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Abstract—The cloud computing field suffers from the heavy 
processing caused by the exponentially increasing data traffic. 
Therefore, optimizing the network performance and achieving a 
better quality of service (QoS) became a central goal. In cloud 
computing, the problem of energy consumption of resource 
distribution management system (RDMS) is presented as an 
optimization problem. Most of the existing classical optimization 
approaches, such as heuristic and metaheuristic have high 
computational complexity. In this work, we proposed a quantum 
optimization strategy that executes the tasks exponentially faster 
and with high accuracy named constrained quantum 
optimization algorithm (CQOA). We exploit the CQOA in 
RDMS as a toy example for pointing out the efficiency of the 
proposed quantum strategy in reducing energy consumption and 
computational complexity. Following that, we investigate the 
CQOA's implementation, setup, and computational complexity. 
Finally, we create a simulation environment to evaluate the 
efficiency of the suggested implemented constrained quantum 
strategy. 

Keywords—Quantum computing; constrained quantum 
optimization algorithm; quantum extreme values searching 
algorithm; resource distribution management; cloud computing 

I. INTRODUCTION 
Parameter optimization and the choice of the best solution 

candidate play a crucial factor in gaining optimal performance 
in many application types in a wide range of disciplines. It is 
useful to mention that most of the computational problems 
arising from the practical optimization world are frequently 
mapped to searching the minimum or maximum of a goal 
function (or a constraint goal function). 

The cloud computing industry is suffering from intensive 
processing due to rapidly rising data traffic. As a result, 
improving the network speed and attaining a higher quality of 
service (QoS) became a top priority. In the last decades, several 
well-known quantum strategies have been proposed in 
quantum computing [1,2] such as quantum phase estimation 
(QPE) which is exponentially faster than the classical ones, it 
computes the eigenvalue of a unitary operator, it has many 
useful applications, here we list some examples, such as, 
quantum counting algorithm for computing the number of 
occurrences of a query (searched item) in a certain database, 
Shor’s algorithm for integer factorization [3], or the HHL 
algorithm [4] for solving a linear system of equations. Another 
interesting well-known searching algorithm, the so-called 
Grover’s algorithm (quantum solution for searching an item in 
an unsorted database) which enables a dramatic reduction in 
computational complexity. The optimal classical solution takes 

O(N) iterations to carry out the search while Grover’s strategy 
requires only O(√𝑁) step [5-6]. 

In this work, we exploited the constrained quantum 
optimization algorithm (CQOA) [17]-[20] for optimizing the 
energy consumption of a proposed resource distribution 
management system (RDMS). It is important to mention that 
one of the motivations behind exploiting the CQOA in RDMS 
is that most of the constrained classical searching strategies 
suffer from high computational complexity for one of the 
following reasons, 

• Most of the databases are Unsorted (unordered). 

• The database may contain many local extremes 
(minimum or maximum) gratifying the constraint. 

• The database structure is not always continuous. 

The outline of this paper is as follows: Section II presents 
the literature review. Section III is devoted to introducing the 
CQOA and its computational complexity as well as showing a 
comparison between the CQOA and its original quantum 
algorithm version, the so-called quantum extreme value 
searching algorithm (QEVSA). Section IV deals with 
describing the resource distribution management model and the 
problem statement. Section V is concerned with implementing 
and configuring the proposed constrained quantum 
optimization approach in the desired resource distribution 
management. Section VI is devoted to discussing the 
computational complexity of the applied CQOA. Section VII 
presents the simulation results, and Section VIII concludes the 
paper. 

II. RELATED WORK 
It is not easy to build a new efficient quantum algorithm 

that outperforms a classical one. For this sake, there are few 
discovered quantum algorithms. Concerning the constrained 
extreme value searching, the most leading quantum heuristic 
candidate is introduced in [7], the so-called quantum 
approximate optimization algorithm (QAOA) which 
approximates hard optimization problems by converting the 
classical objective function into a Hamiltonian problem. Later, 
the QAOA was exploited for solving a constrained 
optimization problem, this alternative solution investigates the 
ground state of the Hamiltonian cost function instead of 
minimizing the original cost function [8]. Another extended 
version of the QAOA, the so-called quantum alternating 
operator ansatz is designed for finding the approximate 
solutions to optimization problems with hard constraints [9]. 
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The only drawback is that the calculation of the derivatives of 
the goal function can be computationally expensive. On the 
other hand, several well-known classical approaches for 
handling the constrained optimization search have been 
proposed in the literature, the most applied ones namely 
deterministic optimization algorithms and metaheuristic ones, 
these strategies are often failing to find the global optimum 
result when the goal function is non-monotonic, non-
continuous, or the database is unsorted and very large [10]-
[16]. 

