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Abstract—Developing an intelligent pattern recognition model 
for electronic markets has been a vital research direction in the 
field. Ongoing research continues for intelligent learning 
algorithms capable of recognizing and classifying price patterns 
and hence providing investors and market analysts with better 
insights into price time-series. In this paper, an adaptive 
intelligent Directional Change (DC) pattern recognition model 
with Reinforcement Learning (RL) is proposed, so called DCRL 
model. Compared with traditional analytical approaches that 
uses fixed time interval and specified features of the market, the 
DCRL is an alternative intelligent approach that samples price 
time-series using an event-based time interval and RL. In this 
model, the environment’s behavior is incorporated into the RL 
process to automate the identification of directional price 
changes. The DCRL learns the price time-series representation 
by adaptively selecting different price features depending on the 
current state. DCRL is evaluated using Saudi stock market data 
with different price trends. A series of analyses demonstrate the 
effective analytical performance in detecting price changes and 
the extensive applicability of the DCRL model. 

Keywords—Machine learning; reinforcement learning; 
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I. INTRODUCTION 
Pattern recognition in financial markets has been widely 

studied in the fields of finance, economics, computer science, 
engineering, modern physics, and mathematics 
[30,31,37,38,48,51]. Furthermore, artificial intelligence and 
Machine Learning (ML) have been widely used for financial 
market forecasting, pattern recognition, and event detection to 
provide decision support in various financial market segments 
[19,28,32,40,42]. 

In the financial literature, most developed ML algorithms 
and methods are based on physical time, for which prices are 
sampled at fixed time intervals (such as daily, hourly, etc.) 
[26,27]. To avoid the discontinuous nature of the price time-
series, the Directional Change (DC) event approach provides 
an alternative method for sampling time-series data [6,27]. A 
price point is sampled when a significant price change in the 
price trend is observed. Therefore, the DC event approach 
represents a time-series as downtrend or uptrend events based 
on the magnitude of price changes. Several studies have been 
developed based on the DC event approach for pattern 
recognition [26], profiling price time-series [10,46], regime 
change detection [47], event detection [2], time-series analysis 

[7,33], forecasting models [15,16], and designing trading 
strategies [3,4,8-14, 29,50]. 

Reinforcement Learning (RL) is a learning method used 
for sequential decision-making problems [44]. RL is one of 
the three basic ML methods, along with supervised and 
unsupervised learning. In RL, the learning agent interacts and 
adapts from environmental interactions by exploitation or 
exploration. RL achieves performance improvements through 
continuous evaluations of and interactions with the 
environment [45]. RL has the advantages of self-learning and 
adapting to the environment towards decision making but 
lacks, to a certain extent, the environment’s awareness 
capability. Despite the effectiveness of the RL approach, event 
detection and pattern recognition remain challenging in real-
world time-series analysis for three reasons. First, using a 
physical time interval makes the price time-series 
discontinuous, given that prices are transacted at irregular 
times. Second, RL can be designed with a complex structure 
and a large number of parameters, which can interrupt the 
analysis. Lastly, the learning process of the dynamic 
continuous market environment’s state representation and the 
associated learning strategy affect the RL model’s interruption 
and converge. 

In this work, an intelligent intrinsic time-driven model for 
automatic event detection in a price time-series - the 
Directional Change Reinforcement Learning (DCRL) - is 
developed. The DCRL is presented in two sequential phases: 
the RL phase and the DC event analysis phase. In particular, 
in the RL phase, the RL algorithm learns the environmental 
states and features to find the most applicable dynamic 
threshold for the DC event analysis. The aim is to find the best 
dynamic threshold definition method using the RL agent, 
which is subsequently used for DC event detection. We used 
the dynamic threshold introduced in [2], which replaces the 
DC given fixed threshold. For the DC event analysis phase, 
the generated threshold from the former phase is used to detect 
DC events in the price time-series. The proposed model is 
evaluated using the Saudi stock market (Tadawul). Stocks 
with different price trends and series patterns are selected to 
evaluate the model’s performance. The experimental results 
demonstrate that the model is adaptable to various market 
conditions and might be used for designing algorithmic 
trading. 
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We are interested in developing an intelligent event 
detection (i.e. significant price movement) algorithm from a 
price time-series. This algorithm will allow investors or even 
artificial software agents to detect price movements in the 
market to capture investment opportunities. Hence, our 
motivation is that the DCRL can provide decision support 
methods for analysts and investors and can facilitate the 
automation of event detection for sampling price time-series. 
Therefore, a novel method for financial event detection and 
time-series sampling has been proposed. 

The remainder of this paper is organized as follows. 
Section Ⅱ reviews several related works in the financial 
literature. Section Ⅲ introduces the proposed DCRL model. 
Section Ⅳ describes the datasets, presents the empirical 
evidence of learning and identification of events, and 
evaluates the effectiveness and robustness of the DCRL. The 
last section concludes the paper and presents some future 
directions. 

