
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

551 | P a g e
www.ijacsa.thesai.org

Analysis of Big Data Storage Tools for Data Lakes

based on Apache Hadoop Platform

Vladimir Belov, Evgeny Nikulchev

MIREA—Russian Technological University, Moscow, Russia

Abstract—When developing large data processing systems,

the question of data storage arises. One of the modern tools for

solving this problem is the so-called data lakes. Many

implementations of data lakes use Apache Hadoop as a basic

platform. Hadoop does not have a default data storage format,

which leads to the task of choosing a data format when designing

a data processing system. To solve this problem, it is necessary to

proceed from the results of the assessment according to several

criteria. In turn, experimental evaluation does not always give a

complete understanding of the possibilities for working with a

particular data storage format. In this case, it is necessary to

study the features of the format, its internal structure,

recommendations for use, etc. The article describes the features

of both widely used data storage formats and the currently
gaining popularity.

Keywords—Big data formats; data lakes; Apache Hadoop; data

warehouses

I. INTRODUCTION

One of the most important tasks of any systems for data
processing is a problem of storing the data received. In
traditional approaches, the most popular tools for storing data
have been the use of relational databases [1], which represent a
convenient interface in the form of SQL for manipulating data.

The growth in the volume of data and the needs of
consumers of data processing systems has led to the emergence
of the big data concept [2, 3]. Big data concept is based on six
aspects such as value, volume, velocity, variety, veracity, and
variability [4]. It means that big data can be understood
through not only the volume, but also their ability to be sources
for generating valuable information and ideas [5].

New concepts have replaced traditional forms of data
storage, among which NoSQL [6] solutions and so-called data
lakes [7-9]. A data lake is a scalable system for storing and
analyzing data retained in their native format and used for
knowledge extraction [6]. A data lake can either be designed
from scratch or developed on the basis of existing software
solutions [8]. Many implementations of data lakes use Apache
Hadoop as a basic platform [9].

For data lakes built based on the Apache Hadoop
ecosystem, HDFS [10] is used as a basic file system. This file
system is cheaper for use than commercial data bases. Using
such data warehouse, choosing the right file format is critical
[11]. File format determines how information would be stored
in HDFS. It is required to take into account that Apache
Hadoop and HDFS does not have any default file format. This

determined the emergence and use of various data storage
formats in HDFS.

Among the most widely known formats used in the Hadoop
system are JSON [12], CSV [13], SequenceFile [14], Apache
Parquet [15], ORC [16], Apache Avro [17], PBF [18].
However, this list is not exhaustive. Recently, new formats of
data storage are gaining popularity, such as Apache Hudi [19],
Apache Iceberg [20], Delta Lake [21].

Each of these file formats has own features in file structure.
In addition, differences are observed at the level of practical
application. Thus, row-oriented formats ensure high writing
speed, but column-oriented formats are better for data reading.

A big problem in the performance of platforms for storing
and processing data is the time to search and write information,
as well as the amount of data occupied. Managing the
processing and storage of large amounts of information is a
complex process.

In this regard, when building big data storage systems, the
problem arises of choosing one or another data storage format.
To solve this problem, it is necessary to proceed from the
assessment results according to several criteria.

However, testing and experimental evaluation of formats
does not always provide a complete understanding of the
possibilities for working with a particular data storage format.
In this case, it is necessary to study the features of the format,
its internal structure, recommendations for use, etc.

The aim of this paper is to analysis the formats used for
data storing and processing in data lakes based on Apache
Hadoop platform, their features, and possibilities in application
for various tasks, such as analytics, streaming, etc. This study
is useful when developing a system for processing and storing
big data, as it comprehensively explores various tools for
storing and processing data in data lakes. In turn, a
misunderstanding of the features of the structure and
recommendations for the use of tools for storing data can lead
to problems at the stage of data processing systems
maintenance.

The article describes both well-known and widely used
formats for storing big data, as well as new formats that are
gaining popularity now.

The paper is organized as follows. In the Background
section, the main prerequisites for the emergence of data lakes,
as well as the features of the file formats used to store data in

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

552 | P a g e
www.ijacsa.thesai.org

data lakes built on the basis of the Hadoop platform will be
discussed. Challenges section explores emerging storage trends
for building data lakes.

II. BIG DATA STORAGE FORMATS

Relational databases are the traditional way of storing data
[22]. One of the obvious disadvantages of this storage method
is the need for a strict data structure [23].

In recent years, the direction of development of the so-
called data lakes has gained popularity [7–9]. A data lake is a
scalable system for storing and analyzing data retained in their
native format and used for knowledge extraction [7]. The
prerequisites for this were the following factors:

 Growth in the volume of unstructured data, such as the
content of web pages, service logs, etc. For these
purposes, it is not assumed that there is a common
format.