It is worth showing the motivation behind applying the 
CQOA in RDMS. As it is known, new technologies continue to 
merge in cloud computing to meet the challenges imposed by 
the exponentially increasing data traffic [21]-[55]. Recent 
works [56-58], of the cloud radio access network, have shown 
significant performance gains by centralizing the management 
of radio and processing resources in the cost of computational 
complexity. 

Due to the significance of the issues that the cloud 
environment addresses, many optimization methods have been 
proposed lately. The majority of them strive for a high quality 
of service. 

The authors in [21] employed a hybrid prediction model 
that merges both statistical and machine learning approaches to 
generate higher-quality prediction outcomes for cloud 
computing. The proposed approach was able to predict with 
high accuracy the necessary workload. However, these 
techniques suffer from high computational complexity due to 
complex and highly nonlinear data. The model has been 
exploited to predict both seasonality and random workload 
patterns. 

The authors in [22] proposed a hybrid technique with a 
shuffled leapfrog algorithm and ubiquitous binary search 
(SLFA-UBS) to resolve these issues with an optimal 
assignment and better resource distribution. The method 
performed better in terms of optimum dynamic resource 
provisioning with QoS and cheap cost. 

Several metaheuristic approaches have been applied to 
improve the quality of service of cloud computing. For 
example, the authors in [26] suggested a multi-objective hybrid 
Ant Colony Optimization (ACO) with Bacterial Foraging 
(ACOBF) behavior to maximize resource utilization and also 
minimize the Makespan. While, the authors in [36] proposed 
another multi-objective hybrid method that combines the two 
well-known strategies, particle swarm optimization (PSO), and 
grey wolf optimization (GWO). The experimental outcomes 
proved that the newly developed method reduces the total 
execution time and cost compared to PSO, heterogeneous 
earliest time first (HEFT), ant colony optimization (ACO), and 
round-robin (RR) algorithms. 

The author in [59] considered a cloud radio access network 
and aimed to minimize the energy consumption of the overall 
system while satisfying constraint demands. Moreover, the 
work in [60] executed sequentially two heuristic approaches 
for minimizing the power consumption of task processing. In 
addition, the author in [61] used the Matroid algorithm to 
optimally solve the constrained resource allocation problem. 

Another classical technique that is often used is the so-called 
knapsack optimization strategy which is widely investigated in 
the processing resource assignment in a cloud radio access 
network system [62-64]. However, the proposed optimization 
algorithms for task allocation require high computational 
complexity. 

III. CONSTRAINED QUANTUM OPTIMIZATION ALGORITHM 
Before introducing the CQOA, let’s present first the 

QEVSA. In [65]-[66] the author built a new quantum algorithm 
named quantum existence testing (QET) which is a special case 
of quantum counting algorithm that determines the number of 
occurrences M of a certain item in a database consisting of N 
entries [67]. While the QET tests whether a given entry exists 
or not in a certain database, in other words, it checks the value 
of M, if it equals zero or not. Next, the author developed a new 
quantum method called the quantum extreme value searching 
algorithm (QEVSA) by combining the well-known classical 
binary searching algorithm [68] and the QET. More details are 
presented in [65]-[66]. The QEVSA finds the extreme 
(minimum or maximum) of an unconstrained goal function or 
unsorted database. 

The computational complexity (CC) of the QEVSA 
depends on, 

• The CC of the binary searching algorithm embedded in 
the QEVSA which equals 𝑂(𝑙𝑜𝑔2(𝑇)), where T is the 
maximum number of steps needed to run the 
logarithmic search. 

• And, the CC of the QET which equals 𝑂 �𝑙𝑜𝑔2
3�√𝑁��, 

where 𝑁 = 2𝑎 is the entry size of the database, where 𝑎 
is the total number of the required qubits with respect to 
the size 𝑁 of the database. 

The overall number of bits 𝑛𝐸  used in the physical 
implementation of the QET is strongly influenced by the 
quantum uncertainty and the classical accuracy of the 
application. In case the quantum uncertainty demand is 
neglected i.e. it corresponds to the idealistic phase estimation 
with no error, this implies that the value of 𝑛𝐸 can be written 
as. 

𝑛𝐸 = 𝑎
2
− 1���
𝑐𝐸

              (1) 

where 𝑐𝐸  is the optimum number of qubits required for 
classical accuracy in order to represent the phase, in this case, 
the CC of the QET is 𝑂 �𝑙𝑜𝑔2

3�√𝑁��. On the other hand, if 
the upper bound of the error probability is denoted by 𝑃𝜀�  of the 
quantum uncertainty _originated from the QPE_ is taken into 
consideration by the application, then the value of 𝑛𝐸  is 
expressed as. 