II. RELATED WORK 
In the financial literature, several studies including but not 

limited to the following have been using the RL method for 
financial signal representation [32], designing trading 
strategies and algorithmic trading [17, 20, 32, 41], portfolio 
management [5], optimizing trade execution [39], trading 
systems [49], Foreign Exchange (FX) asset allocations [22], 
cryptocurrency market trading [18], and changes in market 
regimes [5]. 

Supervised learning methods have been used to forecast 
stock prices and the direction of price trend movements [21]. 
Several studies used deep ML methods to forecast a stock 
price using historical numerical and textual data [1,23]. The 
authors in [23] used deep learning for event-driven stock 
predictions. The events are extracted from news text and 
formulated as dense vectors that are trained using a neural 
tensor network. The deep convolutional neural network is 
used to model the events’ impact on price time-series 
movements. The results showed that the proposed model 
could obtain an approximate 6% improvement in S&P 500 
index forecasting. Nonetheless, the proposed method is 
challenging if attempting to achieve adaptable learning and 
simultaneously lacks the quick response to new dynamic 
market conditions given the high cost of retraining [32]. Thus, 
when designing event detection algorithms and algorithmic 
trading, the inherent characteristics and evolution of market 
fundamentals should be considered. 

The RL method might be an alternative solution for event 
detection and algorithmic trading, given that it is more 
applicable for continuous decision making in financial market 
trading [32]. Bertsimas and Lo in [17] examined the 
application of RL for trading large blocks of equity over a 
specific period to minimize the expected cost of executing 
trades. Their results demonstrated that the RL trading strategy 
saved between 25% and 40% in execution costs relative to the 
naïve strategy. Experimental results in [20,41,43] also show 
that the adaptive event detection mechanism and algorithmic 
trading with RL methods achieve more stable returns. The 
experimental results by [18] confirmed the effectiveness of 
deep RL methods on a dataset of one of the largest 

cryptocurrency markets in the world, achieving average daily 
returns of over 24%. 

Studies on algorithmic trading using the RL method can be 
categorized into two main groups: policy-based methods and 
value-based function methods. Work in [31] has designed an 
on-policy (policy-based) and an off-policy (Q-learning) 
discrete state and action RL agents for an individual 
retirement portfolio. Their study found that using the trading 
algorithm design results in the on-policy algorithm 
maintaining better evaluation and adaptation to the 
environment than Q-learning. Their study also found that the 
on-policy method’s drawback is that it continuously remains 
to explore in the environment even when the best solution is 
learned. The works in [22,36] has demonstrated that the 
benefit of the policy-based model is that it has better results 
than the value-based function model. 

The authors in [32] studied the representation of the stock 
market environmental state and developed a trading strategy 
using historical stock price and trading volume data. They 
developed a time-driven, feature-aware model jointly with a 
deep reinforcement learning model (TFJ-DRL) that had two 
parts - deep learning perception and RL decision making - to 
improve financial signal representation learning and, hence, 
decision making in algorithmic trading. The results showed 
that the TFJ-DRL model outperformed the state-of-the-art 
methods in the literature. A similar study by [24] introduced a 
decision support algorithm to filter trading signals based on 
RL and neural networks. The study aims to detect seasonality 
events of the basic strategy to improve the reward to risk 
ratios. 

Maringer and Ramtohul in [34,35] introduced a regime-
switching to the Recurrent RL (RRL), where regime-switching 
captures the different price trend movements over a time 
series. The results highlighted that the regime-switching RRL 
outperforms the traditional RRL when the price time series 
exhibits noticeably different regime characteristics. The RRL 
model in [36] is a policy-based model that offers the action of 
the previous time’s trading with the current environmental 
state to direct RL, hence, create a trading action. This model’s 
main obstacle is the direct input of all of the environmental 
features to the RL model without awareness and 
representation of the current environment’s status. The study 
by [25] combined features based on Japanese candlesticks, a 
technical analysis technique, with RRL to produce a high-
frequency algorithmic trading system for the E-mini S&P 500 
index futures market. The results demonstrated a significant 
increase in both return and Sharpe ratio compared to relevant 
benchmarks, suggesting the capability of RRL to detect events 
in a high-frequency equity index futures trading environment. 

Overall, the RL method has been recognized as being 
effective and efficient in forecasting asset prices in financial 
markets and, hence, make trading decisions. Previous studies 
used RL based on physical time, which is characterized by a 
fixed time interval, whereas the price time series is irregularly 
spaced in time. Therefore, to develop an adaptive RL 
algorithm for event detection, the DC event approach is used 
to represent and study the price time series. In this work, we 
use the RL to enhance the dynamic threshold definition 
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method presented in [2]. We want to improve the dynamic 
threshold definition method so that we can set the dynamic 
threshold without the need for an additional source of data 
(such as news). 