 The need for storing and analyzing large amounts of
semi-structured data, such as events from the data bus,
unloading from operational databases, etc.

 Development of OLAP technologies and analytics-
oriented data storage facilities.

 Development of streaming processing and data
transmission.

A data lake can either be designed from scratch or
developed on the basis of existing software solutions [8]. Many
implementations of data lakes use Apache Hadoop as a basic
platform [9]. For such systems, HDFS [10] is used as a basic
file system. The traditional way of storing data in HDFS is to
create files of various formats.

According to the internal structure of the file, the formats
used for working with big data can be divided into the
following groups:

 Textual formats: CSV, JSON.

 Hadoop-specific formats: Sequence files.

 Column-oriented formats: Parquet, ORC.

 Row-oriented formats: Avro, PBF.

Each of the groups is focused on solving specific problems.
Thus, row-oriented formats ensure high writing speed, but
column-oriented formats are better for data reading.

Each data storage format will be discussed below.

A. Textual Formats

JSON (JavaScript object notation) is a textual file format,
represented as an object consisting of key-value pairs. The
format is commonly used in network communication,
especially with the rise of REST-based web services [12]. In
recent years, JSON have been becoming popular in
documented NoSQL databases [24] such as MongoDB,
Couchbase, etc.

In addition, JSON is popular in systems that require data
transfer because many programming languages support

serialization and deserialization using this format by default.
This also applies to streaming data processing systems.

 JSON supports following data types:

 primitive: null, boolean, number, string;

 complex: array, object.

CSV (comma-separated values) is a textual file format
presented in the form of a table, the columns of which are
separated by a special character (usually a comma). The file
may also contain a header containing the names of the
columns. Despite its limitations, CSV is a popular choice for
data exchange because it supports a wide range of business,
consumer and scientific applications [13]. In addition, many
batch and streaming systems (e.g. Apache Spark [25]) support
this format by default.

B. Hadoop-specific Formats

SequenceFile [14] is a binary format for storing data. The
file structure is represented as serialized key-value pairs. The
peculiarity of this file is that it was specially developed for the
Apache Hadoop ecosystem. The structure allows you to split
the file into sections during compression, which provides
parallelism in data processing.

SequenceFile is a row-oriented format. The file structure
consists of a header followed by one or more entries. The
header provides technical fields such as the version number,
information about whether the file is compressed, and the file's
metadata.

There are three different SequenceFile formats depending
on the type of compression.

 no compression;

 record compression – each entry is compressed as it is
added to the file;

 block compression – compression is performed when
data reaches block size.

C. Column-oriented Formats

Apache Parquet [15] is a binary column-oriented data
storage format. The format architecture is based on "definition
levels" and "repetition levels". An important part of this format
is the presence of metadata that stores basic information about
the data in a file, which contributes to faster filtering and data
aggregation in analysis tasks.

The file structure is represented by several levels of
division:

 row group - row-by-row data splitting into rows for
faster reading when working in parallel using the
MapReduce algorithm.

 column chunk - data block for a column in a row
group. This partition is intended to speed up work with
a hard disk - in this case, data is written not by rows,
but by columns;

 page - is a conceptually indivisible unit containing
meta information and encoded data.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

553 | P a g e
www.ijacsa.thesai.org

Apache Parquet supports the following data types:

 primitive (int32, int64, int96, float, double);

 complex (byte array, time, maps, lists, etc.);

 logical (boolean).

ORC (Optimized Row Columnar) [16] is a column-oriented
format for data storing in Apache Hadoop system. This format
is optimized for reading big data streams.

Architecturally, this format is similar to the Apache Parquet
format. The format structure is divided into metadata and data
itself. Metadata stores statistical and descriptive information,
indexes, data partitioning information. The data itself is divided
into so-called stripes. Each lane is an atomic unit for
distributed data manipulation.

ORC supports a full set of types, including complex types
(structures, lists, maps, and unions).

D. Row-oriented Formats

Apache Avro [15] is row-oriented format for data storing
widely used for data serializing. Apache Avro stores the
schema in an implementation independent JSON format
making it easier to read and interpret by programs. The Avro
file consists of a header and data blocks. The header contains
file metadata containing a schema and a 16-byte random
number marking the file. For data blocks, Avro can use a
compact binary encoding or JSON format, convenient for
debugging.

Unlike many other Big Data formats, Avro supports
schema evolution by handling schema changes by skipping,
adding, or modifying individual fields. Avro is not a strongly
typed format: the type of each field is stored in the metadata
section along with the schema. This means that no prior
knowledge of the schema is required to read the serialized
information.