𝑛𝐸 = 𝑎
2
− 1���
𝑐𝐸

+ �𝑙𝑜𝑔2(2𝜋) + 𝑙𝑜𝑔2 �
1
8𝑃𝜀�
�����������������

𝑝𝐸

           (2) 

where 𝑝𝐸  is the optimum number of qubits needed to 
handle the quantum uncertainty problem originating from the 
error probability of converting the phase to a probability 

43 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 12, No. 8, 2021 

amplitude. In this respect, the CC of the QET is 

𝑂 �𝑙𝑜𝑔2
3 �2

𝑝𝐸
2 √𝑁��. We assume that the CC of the QEVSA is 

only influenced by the classical certainty parameter. For this 
sake, the CC can be written as 𝑂 �𝑙𝑜𝑔2(𝑇)𝑙𝑜𝑔2

3�√𝑁��. 

In compliance with what has been discussed, we see that 
the QET plays a fundamental role in the search efficiency of 
the QEVSA. 

In [17]-[18], we developed a new extended version of the 
QEVSA, the so called CQOA, where we extended the 
functionalities of the QET(ref) to a new quantum function that 
answers whether there exists an item in a certain region of the 
database at all, and satisfies the engineering constraint C and 
index relation R (The value of R may refer to minimization or 
maximization of the constraint goal function) is needed. This 
new extended version is named the constrained quantum 
relation testing 𝐶𝑄𝑅𝑇(𝑟𝑒𝑓,𝑅,𝐶)  where the parameter ref 
refers to the updated value which divides the database into two 
vertical parts, the index R refers to the used relation, and the 
constraint C can be equality or inequality constraint. 

Also, we proved that implementing the constraint C and the 
relation R in the QET does not change the evaluation of QPE. 
For this sake, the estimated optimum number of qubits required 
for the classical accuracy denoted by 𝑐𝑅 which corresponds to 
the CQRT function equals the 𝑐𝐸 belonging to QET function, 
one obtains 𝑛𝑅 = 𝑛𝐸 . To this end, the computational 
complexity of the QEVSA equals the computational 
complexity of CQOA which equals 𝑂 �𝑙𝑜𝑔2(𝑇)𝑙𝑜𝑔2

3�√𝑁��. 

Note that the notation of ref  value in the algorithm has 
been changed to 𝐹𝑚𝑒𝑑 𝑆. The CQOA is expressed as follows, 

1) We start with S = 0 : 𝐹𝑚𝑖𝑛 1 = 𝐹𝑚𝑖𝑛 0 , 𝐹𝑚𝑎𝑥 1 =
𝐹𝑚𝑎𝑥 0, and ∆𝐹 = 𝐹𝑚𝑎𝑥 0 − 𝐹𝑚𝑖𝑛 0 

2) S = S + 1 
3) 𝐹𝑚𝑒𝑑 𝑆 =  𝐹𝑚𝑖𝑛 𝑆 +  �

𝐹𝑚𝑎𝑥 𝑆 −𝐹𝑚𝑖𝑛 𝑆

2
� 

4) 𝑓𝑙𝑎𝑔 = 𝐶𝑄𝐸𝑇 �𝐹𝑚𝑒𝑑 𝑆,𝑅,𝐶�: 

• if 𝑓𝑙𝑎𝑔 = 𝑌𝑒𝑠,      then   𝐹𝑚𝑎𝑥 𝑆+1 = 𝐹 𝑚𝑒𝑑 𝑆 

• Else 𝐹𝑚𝑎𝑥 𝑆+1 = 𝐹 𝑚𝑎𝑥 𝑆 , 𝐹𝑚𝑖𝑛 𝑆+1 = 𝐹 𝑚𝑒𝑑 𝑆 

5) If S < 𝑙𝑜𝑔2  (𝑇 ), then go to 2, else stop and 𝑦𝑜𝑝𝑡 = 
𝐹 𝑚𝑒𝑑 𝑆 

It is important to mention that the QEVSA performs only 
the search in the continuous database structure because the 
QET cannot adjust the classical logarithmic search algorithm 
(binary searching algorithm) so that it is suitable for non-
continuous databases. 

The CQRT allows adapting the binary searching algorithm 
so that it is suitable for continuous database structures to non-
continuous ones. To this end, the CQOA handles the search in 
a continuous or non-continuous database structure. The main 
similarities and differences between the QEVSA and CQOA 
are summarized in Table I. 