III. METHODOLOGY 
In this section, we introduce the DCRL model which aims 

to identify financial events from stock market price time series 
and, hence, represent periodic patterns of the price time series. 
First, the DC event approach which constructs a price time 
series of continuous DC events is described. Then, the process 
of defining the DC dynamic threshold is explained. Finally, 
the DCRL model is introduced as a dynamic adaptive process 
to select the optimal equation for the DC dynamic threshold. 
In other words, a DCRL model is developed to identify DC 
events in a price time series using the different dynamic 
threshold equations (actions). Therefore, the goal is to 
improve the reward function under different states. 

A. DC Event Approach 
Using the DC event approach, price time series data are 

sampled at irregular time intervals using a given size threshold 
(λ), which is defined by the observer (fixed value) and is 
typically expressed as a percentage [6]. Thus, the DC event 
approach transforms the discrete nature of the price time series 
into continuous DC events independent of the notion of fixed 
physical timescales. Under the DC event approach, the price 
time series is summarized into alternating uptrend and 
downtrend DC events. 

A DC event is identified as a confirmed price change that 
is larger than, or equal to, a predefined threshold (λ) [6]. A DC 
event can be either a downturn or an upturn DC event. The 
time interval between an upturn DC event and the next 
downturn DC event is called an upward run, whereas a 
downward run is the time interval between a downturn DC 
event and the next upturn DC event. During an upward run, 
the last high price (ph) is continuously updated to the 
maximum value between the current asset price p(t) and the 
last high price (ph). In a downward run, the last low price (pl) 
is continuously updated to the minimum value between the 
current market price p(t) and the last low price (pl) At the 
beginning of a data sequence, the last low price (p l) and last 
high price (ph) are set to the initial asset price p(t0) at time t0. 
An upturn DC event is detected during a downward run and, 
in particular, when the current asset price p(t) exceeds the last 
low price (p l) by a given threshold (λ); refer to Formula (1). In 
contrast, a downturn DC event is detected during an upward 
run when the current asset price p(t) is lower than the last high 
price (ph) by a given threshold (λ); refer to Formula (2). 

𝑝𝑡 ≥  𝑝𝑙 × (1 − λ)              (1) 

𝑝𝑡 ≤  𝑝ℎ × (1 − λ)              (2) 

The DC event approach captures the short-term dynamics 
of the price time series by detecting significant events and a 
clear picture of the time series behavior on the basis of the 
observer’s needs. Most importantly, this approach reduces the 
complexity of the financial market price time series, given the 
defined dataset of periodic price points to study and evaluate. 
The selected threshold value controls the magnitude of the DC 

price events in a time series. Therefore, choosing a substantial 
threshold results in fewer detected DC price events, whereas a 
small threshold maps a series of insignificant patterns. The 
authors in [6] described the core mechanism of the DC event 
approach to study the financial price time series. In this work, 
a price time series is formulated using the DC event approach. 
Given a size threshold (λ), the mission is to detect events at 
the DC confirmation point regardless of whether or not the 
direction of the price trend changes at a certain point. 

B. DC Dynamic Threshold 
In this section, we describe the dynamic threshold 

definition method which replaces the DC fixed given 
threshold value [2]. The dynamic threshold definition method 
is suitable for markets that operate during specific opening 
and closing times (such as stock markets). The dynamic 
threshold is a flexible value and brings with it the advantage 
of allowing the identification of price changes (i.e., DC 
events) of different magnitudes in continuously changing 
environments. 

In [2], significant price fluctuations were considered as an 
event occurrence indicator. Thus, the dynamic threshold 
definition method depends on the previous day’s price 
behavior (short-term price history). The daily dynamic 
threshold value can be set in three possible ways, choosing the 
most appropriate one was not straightforward. They depend on 
an alternative source of data (news outlets) to facilitate the 
definition of the dynamic threshold. A suitable dynamic 
threshold definition method can be selected depending on the 
investigated asset news and market conditions. In this work, 
the best method for defining the dynamic threshold value 
without an alternative source of data is determined using RL. 
Hence, an agent is developed to select the most effective 
dynamic threshold definition method (i.e., the one that detects 
DC events at the right time). 

Basically, the dynamic threshold can be set using one of 
the three equations (Eq. (3), Eq. (4), and Eq. (5)) as follow: 

DT_Overnight=Up/Downward_ROC+Overnight_ROC       (3) 

DT_PreviousDay=Up/Downward_ROC+ 
PreviousDay_ROC             (4) 

DT=Up/Downward_ROC+PreviousDay_ROC+  
Overnight_ROC              (5) 

DC dynamic threshold depends on the price Rate Of 
Change (ROC) between the DC ph/pl (refer to Section Ⅲ.A) 
and the high/low prices (depending on the examined trend) for 
the current day. In addition, it finds the price ROC for the 
previous day (between the previous day’s opening and closing 
prices), and the price ROC that occurred overnight (between 
the previous day’s closing price and the current day’s opening 
price). The dynamic threshold is defined by the sum of the 
aforementioned metrics, as shown in Eq. (5). However, in 
some circumstances in which something has happened the 
previous day or overnight, the shortened version of the 
dynamic threshold definition method (Eq. 3 or Eq. 4) is used 
to ensure a reduced threshold value that certainly increases the 
chance of identifying a DC event (either an upturn or 
downturn event). Also, to be mentioned is that if a defined 
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threshold value by Eq. (5) was found to be less than 0.01, then 
we use the previous day’s defined threshold instead. This 
approach is taken because we are almost certain that nothing 
has happened (experiencing a stable situation as no significant 
price changes occurred on the previous day or overnight), and 
an exceptionally low threshold value may detect a spurious or 
insignificant event. 

