. P(PL) is the 
probability of next load data and PH is the prior probability. 

𝑃(𝑃𝐿 ∨ 𝑃𝐻) = 𝑃(𝑃𝐻∨𝑃𝐿)𝑃(𝑃𝐿)
𝑃(𝑃𝐻)

            (3) 

Stage VI Gaussian Naive Bayes Model (GNBM): The load 
is then scheduled relying on available source capacity. As 
previously stated, scheduling the load based on its temporal 
behavior is essential for enhanced power quality, longer load 
longevity, higher economic sustainability, and user satisfaction. 
In the following phase, load is forecasted using GNBM and 
Bayesian Structural Time Series Analysis (BSTS). The load is 
forecasted in the first stage using GNBM. The probability of 
the load variation is predicted using equation 4. 

𝑃(𝑃𝐿 ∨ 𝑃𝐻=X) = � 1
�2∗𝛱∗𝜎2

� 𝑒
−�𝑃𝐿−𝜇𝑥�

2

�2∗𝜎2�            (4) 

Stage VII Bayesian Structural Time Series: BSTS is a time 
series interpreter that uses Bayesian criteria to choose output 
parameters. BSTS is based on Bayesian model averaging 
ensemble learning, which uses an average number of models to 
do stepwise regression forecasting, with the input weighting 
the posterior probability of each model. If Pt is the time series 
to be predicted, whereas αt  denotes the inherent features of the 
load curve, Kt is a vector of coefficients for state variables, Ht 
is the variance with normal distribution error term with a mean 
of zero ɛt ,  equation 5 represents time series calculations. 

𝑃𝑡=K𝑡
𝑇𝛼𝑡+ϵ𝑡 → forϵ𝑡 ∈ 𝑁�0,H𝑡�            (5) 

Now the value of α is updated with equation 6 where block 
diagonal transitions matrix Tt , the covariance matrix Qt of the 
rectangle block Rt and each component contributes to the 
block with η t. 

𝛼t+1=T𝑡𝛼𝑡+R𝑡𝜂𝑡 → forη𝑡 ∈ 𝑁�0,Q𝑡�           (6) 
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Stage VIII Bayesian Reinforcement Learning (BRL): Once 
the load is predicted and anomalies are handled, the following 
step is to allocate loads to different sources depending on the 
forecast value.  The optimum loads for the ideal sources may 
be found using BRL with maximum exploitation of sources. 
Thompson of Sampling is a strategy to explore the progressive 
rewards based on the rule of Bayesian control and maximize 
them. The cumulative reward (R) of the load (P) is decided 
based on Gaussian Bayesian reward function (E) for every 
individual reward function μ for two consecutive stages is 
shown in equation 7. The system always tries to maximize the 
reward in a greedy manner. If the source capacity exceeds the 
loads, a dynamic program is integrated with BRL to locate the 
best resources. 

𝑅𝑡 = ∑ 𝐸𝑡𝑛
t=t1 (𝑃𝑡𝐼 − 𝑃𝑡) → max(𝜇𝑡)            (7) 

Stage IX Dynamic Preemptive Priority Round Robin 
(DPPRR): Following the identification of the most relevant 
combination using BRL, the next step is to include sources and 
assign loads to them. This issue is divided into two parts: the 
first is the source selection using dynamic programming, and 
the second is the source assignment using preemptive priority 
scheduling using Round Robin. To conserve energy, sources 
are only used when absolutely necessary. As a consequence, 
dynamic programming is utilized to choose the best sources 
from all available sources. Now depending on the load 
demand, sources are employed in a certain sequence in a time 
spectrum allocation using preemptive priority scheduling based 
Round Robin technique. 

III. RESULTS AND ANALYSIS 
As shown in Table I, 49 sources were linked as a DC 

microgrid with a battery capacity of 20 KWH and an SPVGS 
of 1200 W in order to realize the idea. Table II shows the 27 
distinct loads that were investigated with a maximum load 
capacity of 5.7 KW. In a laboratory setting, the entire 
technique is implemented as HIL. Due to the typical 
operational characteristics of the utilities grid, no automated 
switching is done, thus the decision making are determined 
using all developed models with the last step in manual 
switching mode. 

The initial stage of execution is the assessment of source 
capacity and loads. At first, all batteries are charged to their 
maximum capacity. The next stage is to evaluate how much 
energy each load consumes. The load consumption is captured 
every millisecond and resampled to a scale of seconds by 
estimating the average usage each minute. The load dataset is 
divided into two sections: a historical segment and an 
instantaneous component. Instantaneous data is taken as test 
data, while historical data is used to train the model. When a 
new measurement appears, the previous instantaneous data 
becomes historical data. A day's worth of average load 
consumption data per minute is indicated in the Fig. 2. This 
data is used for training the model. As a result, at each point on 
the load curve, the data on the left is utilized for prior training 
and the data on the right is used for posterior learning. 

Once the load statistics and source capacity have been 
identified, the following stage is to identify any anomalies. The 
system's anomalies are discovered for each load utilizing IF, 

and each load is graded based on the anomaly. In the last stage, 
this information is used as a reward during reinforcement 
learning as well as in priority-based queuing. Fig. 3 illustrates 
an anomaly over the whole training data set. Table III depicts 
an anomaly for a sample subset of data. Any count that is less 
than zero is deemed an anomaly in the table. It may be 
identified that even if the rate of change exceeds a particular 
level, it is not always deemed an anomaly because an anomaly 
is a function of time-dependent deviations. As such, an 
anomaly is defined as anything that deviates from the 
confidence interval, which may fluctuate over time owing to 
load variations. 