TABLE I. THE MAIN SIMILARITIES AND DIFFERENCES BETWEEN THE 
QEVSA AND CQOA 

 QEVSA CQOA 

Type of the goal 
function 

Unconstraint goal 
function Constraint goal function 

Database type 
(Continuous/Non-
Continuous) 

Continuous Continuous/Non-
Continuous 

The classical 
logarithmic search 
algorithm is combined 
with 

QET CQRT 

Computational 
complexity 𝑂 �𝑙𝑜𝑔2(𝑇)𝑙𝑜𝑔2

3�√𝑁�� 𝑂 �𝑙𝑜𝑔2(𝑇)𝑙𝑜𝑔2
3�√𝑁�� 

Database Structure 
(ordered/unordered) Unordered database Unordered database 

IV. MODEL 
This paper is an extension of the previous work published 

in [69-73], the of the current paper is reducing the energy 
consumption of processing resources by taking into 
consideration the delay constraint of the tasks. To model the 
general RDMS, we divided its functionalities into three main 
blocks. Fig. 1 represents the architecture of the proposed 
RDMS. 

A. Multiple Task Generators 
We consider multiple task generators, where each generator 

releases a task type to be served by computing units. We 
assume that the number of generators/task-types is denoted by 
G. Each generated task is composed of several subtasks 
selected from a set of subtask types, where the total number of 
different subtask types is 𝑉. 

Each generator always produces identical tasks i.e. the 
same number of the total subtasks and the same number of 
subtask types. Moreover, each generator releases tasks 
according to an arrival time distribution (exponential intensity 
distribution, uniform intensity distribution, etc.). Note that, the 
memory needed to allocate the subtask type 𝑣 is denoted by ∆𝑣. 
Furthermore, each task type has to be served within a specific 
delay constraint denoted by 𝜏𝑔  i.e. the subtasks belonging to 
task type 𝑔  have the same time constraint 𝜏𝑔  i.e. all the 
subtasks of the task type 𝑔 have to be served within this time 
constraint 𝜏𝑔. 

1) Computing units: The incoming tasks are served by 
computing units. The total number of computing units is 
denoted by K. Each computing unit has a maximum capacity 
𝑐𝑘. Assuming that 𝑁𝑣𝑘 refers to the number of subtask type 𝑣 
under process on the 𝑘𝑡ℎ computing unit. 

2) Decision maker: It controls the deployment of the 
incoming subtasks among computing units. The CQOA 
introduced in Section II will be implemented as a 
computational infrastructure core of the decision-maker. 

B. Problem Statement 
The decision-maker deploys the subtasks of the incoming 

task to different computing units. Assuming that the subtasks 
of the incoming tasks are processed sequentially. Fig. 2 

44 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 12, No. 8, 2021 

illustrates the processing mechanism of subtasks in the 𝑘𝑡ℎ 
computing unit, where subtasks arrive in a FIFO manner, i.e. 
when a task arrives in the decision-maker, it decides instantly 
whether the task (consisting of subtasks) can be accepted and 
deployed to any of the computing units or not (rejected). The 
delay needed to process the actual load in the 𝑘𝑡ℎ computing 
unit (considering the task under the decision, too) denoted by 
𝜏𝑘𝑎𝑐𝑡, it has to be always less or equal than the delay constraint 

of the incoming task type i.e. 𝜏𝑘𝑎𝑐𝑡 ≤ 𝜏𝑔 . The green hatched 
subtask is the subtask belonging to the new incoming task 
deployed into the 𝑘𝑡ℎ  computing unit (see Fig. 2). This 
decision method guarantees that the delay constraint of tasks 
that are running on the 𝑘𝑡ℎ computing unit does not influence 
the fulfillment of delay constraint of the new incoming task 
and vice versa. 

 
Fig. 1. Resource Distribution Management System. 

 
Fig. 2. Scheme Illustrating the Sequential Processing Operation of different Subtasks in the 𝑘𝑡ℎ Computing Unit. 
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Now, let’s investigate the calculation of the total energy 
consumed by the RDMS. We consider that the initial power 
needed to turn on the computing unit k is denoted by 𝑃𝑘𝑖𝑛𝑖𝑡 . 

A subtask is composed of a specified number of identical 
memory pieces called memory units. The processing rate of the 
𝑘𝑡ℎ computing unit is denoted by 𝛽𝑘 and computed as follows, 

𝛽𝑘 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑚𝑜𝑟𝑦 𝑢𝑛𝑖𝑡𝑠
 𝑠𝑒𝑐𝑜𝑛𝑑

            (3) 

On the other hand, the time needed to process a subtask 
type 𝑣  on the computing unit k is ∆𝑣/𝛽𝑘 . Furthermore, the 
processing delay of the actual load on the 𝑘𝑡ℎ computing unit 
can be calculated as, 

𝜏𝑘𝑎𝑐𝑡 = ∑ 𝑁𝑘𝑣∆𝑣𝑉
𝑣=1

𝛽𝑘
              (4) 

Assuming that 𝜏𝑘𝑎𝑐𝑡 ≤  𝜏𝑔  and the processing of the 
subtasks is performed sequentially as illustrated in Fig. 2, the 
energy required to process the subtasks on computing unit k is 
given by formula (5), where 𝜀𝑘 is the energy consumption of 
one memory unit on computing unit k. 