C. DCRL 
In this section, we introduce the DCRL model, which can 

identify financial events from a time series. The DCRL is 
based on the RL approach, which directs the dynamic 
thresholds definition method, and the DC approach, which is 
responsible for detecting the occurring DC events on the basis 
of the given threshold value from the RL phase. 

RL is a learning approach through which an intelligence 
algorithm represented by an agent is designed to learn from 
interactions with the environment. Therefore, RL mimics 
human learning and, hence, appears well suited to processing 
the price time series. The goal is to train the RL agent based 
on a sequence of interactions to learn an optimal policy from 
the interaction to maximize the total cumulative reward 
obtained. In this section, the RL approach’s key elements are 
introduced, and the approach is tailored to the goals of this 
study. 

RL can be generally categorized into two types: the policy-
based and value-based function methods [32]. Policy-based 
RL explicitly and directly builds a representation of a policy 
from the environment and, hence, creates continuous decisions 
from the policy. The established policy is stored in memory 
during the learning phase. The DCRL policy-based method is 
as follows: if the price ROC from the previous day or 
overnight is greater than a five-day price change moving 
average, then the first two equations (Eq. 3 or Eq. 4) from 
section Ⅲ.B are used; otherwise, Eq. (5) is used. 

The RL approach consists of the environment, agent, state, 
action, and reward. Considering discrete times t = 0, 1, 2, 3,…, 
at each time t, a RL agent receives some representations of a 
state in the environment, denoted by st∈S, where S is the set of 
all possible states. Based on the current state st and the 
previously obtained information, the agent takes 
action at∈A(st), where A(st) is the set of actions available in 
state st. The space of actions in DCRL consists of the three 
equations for defining the DC dynamic threshold, as described 
in Section 3.2. The RL agent chooses an action on the basis of 
its policy π t, which is a mapping from each state to the 
probabilities of deciding on each possible action. Therefore, π t 
(s) denotes the chosen action when St = s based on π t. At the 
next time point t+1, the agent receives a 
numerical reward from the environment, denoted by rt∈R, 
because of its action at and moves to a new state st +1. Based 
on the earned reward, the RL agent learns to adapt its actions 
on the basis of the market condition to maximize its future 
rewards. 

The DCRL agent interaction with its environment is 
depicted in Fig. 1. As an input, we have the price time series, 
and as an output, we get the optimal chosen action at (the best 
dynamic threshold definition method) and the assigned 

reward rt. The agent interaction with the environment is 
shown in the stage between input and output. Table I provides 
the set of all possible states in the environment and the set of 
actions presented for each state st, along with the associated 
rewards for each pair of state and action. In Table I, the DCRL 
approach takes the appropriate state-action policy π t (st, at), 
which indicates the expected reward rt for each possible 
action at. For this purpose, the DCRL agent starts with 
random initial values of π t (st, at) for st∈S and at∈A(st). The 
DCRL agent then proceeds with the aforementioned 
interaction learning steps: (1) observes the current state st of 
the price time series, (2) executes action at, and (3) receives 
reward rt and observes the next state st+1. 

 
Fig. 1. DCRL Model Interaction with its Environment. 

In each iteration, the DCRL agent observes the current 
state of the environment using the following state variables: a 
five-day price change moving average, the previous day 
opening and closing prices, and the previous day closing price 
and current opening price. This specification has established a 
learning architecture whereby the previous action at time t − 1 
is considered. In this study, we choose the previous day ROC 
(Ext_Previoust), overnight ROC (Ext_Overnightt), and 
Neutral (Neutralt) state to represents the set of possible states 
S. Following the observation of the current state s t, the RL 
agent chooses action at from three possibilities. (1) Equation 3 
(DT_Overnight) is used to define the DC dynamic threshold 
considering that an overnight event has occurred. (2) 
Equation 4 (DT_PreviousDay) is used to define the DC 
dynamic threshold considering that an event has occurred 
during the previous day. These two possible actions are 
associated with the two states Ext_Previoust and 
Ext_Overnightt. Note that an action that offers a lower 
threshold value is selected because it will increase the chance 
of detecting an event. For the Neutralt state, only one possible 
action exists, which is (3) using Equation 5 assuming that no 
extreme price changes have occurred. Hence, the following set 
of possible actions is obtained: at = { 
DT_Overnight, DT_PreviousDay, DT}. 