TABLE I. SOURCE CAPACITY, TYPE AND COUNT 

No Type Capacity Number Total 
1 Li-Ion 100 WH 20 2000 WH 
2 Li-Ion 250 WH 6 1500 WH 
3 Li-Ion 500 WH 5 2500 WH 
4 Lead Acid 1000 WH 10 10000 WH 
5 Lead Acid 2000 WH 2 4000 WH 
6 SPVGS 200 W 6 1200 W 

TABLE II. LOADS FOR REALIZATION 

No Load (W) Type Number Total 
1 50 Fixed 5 250 
2 100 Fixed 5 500 
3 200 Fixed 5 1000 
4 300 Variable 10 3000 
5 500 Variable 2 1000 

 
Fig. 2. Load Data for 24 Hours to be Utilized for Training. 

TABLE III. ANOMALY OF LOAD DATA FOR 12 MINUTES 

Time Load (Watts) Anomaly 
1 18.94 No 
2 18.95 No 
3 18.83 No 
4 18.89 No 
5 18.88 No 
6 18.94 No 
7 21.09 No 
8 21.03 Yes 
9 20.89 Yes 
10 20.95 Yes 
11 20.76 Yes 
12 20.80 Yes 
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Fig. 3. Anomaly of Load Data for 24 Hours. 

Furthermore, a time series analysis of the load has been 
presented. As previously indicated, in the short term, GNBM is 
used to forecast load. Two instances of GNBM based load 
forecasting are shown in Fig. 4 and 5. The first scenario 
illustrates a more accurate system, whereas the second case 
depicts a system with a greater RMSE. This is primarily due to 
the fact that GNBM is frequency dependent. In such 
circumstances, BSTS will be used. 

BSTS is used to forecast the load with more precision, 
although it takes more computational cost. Fig. 6 demonstrates 
the load forecasting of the test data using BSTS, which is based 
on consecutive train-test splits. Now, each load is awarded five 
reward points based on anomaly, economic criteria, need, 
timing and magnitude, depending on the forecasted data. Based 
on these data, BRL is used to estimate the time allocation for 
each load. Table IV shows a sample of reward data for four 
different loads, along with the output selection time period in 
the last column. 

 
Fig. 4. GNBM based Load Forecasting. 

 
Fig. 5. GNBM based Load Forecasting – Gradient Error. 

TABLE IV. REWARD BASED BAYESIAN REINFORCEMENT LEARNING 

 R1 R2 R3 R4 R5 Time 
(Hours) 

L1 2.7 6.7 0.8 2.8 1.3 3 
L2 5.7 6.5 5 1.5 1.5 0 
L3 7.4 2.5 2.6 4.2 1.8 2 
L4 7.6 4.2 6.1 2.8 5.1 1 

 
Fig. 6. BSTS based Load Forecasting. 

The next step is to add sources and allocate loads to them. 
Dynamic programming is used to select the best sources from a 
large number of options. Using a Priority-based Round Robin 
method, sources are now employed in a certain order in a time 
spectrum allocation depending on load demand. The sole 
criterion employed to select sources is State of Capacity. 
Table V lists all accessible sources at instant and their 
capacities. Only 7 of the 10 sources with a total capacity of 477 
Watts are used to satisfy a load of 331 Watts. The DPPRR 
based time spectrum allocation of loads is shown in Table VI. 

TABLE V. SOURCE SELECTION BASED ON DYNAMIC PROGRAMMING 

Source 
(Watts) 81 66 34 16 42 27 33 95 51 32 

Total Capacity = 477 W  ,  Load = 331 W 
Selected Source capacities  =  66, 34,16,42,27,95,51  W 

TABLE VI. PREEMPTIVE  PRIORITY ROUND ROBIN SCHEDULING 

Load Battery 
Assigned 
Period 
(Hours) 

Waiting time 
(Hours) 

Execution 
Time 

(Hours) 

Load 1 1 5 0 5 

Load 2 1 3 5 8 

Load 3 2 4 8 12 

Load 4 2 7 12 19 

Load 5 3 2 19 21 

IV. CONCLUSION 
This work developed an Adaptive Demand Response 

Management System (ADRMS) capable of load scheduling 
and load shedding using an interwoven multidimensional 
Bayesian inference backed by various mathematical models. 
The system was designed with a two-stage hardware 
architecture, with the first stage measuring demand and source 
capacity before sending the data to the second stage CDPU 
through LPWAN for mathematical analysis. Gaussian Naive 
Bayes Model (GNBM) and Bayesian Structural Time Series 
Analysis were employed to forecast demand. To ensure 
maximum precision, the two methods were used in 
conjunction. Bayesian Reinforcement Learning (BRL) was 
used to integrate demand sources based on a variety of 
incentives, including anomalies, cost considerations, 
usefulness, dependability, and size. A blended polymorphism 
model was developed, which decreased computation time and 
memory allocation while also improving operational 
efficiency. The Isolation Forest (IF) approach was used to 
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identify and avoid vulnerable loads by recognizing demand 
anomalies. A Dynamic Programming integrated preemptive 
priority based Round Robin technique was used to allocate the 
next loads to be added. 
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