𝐸𝑘𝑎𝑐𝑡 = 𝜀𝑘�𝑁𝑘𝑣∆𝑣

𝑉

𝑣=1

 +  𝑃𝑘𝑖𝑛𝑖𝑡𝜏𝑘𝑎𝑐𝑡  

= �𝜀𝑘 +
𝑃𝑘𝑖𝑛𝑖𝑡

𝛽𝑘
��𝑁𝑘𝑣∆𝑣 ,

𝑉

𝑣=1

 

         (5) 

• 𝜀𝑘 ∑ 𝑁𝑘𝑣∆𝑣𝑉
𝑣=1 : The energy needed to serve the subtasks 

under process on the computing unit k without 
considering the energy required to turn on the 
computing unit k. 

• 𝑃𝑘𝑖𝑛𝑖𝑡𝜏𝑘𝑎𝑐𝑡: The energy needed to turn on the computing 
unit k in a period that is equal to 𝜏𝑘𝑎𝑐𝑡  (the energy of 
tasks is not considered). 

It is straightforward to verify that the overall energy 
consumption of the system can be written as, 

𝐸𝑎𝑐𝑡 = �𝐸𝑘𝑎𝑐𝑡
𝐾

𝑘=1

 

= ��𝜀𝑘 +
𝑃𝑘𝑖𝑛𝑖𝑡

𝛽𝑘
�
𝑘∈𝐻𝑜𝑛

��𝑁𝑘𝑣∆𝑣 .
𝑉

𝑣=1

𝐾

𝑘=1

 

         (6) 

where the term 𝑃𝑘
𝑖𝑛𝑖𝑡

𝛽𝑘
 is considered if and only if the 𝑘𝑡ℎ 

computing unit is switched on (The set 𝐻𝑂𝑁  of the switched-
ON computing units). Our goal is to minimize the overall 
energy consumption 𝐸𝑎𝑐𝑡 , one obtains. 

𝐸𝑚𝑖𝑛𝑎𝑐𝑡 = 𝑚𝑖𝑛
∀ 𝑆𝑖∈𝑆

𝐸𝑎𝑐𝑡(𝑆𝑖) 𝑎𝑛𝑑 ∀𝑘 ∈ 𝑆𝑖 : 𝜏𝑘𝑎𝑐𝑡 ≤ 𝜏𝑔          (7) 

with S denotes the sets of different possible distributions of 
the subtasks of the incoming task among all computing units 
and 𝑆𝑖  refers to the 𝑖𝑡ℎ  distribution/deployment scenario of S, 
i.e. the 𝑖𝑡ℎ specific set of computing units 𝑆𝑖 = {𝑘}. 

V. IMPLEMENTATION AND CONFIGURATION OF THE CQOA 
To select the best and the optimum deployment scenario, 

we apply the CQOA as a minimum constrained searching 
algorithm (MCSA). To this end, the function 𝐹 is substituted 
by 𝐸𝑎𝑐𝑡 , while the constraint C corresponds to the delay 
constraint of the incoming task type i.e. 𝜏𝑔 , and the 
implemented relation 𝑅 is a “minimization”. 

The maximum number of steps needed to run the logarithm 
search T in (8) depends on two parameters: the variation of the 
energy consumption of the system denoted by ∆𝐸 = 𝐸𝑚𝑎𝑥𝑎𝑐𝑡  −
𝐸𝑚𝑖𝑛𝑎𝑐𝑡  and the step size 𝛼 which is the smallest distance between 
the energies of two different scenarios among all the possible 
scenarios in the database. Fig. 3 shows these parameters. 

 
Fig. 3. The Horizontal Axis Presents all the Possible Deployment Scenarios, While the Vertical Axis Presents the Borders of the Total Energy Consumption 
Function (different Results), each Possible Scenario Corresponds to a Total Energy Consumption. Computing the Value of 𝛼 Requires Selecting the Minimum 

Distance between Total Energy Consumption Functions of Two Deployment Scenarios 𝑆𝑖 and 𝑆𝑗 . 
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Since the searching region is obviously ∆𝐸 = 𝐸𝑚𝑎𝑥𝑎𝑐𝑡  −
𝐸𝑚𝑖𝑛𝑎𝑐𝑡 , the stochastic parameter T can be expressed as follows. 