The agent receives a reward on the basis of the selected 
action. The reward is the maximum of either 
ROC_PreviousDay or ROC_Overnight when actions 
DT_Overnight or DT_PreviousDay are chosen. Alternatively, 
no reward is assigned (reward = 0) when action DT is taken 
because it is always taken whenever action DT_Overnight or 
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DT_PreviousDay cannot be taken. More specifically, if action 
DT_Overnight was executed, then the assigned reward is 
ROC_PreviousDay; because the action was based on the 
lowest threshold value and was DT_Overnight (it led to the 
lowest threshold value), then the reward is ROC_PreviousDay 
because it is of greater value than ROC_Overnight. The same 
applies for action DT_PreviousDay: if action 
DT_PreviousDay was executed, then the reward assigned is 
ROC_Overnight. 

TABLE I. SET OF ALL POSSIBLE STATES IN THE ENVIRONMENT AND SET 
OF ACTIONS PRESENTED FOR EACH STATE ST  ALONG WITH ASSOCIATED 

REWARDS FOR EACH PAIR OF STATE AND ACTION 

St St+1 at P R 

Ext_Overnig
htt 

Ext_Overnig
htt +1 

DT_Overnight 0.3
3 

ROC_PreviousD
ayt  

Ext_Previous
t +1 

DT_Overnight 0.3
3 

ROC_PreviousD
ayt  

Nt+1 DT_Overnight 0.3
3 

ROC_PreviousD
ayt  

Ext_Overnig
htt 

Ext_Previous
t +1 

DT_PreviousD
ay 

0.3
3 ROC_Overnightt  

Ext_Overnig
htt +1 

DT_PreviousD
ay 

0.3
3 ROC_Overnightt  

Nt+1 
DT_PreviousD
ay 

0.3
3 ROC_Overnightt  

Ext_Previous
t 

Ext_Previous
t +1 

DT_PreviousD
ay 

0.3
3 ROC_Overnightt  

Ext_Overnig
htt +1 

DT_PreviousD
ay 

0.3
3 ROC_Overnightt  

Nt+1 
DT_PreviousD
ay 

0.3
3 ROC_Overnightt  

Ext_Previous
t 

Ext_Overnig
htt +1 

DT_Overnight 0.3
3 

ROC_PreviousD
ayt 

Ext_Previous
t +1 

DT_Overnight 0.3
3 

ROC_PreviousD
ayt  

Nt+1 DT_Overnight 0.3
3 

ROC_PreviousD
ayt  

Neturalt 

Nt+1 DT 0.3
3 0 

Ext_Overnig
htt +1 

DT 0.3
3 0 

Ext_Previous
t +1 

DT 0.3
3 0 

IV. DATA AND EMPIRICAL RESULTS 
To verify the effectiveness and robustness of the proposed 

DCRL model, a series of experiments were conducted using 
four price datasets for stock exchange indices. The DCRL 
utilizes a policy-based model that learns the policy from 
historical prices and defines a variety of continuous actions 
according to the learned policy. A descriptive analysis of the 
identified events is presented in Section ⅣB, it shows a 
discussion of the identified events along with a statistical 
description of the associated DC dynamic threshold values. 
The last section presents the evaluation results of the 
effectiveness and accuracy of the proposed DCRL model. 

A. Data 
Our empirical study relies on data from the Saudi stock 

market (Tadawul1) for the period from March 2015 to March 
2020, the total number of investigated days is approximately 
1285 days. We used four stock indices for the following two 
financial sectors: Al Rajhi, Alinma, and SABB banks (Sector: 
Financials Industry, Group: Banks), and STC (Sector: 
Telecommunication & Information Technology). These 
selected stock indices are well known in the Saudi financial 
market. The price time series for these four stock exchange 
indices are sourced from Yahoo finance 2 . Each row data 
includes the date along with opening, low, high, and closing 
prices. The choice of these four stock indices is based on the 
strength of their economic and financial factors. The 
distribution of each dataset composes of a variety of price 
trends and a series of patterns, which will contribute to the 
effectiveness of evaluating the DCRL model under different 
situations. Fig. 2 shows the price time series for the four stock 
indices during the five investigated years (2015- 2020). 

Table II presents the basic annualized average summary 
descriptive statistical analysis of the datasets for the four stock 
exchange indexes during the period from March 17, 2015, to 
March 13, 2020. The mean (µ), standard deviations (σ), 
Skewness, Kurtosis, minimum, and maximum price values are 
reported for each stock index. 

B. Results 
In Table III, we report the statistical analysis results of the 

identified DC events using the DCRL model. Table III 
provides the average annualized of the following quantities: 
number of identified DC events, number of times (days) the 
previous day’s defined threshold was also used for the current 
day, number of times an event was identified as the ROC 
taking place overnight was significant, and the number of 
times an event was detected as the ROC taking place the 
previous day was significant. When DT_Overnight and 
DT_PreviousDay are used more often to define the DC 
dynamic threshold, this use could mean that the price changes 
occurring overnight (between the previous day’s and the 
current day’s opening prices) or occurring on the previous day 
(between previous day opening and closing prices) are 
considerably high. Therefore, the identified DC events using 
the dynamic threshold definition method can capture the 
sensitivity of the market changes and, hence, the identification 
of potential events. 

TABLE II. DESCRIPTIVE STATISTICS OF FOUR STOCK INDICES: ALRAJHI, 
ALINMA, SABB, AND STC. THE PERIOD SPANS FROM MARCH 17, 2015, TO 

MARCH 13, 2020, AND THE TOTAL NUMBER OF INVESTIGATED DAYS IS 
APPROXIMATELY 1285 DAYS 

Index µ σ Skewness Kurtosis Min. Max. 

Alrajhi 48.25 3.64 0.38 -0.37 40.20 56.39 

Alinma 18.99 2.12 -0.17 -0.22 13.92 22.64 

SABB 28.87 3.34 -0.059 -0.53 21.06 34.78 

STC 77.95 5.38 0.16 -0.09 65.53 90.07 
 

1 https://www.tadawul.com.sa 
2 https://finance.yahoo.com/ 
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Fig. 2. Price Time Series for the Four Stock Indices: Alrajhi, Alinma, SABB, and STC over the Period from 17/3/ 2015-13/7/202 (x-axis Represents Price and y-

axis Represents Year).

For all of the investigated stocks during the 5 examined 
years, more than half of the detected DC events from the 
dynamic threshold values were found using both equations 
DT_Overnight and DT_PreviousDay. Specifically, these 
equations have detected more than 60% of the DC events in 
Alinma and STC, and 70% of the DC events in Alrajhi and 
SABB, refer to Table III for a summary of the annualized 
average statistical analysis results. In addition, SABB had the 
fewest number of days on which the previous day defined 
threshold was also used for the current day to identify DC 
events (if any), on average, only 14% of the investigated days 
the previous day threshold was also used for the current day. 
In other words, on average each year in 221 days out of the 
259 days, a new dynamic threshold was set each day to detect 
DC events, if any. Therefore, SABB may have been exhibiting 
a number of price variations; refer to SABB price time series 
in Fig. 2. 

Also, the high number of identified DC events (an average 
of 54 DC event each year) confirms this phenomenon. In 
contrast, Alrajhi, Alinma and STC had a higher number of 
days for which the previous day threshold was again used for 
the current day (at least 25% of days); refer to Fig. 2 for 

Alrajhi, STC and Alinma price time series, which also 
maintains a number of price stability trends. 

In order to have a deeper and closer look, in Fig. 3, we 
illustrate in more details the identified DC events using DCRL 
over the period from March 2019 to March 2020 for Alrajhi, 
Alinma, SABB, and STC price time series. The X-axis 
represents the date, and the Y-axis represents the daily closing 
price. In the chart, the square-shape event represents a 
downturn DC event, and the x-shape event represents an 
upturn DC event. Forty-nine DC events were identified from 
Alrajhi and STC. In addition, Alinma had 45 identified DC 
events, and 57 DC events were detected in SABB (refer to 
Fig. 3). 

TABLE III. STATISTICAL ANALYSIS RESULTS OF AVERAGE ANNUALIZED 
IDENTIFIED DC EVENTS USING DCRL MODEL 

Index NDC 
Nλ(t-

1) 
Nλ(t) 

N(DT_Overn
ight) 

N(DT_Previous
Day) 

Alrajhi 51.4 66.4 192.2 17.4 18 

Alinma 49.6 77.8 180.4 16.2 16 

SABB  53.8 36 220.6 20.4 16.4 

STC 49.8 63.8 192.6 19.8 14.4 
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Fig. 3. Price Time Series for Four Stock Indices: Alrajhi, Alinma, SABB, and STC over the Period from March 17, 2019, to March 13, 2020. Identified DC 

Events (upward and downward) using the DCRL Model are shown for the Final Year in the Sampled Period. 

Physical time (e.g., daily prices) fails to recognize the 
pattern flow of price movement, giving that the variety of 
price changes depends only on that considered time. 
Moreover, using daily or intraday prices to detect price 
patterns maps a range of patterns with different sizes, resulting 
in discontinuous pattern flow of price movements. On the 
other hand, the DC events reduces the complexity of a price 
time series giving that it detects periodic patterns in contrast to 
those detected by physical time. 