𝑇 = 𝐸𝑚𝑎𝑥
𝑎𝑐𝑡  −𝐸𝑚𝑖𝑛

𝑎𝑐𝑡

𝛼
               (8) 

where 𝐸𝑚𝑖𝑛𝑎𝑐𝑡  can be replaced by the energy consumption of 
the system without the new incoming task. We denote this 
energy value by 𝐸�𝑎𝑐𝑡  and one can observe that it does not 
depend on the deployment of the incoming task, this implies 
that. 

𝑇 = 𝐸𝑚𝑎𝑥
𝑎𝑐𝑡  −𝐸�𝑎𝑐𝑡

𝛼
               (9) 

An appropriate worst-case estimation for  𝐸𝑚𝑎𝑥𝑎𝑐𝑡   can be 
considered as. 

𝐸𝑚𝑎𝑥𝑎𝑐𝑡 = 𝐸�𝑎𝑐𝑡 + 𝜏𝑔 ∑ 𝑃𝑘𝑖𝑛𝑖𝑡𝑘∈𝐻𝑂𝐹𝐹 + 𝐸𝑚𝑎𝑥𝑖𝑛𝑐 .         (10) 

where, 

• 𝐸𝑚𝑎𝑥𝑖𝑛𝑐  denotes the energy consumption if the subtasks of 
the incoming task are deployed onto that computing 
units having the largest 𝜀𝑘 , i.e., the least energy-
efficient unit. 

𝜏𝑔 ∑ 𝑃𝑘𝑖𝑛𝑖𝑡𝑘∈𝐻𝑂𝐹𝐹  is the total energy consumed by the set 
𝐻OFF  of the switched-OFF computing units because the 
switched-ON computing units are already considered in 𝐸�𝑎𝑐𝑡 . 

On the other hand, the value of 𝛼 can be written as, 

 𝛼 = 𝑚𝑖𝑛∀ 𝑖≠𝑗�𝐸𝑎𝑐𝑡(𝑆𝑖) − 𝐸𝑎𝑐𝑡�𝑆𝑗��         (11) 

where 𝐸𝑎𝑐𝑡(𝑆𝑖) is the sum of the energy consumption of the 
system without the new task 𝐸�𝑎𝑐𝑡 and the energy consumption 
of the incoming task with assuming that it was distributed 
according to  𝑍𝑖, 

𝐸𝑎𝑐𝑡(𝑆𝑖)  = 𝐸�𝑎𝑐𝑡 + 𝐸𝑖𝑛𝑐(𝑍𝑖).          (12) 

where 𝑍𝑖  refers to the 𝑖𝑡ℎ  set of those computing units 
which receive one or more subtasks of the new incoming task. 
It is straightforward to verify if one substitute (12) into (11), 
one obtains: 

𝛼 = 𝑚𝑖𝑛∀ 𝑖≠𝑗�𝐸𝑖𝑛𝑐(𝑍𝑖) − 𝐸𝑖𝑛𝑐�𝑍𝑗��         (13) 

Let 𝑀𝑘𝑣𝑖  be the number of subtasks of the incoming task 
from subtask type v deployed onto computing unit k in case of 
the 𝑖𝑡ℎ deployment scenario. The formula of  𝐸𝑖𝑛𝑐(𝑍𝑖) can be 
expressed now by means of (14) as: 

𝐸𝑖𝑛𝑐(𝑍𝑖) = ∑ �𝜀𝑘 + 𝑃𝑘
𝑖𝑛𝑖𝑡

𝛽𝑘
�
𝑘∈𝐻𝑜𝑛

�∑ 𝑀𝑘𝑣𝑖∆𝑣𝑉
𝑣=1𝑘∊𝑍𝑖         (14) 

where this term 𝑃𝑘
𝑖𝑛𝑖𝑡

𝛽𝑘
  is considered if and only if the 𝑘𝑡ℎ 

computing unit is switched-ON. To set up properly the 
stochastic parameter 𝛼, it is enough to investigate the non-zero 

solutions of �𝐸𝑖𝑛𝑐(𝑍𝑖) − 𝐸𝑖𝑛𝑐�𝑍𝑗� 
�
2

= 0 , the solutions are 
located on a hyper-plane, this result is already discussed in 
[73]. 

VI. COMPUTATIONAL COMPLEXITY ANALYSIS 
As previously presented, in order to minimize the 

constrained overall energy consumption, we have exploited the 
CMSA as a computational infrastructure for the RDMS. 
Furthermore, we have proven that the computational 
complexity of the implemented CQOA is 
𝑂 �𝑙𝑜𝑔2(𝑇)𝑙𝑜𝑔2

3�√𝑁�� , it depends on the computational 
complexity of the CQRT function 𝑙𝑜𝑔2

3�√𝑁�  and the 
logarithmic search of the quantum algorithm 𝑙𝑜𝑔2(𝑇), where N 
refers to the total number of possible deployment scenarios. 

The computational complexity analysis is divided into two 
main parts, 

• The value of T roughly depends on the value of the 
stochastic parameter 𝛼. As already investigated in [73], 
computing repeatedly the value of 𝛼  poses a real 
challenge. To this end, we proposed an alternative 
solution that consists of setting up the T value in 
advance before starting the assignment operation, in this 
case, the computational complexity of determining the 
parameter 𝛼 of the logarithm search will be O(1). More 
details on the computational complexity of T are 
presented in [73]. 

• The size of the search space N. This section will be 
devoted to estimating the value of N which refers to the 
set of all possible assignment scenarios for each 
incoming task. 

Let us assume that the new task under decision has arrived 
from generator 𝑔 . This task contains 𝑀𝑔𝑣  identical subtasks 
from type v and we need to select 𝑀𝑔𝑣  pieces of computing 
units from the overall K where repetition is allowed, i.e. a 
certain computing unit can be chosen more than once. One can 
verify that the number of such possible different sets can be 
written as: 

�
𝐾 + 𝑀𝑔𝑣 − 1

𝑀𝑔𝑣
�            (15) 

Considering all the subtask types, one gets. 

𝑁 = ∏ �
𝐾 + 𝑀𝑔𝑣 − 1

𝑀𝑔𝑣
�𝑉

𝑣=1            (16) 

Now, we are ready to investigate the computational 
complexity of the lower and upper bounds of the size of search 
space N. It is easy to show that 

�
𝐾 + 𝑀𝑔𝑣 − 1

𝑀𝑔𝑣
� =

�𝐾 + 𝑀𝑔𝑣 − 1�!
(𝐾 − 1)! 𝑀𝑔𝑣!

 

=
�𝐾 − 1 + 𝑀𝑔𝑣�!
(𝐾 − 1)! 𝑀𝑔𝑣!

 
 (17) 

Assuming that 𝐾 ≫ 𝑀𝑔𝑣 , it is interesting to note that by 
using formula (17), one can verify that it can be expressed in 
the following manner: 

𝐾 �𝐾+1)·(𝐾+2)·…·(𝐾−1+𝑀𝑔𝑣�
1·2·…·𝑀𝑔𝑣

= 𝐾
𝑀𝑔𝑣

∏ �𝐾
𝑖

+ 1�𝑀𝑔𝑣−1
𝑖=1         (18) 
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Now we are in a position to give the upper bound for (16). 
Using (18), one can confirm that 

�
𝐾 + 𝑀𝑔𝑣 − 1

𝑀𝑔𝑣
� ≤ 𝐾𝑀𝑔𝑣

𝑚𝑖𝑛𝑣𝑀𝑔𝑣
          (19) 

Using (19) and (16), the upper bound of the size of the 
search space N can be expressed as: 

𝑁 = ∏ �
𝐾 + 𝑀𝑔𝑣 − 1

𝑀𝑔𝑣
�𝑉

𝑣=1 ≤ � 𝐾𝑀𝑔𝑣

𝑚𝑖𝑛𝑣𝑀𝑔𝑣
�
𝑉

         (20) 

Next, we are interested in a close lower bound for (16). It is 
easy to verify that 

𝑁 ≥ � 𝐾𝑀𝑔𝑣

𝑚𝑎𝑥𝑣 𝑀𝑔𝑣!
�
𝑉

= � 1
𝑚𝑎𝑥𝑣 𝑀𝑔𝑣!

�
𝑉
𝐾𝑀𝑔         (21) 

where, 𝑀𝑔 = ∑ 𝑀𝑔𝑣
𝑊
𝑣=1 . 

The lower  bound expressed in (21) shows that the 
computational complexity of finding the optimal solution 
within the database is polynomial in terms of the numbers of 
computing unit K but exponential in terms of 𝑀𝑔𝑣, i.e. if the 
number of subtask type V becomes large, the computational 
complexity rises dramatically. For this sake, performing a 
constrained classical computation method to find the optimum 
result will be time-consuming and hard to solve. So, our 
proposed quantum strategy is the best candidate to handle such 
a task assignment optimization problem. 

VII. SIMULATION 
To demonstrate the efficiency of the proposed CQOA, a 

simulation environment has been constructed, in which a 
constrained randomized method was considered as a reference 
for comparison with the proposed constrained optimization 
method. In the best case, the computational complexity of the 
constrained randomized method is O(const), and in the worst 
case, it is O(N). 

This simulation aims to compare the performance of both 
methods in terms of computational complexity and the overall 
energy consumption with respect to the delay constraint. 