Table IV reports an analysis of the defined DC dynamic 
threshold values and presents the mean value of the dynamic 
DC threshold values during the investigated period, the 
minimum and maximum DC dynamic threshold values, and, 
finally, the standard deviation values. Table IV clearly 
demonstrates that Alinma had a high standard deviation (σ = 
0.032) relative to other stocks. This finding indicates that the 
defined threshold values are spread out with relatively high 
variations and are far from the mean. Additionally, Alinma 
has the highest maximum threshold (0.208), whereas all other 
stocks’ maximum values were between 0.08 and 0.1 
(Alinma’s maximum value is at least two times higher than 
that of all of the other stocks); refer to Fig. 3 for the Alinma 
price time series to observe the significant price jumps 
encountered. For illustration, on March 18, 2019, the closing 
price was 24.4, which slipped to 18.3 on the next day. 
Subsequently, on March 20, 2019, the price bounced back to 

24.4. During the investigated period, this significant jump 
occurred at least three times (in March and July 2019, and in 
February 2020). For the rest of the stocks, the standard 
deviation was between 0.012 and 0.016, indicating a smaller 
value. Thus, in these cases, the data points are close to the 
mean. 

TABLE IV. DESCRIPTIVE STATISTICS OF THE DC DYNAMIC THRESHOLD 
VALUES DEFINED BY DCRL MODEL. FOUR DESCRIPTIVE VALUES ARE 

PRESENTED FOR DC DYNAMIC THRESHOLD: MEAN (µ), MINIMUM, MAXIMUM, 
AND STANDARD DEVIATION (Σ) 

Index µ Min Max σ 

Alrajhi 0.022 0.046 0.0893 0.012 

Alinma 0.027 0.029 0.208 0.032 

SABB 0.027 0.0102 0.109 0.017 

STC 0.023 0.0109 0.085 0.013 

C. Evaluation 
To verify the effectiveness and robustness of the proposed 

DCRL model, we evaluate the results using the (i) length of 
the price-curve coastline, and (ii) accumulated reward value 
from the DCRL model. The length of the price-curve coastline 
offers an indicator of the usefulness of sampling the price time 
series, whereas the accumulated reward value evaluates the 
efficiency of the learning process in the DCRL model. 
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1) Price-curve coastline: The authors in [26] uncovered 
the scaling laws used to estimate the length of the price-curve 
coastline on the basis of the intrinsic time, which turns out to 
be long. A price-curve coastline can capture the price 
variations and, hence, the potential profit [26]. In this section, 
we measure the length of the price-curve coastline using two 
different models: DCRL (intrinsic time) and physical time 
(fixed time intervals). The goal is to evaluate their 
performance by summarizing the price movements and, thus, 
improves the understanding of the dynamic behavior of the 
price time series in a simplified manner. 

The length of a price-curve coastline is defined by the sum 
of all price changes during a defined period T. Under intrinsic 
time, the length of the price-curve coastline during period T is 
the average of the price changes between the identified DC 
events [6]. The length of the price-curve coastline under the 
DCRL model c(λ) is defined by: 

𝑐(λ) = 1
𝑁𝐷𝐶

 ∑ |𝑝𝑖 − 𝑝𝑖+1|𝑁𝐷𝐶
𝑖=1             (6) 

where NDC is the number of identified events determined 
by the DC dynamic threshold (λ), pi is the price of the i-th DC 
turning point, and pi+1 is the consequential DC turning point. 

Under fixed physical time intervals, the length of the price-
curve coastline during period T is the average of the price 
changes between the fixed points at which the time distance 

between all fixed points are equivalents [6]. The length of the 
price-curve coastline under physical time c(t) is defined by: 

𝑐(t) = 1
𝑛

 ∑ |𝑝𝑖 − 𝑝𝑖+1|𝑛
𝑖=1              (7) 

where pi is the price at point i (refer to the table to observe 
the length of PTI for all investigates stocks), and n refers to 
the total number of fixed points, which equals the number of 
identified DC events (to ensure fairness in comparison). 

It is essential to being aware with how well the established 
DCRL and the physical time price-curves fit the real price 
time series to evaluate their performance and effectiveness of 
sampling price changes in a time series. For instance, Fig. 4 
shows the price time series for the STC index over the 
March 17, 2019, to March 13, 2020 (the blue solid line) and a 
zoom-in in the lower chart from November 24, 2019, to 
January 5th, 2020. The chart compares the price changes 
defined under the DCRL model (the red dashed line) and the 
physical fixed time interval model (the green dashed line) 
using the same number of points (49 DC events in DCRL and 
49 points in the physical time scale). The DCRL model can 
identify price movements (DC events) as they occurred, while 
the physical time scale model fails to do so. Hence, it is clear 
that the DCRL can better sample the price changes than the 
physical time scale. 

 
Fig. 4. The Price Curve Lines for STC Index using DC and Physical Time Compared to the Original Price Curve. 
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Table V compares the price-curve coastline of the events 
identified by the DCRL model using dynamic thresholds 
(intrinsic time intervals) against physical time changes (fixed 
time intervals) over the period March 17, 2019, to March 13, 
2020. Table V clearly shows that the DCRL price-curve 
coastline c(λ) is longer for all investigated stock indices 
relative to the physical time price-curve coastline c(t). The 
coastline of Alinma under the DCRL model (i.e., DC intrinsic 
time) is more than three times longer than the physical time 
coastline (0.70 is the length of the DCRL coastline, and 0.22 is 
the length of the physical coastline). This difference can be the 
result of the time series evolution being unstable with 
significant price transitions occurring more frequently (refer to 
Fig. 2 for Alinma price time series). In contrast, SABB price-
curve coastline using the DCRL model is slightly longer than 
its physical coastline but was closest to the physical coastline 
when compared with other investigated stock indices (0.89 
was the length of the DCRL coastline, and 0.49 was for the 
physical time coastline). This finding can be the result of the 
often-recurring price transition but with insignificant price 
transitions (refer to Fig. 2 for SABB price time series). The 
DCRL price-curve coastline for the other stock indices 
(Alrajhi and STC) is at least two times longer than the 
physical coastline. 

To summarize, the DCRL model-identified events using 
the intrinsic time outperforms the identified price transitions 
using the physical time for all investigated stock indices. 

The natural fluctuation in the price time series suggests the 
need for diversification of the analytical scope of identifying 
financial events in the price time series. The DCRL mitigates 
the discontinuous price flow of prices in a time series and 
captures the periodic price changes. 

2) Random-Based DC model: In this section, we further 
investigate the role and accuracy of the developed DCRL 
model in improving the decision-making process for the most 
appropriate dynamic threshold definition method. Therefore, 
we developed a random-based DC model that randomly 
selects a dynamic threshold definition method (randomly 
decide on one of the three dynamic DC equations: 
DT_Overnight, DT_Previous, or DT. The developed random-
based DC model replaces the role of RL in selecting the DC 
dynamic threshold definition method. In contrast, DCRL finds 
the most appropriate dynamic threshold definition method 
using the DCRL policy (π). 

Table VI provides a comparison for the accumulated 
reward value gained by the DCRL model and the random-
based DC model over the period of March 17, 2019, to 
March 13, 2020. Evidently, the DCRL model outperformed 
the random-based DC model for all investigated stock indices, 
leading to the conclusion that the learning process of price 
movements (that is, upward and downward DC events) 
matters in the estimation of financial events in stock markets. 
The DCRL had proven to be effective in maximizing the 
accumulated value of the reward and, hence, the profitability 
during a sequence of learning steps for identifying events in 
different stock indices. 

TABLE V. PRICE-CURVE COASTLINE LENGTH DEFINED BY: (I) THE DCRL 
MODEL C(Λ) AGAINST (II) PHYSICAL TIME CHANGES C(T) FROM 17/3/ 2019- 

13/3/2020. THE NUMBER OF DC EVENTS IS DENOTED BY NDC, AND PTI 
REPRESENTS THE PHYSICAL TIME FIXED INTERVAL 

Index NDC c(λ) PTI c(t) 

Alrajhi 49 1.47 5.3 days 0.69 

Alinma 45 0.70 5.8 days 0.22 

SABB 57 0.89 4.5 days 0.49 

STC 49 3.06 5.3 days 1.35 

TABLE VI. ACCUMULATED REWARD VALUE GAINED BY THE DCRL AND 
RANDOM-BASED DC MODELS 

Index DCLR  Random  

Alrajhi 2.21 1.82 

Alinma 3.90 3.25 

SABB 3.44 2.78 

STC 2.64 2.09 

V. CONCLUSION 
In this paper, the DC event and RL approaches were used 

for automated pattern recognition from price time series. We 
proposed an intelligent intrinsic time-driven DCRL joint 
model, which can (1) adaptively set the DC dynamic threshold 
and conduct an event-based time series analysis using the RL 
approach, hence, improving the effectiveness, adaptability, 
and interpretability of the identified financial events; 
(2) jointly construct a price time series using the DC event 
approach, thus acquiring periodic continuous price events and 
improving the accuracy of the price time series representation. 
The DCRL is suitable for markets that operate during specific 
opening and closing times and can identify financial events 
without the need for an additional data source. 

The effectiveness of the DCRL model is validated on the 
Saudi stock market with different price trends and patterns. 
The experimental results demonstrate that the DCRL model 
outperforms other physical time-based analyses and the 
random-based DC model with higher rewards and a more 
reliable representation of the price curves. 

This work can be further extended and improved in future 
research directions. One direction can be conducting 
experiments on large-scale data, such as high frequency time 
series data, to confirm the effectiveness of and further enhance 
the DCRL model. Another promising research direction is to 
further apply the DCRL model to emerging markets, such as 
the cryptocurrency market. In addition, algorithmic trading 
can be developed using the DCRL model to trade one asset at 
a time and then can be improved and expanded to manage the 
portfolios of several assets. Finally, some financial features 
could be introduced to enhance the DCRL model; for 
example, trade volume could provide significant information 
for selecting the dynamic threshold. 
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