The simulation of the RDMS hosts three computing units, 
the characteristics of computing units are presented in Table. 
II, we considered three computing units where they have an 
identical processing rate of 40. From a practical point of view, 
the RDMS contains significantly more computing units, 
however, to observe the trends and effects it is worthwhile 
investigating a small-scale model. 

Also, we considered two task type generators such that 
tasks are generated exponentially, where one of the task types 
has a high-intensity distribution (the mean value of intensity 
distribution is smaller) compared to the other one. 
Furthermore, we considered two subtask type, their memory 
requirements are respectively ∆1= 2  and ∆2= 4 . Table III 
presents the number of subtask types, total memory required, 
and the delay constraint of each task type. While Table IV 
shows the total number of tasks released for each intensity 
distribution. It is important to mention that the timeslot of task 
generation is 20 seconds. 

TABLE II. THE CHARACTERISTICS OF THE COMPUTING UNITS OF 
RESOURCE DISTRIBUTION MANAGEMENT MODEL 

 Computing Unit 1 Computing Unit 2 Computing Unit 3 

𝒄𝒌 40 80 120 

𝑷𝒌𝒊𝒏𝒊𝒕 20 25 30 

𝜺𝒌 1 2 3 

TABLE III. THE CHARACTERISTICS OF THE GENERATED TASK TYPES 

 Number of 
Subtask type 1 

Number of 
Subtask type 2 memory Delay 

constraint 

Task 
type 1 1 3 14 1.4 

Task 
type 2 3 1 10 1.2 

TABLE IV. THE NUMBER OF TASKS RELEASED FOR EACH INTENSITY 
DISTRIBUTION 

 Mean = 
0.4 

Mean = 
0.3 

Mean = 
0.2 

Mean = 
0.1 

Number of 
tasks 39 57 91 203 

It is interesting to note that the decision-maker checks first 
the capacity constraint i.e. if there is free space in the system 
for allocating the new task. Then, it checks the delay 
constraint. Also, it is very important to mention that we did not 
deal with the case where the system is overloaded, i.e. we did 
not investigate the queueing behavior of the system. 

For each two task types that have different intensity 
distributions, we repeat the simulation 10 times, then we 
calculate the average overall energy consumed for each 
algorithm. 

Fig. 4 compares the total energy consumed by the 
randomized and optimized methods for different exponential 
intensity distributions. It can be seen that for every experiment, 
the constrained optimized strategy consumes less energy than 
the constrained randomized one. Additionally, one can notice 
that when the intensity distribution of arrival tasks increases 
i.e. when the mean value of exponential distribution becomes 
smaller, the optimized strategy keeps consuming lower than the 
randomized one. 

Fig. 5 shows the percentages of the overall energy 
consumption reduction of the three aforementioned 
experiments. For example, in the first experiment where the 
two task type generators have respectively 0.4 and 0.3 as 
means (the mean value of exponential distribution), the energy 
consumption of the optimized method is less than the 
randomized one by approximately 43.85 %. 

As it is shown, in the worst case the constrained 
randomized algorithm uses N steps, but it cannot find the 
optimum deployment scenarios which correspond to the 
minimum total energy consumption of the RDMS. While the 
computational complexity of the constrained optimized 
strategy is 𝑂 �𝑙𝑜𝑔2(𝑇)𝑙𝑜𝑔2

3�√𝑁��. 

48 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 12, No. 8, 2021 

 
Fig. 4. Energy Consumption of the Optimized (Blue Bars) and the Randomized (Red Bars) Strategies according to different Intensity Distributions. 

 
Fig. 5. Energy Consumption Reduction. 
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To sum up, we see that whatever the distribution intensity 
is, the constrained optimized approach offers a significant 
reduction in terms of energy consumption and computational 
complexity. 

VIII. CONCLUSION 
The CQOA finds the extreme optimum value for a 

constraint goal function or unsorted database with respect to 
certain constraints. It reduces significantly the costs connected 
to the application such as computational complexity and time, 
as well as, provides high accuracy and speed. We exploited the 
CQOA to minimize the constraint goal function (The total 
energy consumption) of the RDMS. We derived a simplified 
form of the constraint goal function, and we investigated the 
implementation and the configuration of the proposed 
constrained quantum strategy. Next, we proved that the 
computational complexity of finding the optimal solution 
within the database is polynomial in terms of the numbers of 
the computing units but exponential in terms of the number of 
subtasks. Fortunately, the proposed CQOA can handle such 
kind of optimization problem exponentially faster. In the end, 
we demonstrated by a simulation environment the effectiveness 
of the CQOA in terms of energy consumption and 
computational complexity by making a comparison between 
the constrained randomized strategy and the constrained 
quantum one. In future work, we will exploit the CQOA in 
resource distribution management by considering queueing 
aspect. 
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