Apache Avro supports following data types:

 primitive (null, Boolean, int, long, float, double, string,
bytes, fixed);

 complex (union, record, enum, array, map);

 logical (decimal, date, time, timestamp, uuid).

PBF (Protocolbuffer Binary Format) [18] is row-oriented
format. A format contains a header followed by a sequence of
data blocks. The structure of the format is intended to allow
random-access to the file content skipping unwanted data.

The format contains a repeating sequence of the following
parts:

 the number presenting the length of the BlobHeader
message in network byte order;

 serialized BlobHeader message;

 serialized Blob message.

One of the features of the format is that when serializing
integers, it defaults to variable length format, which takes up
less space for small positive numbers. However, the format
adds the field number and its type to the binary stream, which
increases the total size.

PBF supports following data types:

 primitive (bool, int32, int64, uint32, uint64, float,
double, string, bytes, etc.);

 complex (oneof, message, enum, array, map);

 logical (date, time, timestamp).

E. Analysis of Data Storage Formats

Within the framework of this study, an analysis of the main
characteristics of the previously described formats was carried
out. Comparative characteristics of the formats are presented in
the Table I.

This section may be divided by subheadings. It should
provide a concise and precise description of what data is
contained, which format, how to read and interpret the data.
E.g., for tabular data a note about what’s contained in each
column of the data table.

TABLE I. COMPARATIVE CHARACTERISTICS OF THE FORMATS

 avro csv json orc parquet pbf sequence

Platform independence + + + - - + -

Changeability - + + - - - -

Complex structures support + - + + + + -

Compliance with ACID - - - + - - -

Format type row-oriented text text column-oriented column-oriented row-oriented row-oriented

Compression support + - - + + + +

Metadata presence - - - + + - -

Schema integration + - + - + - -

Readability - + + - - - -

Schema evolution + - - - + +

Usability for streaming systems + + + - - + -

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

554 | P a g e
www.ijacsa.thesai.org

Table II summarizes the main advantages and
disadvantages of each studied data storage format.

In addition, other studies have been explored aimed at
choosing a format for various purposes.

In [26], the Apache Parquet and Apache Avro formats are
compared in terms of performance, but in this study, there is no
justification for choosing this particular alternative. The study
proceeds from an experimental assessment of two formats in
the absence of a specific task of choosing alternatives. The
authors of [27] pursue the goal of finding an alternative for the
WARC format when developing web services. Apache Parquet
and Apache Avro are also alternatives in this study. The author
in [28] offers extensive research on various data storage
formats for the analytical task in bioinformatics. This article
provides an assessment of all the formats described here.
Apache Parquet and ORC were chosen as the most suitable

format. The authors also give recommendations on the use of a
particular format. Specifically, when running multiple queries,
it is recommended to use Apache Parquet, while ORC should
not be used [28]. Research [29] is aimed at evaluating the Avro
and Parquet formats when performing data queries. The
research results are recommendations on the use of each format
for specific tasks. [30] is a comprehensive study of the Apache
Parquet and ORC formats. Both formats are column-oriented
and share similar characteristics and properties. The study
carried out a number of experiments focused on the applied
properties of each format.

The study [31] developed a methodology for analyzing data
storage formats based on comparative analysis, experimental
evaluation and a mathematical model for choosing an
alternative. For the experimental evaluation, Apache Spark
[24] framework was used, which is one of the most popular
tools for analyzing data in the Apache Hadoop system.

TABLE II. ADVANTAGES AND DISADVANTAGES OF BIG DATA STORAGE FORMATS

Format Advantages Disadvantages

csv

Readable and manually editable;

Provides a simple table layout;

Can be handled by almost all existing applications;

Compact.

Doesn't support complex data structures;

Allows to work with flat data;

There is no support for column types;

There is no standard way to represent binary data;

Problems with CSV import (for example, there is no difference between

NULL and empty string);

Poor support for special characters;

Lack of a universal standard.

json

A readable format that allows to work with it without the use of

special software;

Support for a hierarchical structure, which allows reading a

complete set of data;

Supported by many programming languages and default data tools.

Support for complex types such as arrays and objects.

Data schema support.

Format consumes large amount of memory due to repeatable field

names;

Poor support for special characters;

Less compact compared to more binary formats.

avro

High speed of information recording;

Fast reading of all fields of the record;

JSON data schema provides support for many programming

languages and facilitates debugging during development.

The availability of extensive capabilities for describing objects and

events, including creating your own data schemas,

Compatibility with previous versions as data evolves over time.

Reduced speed of information reading, since it is required to read all

fields of the record;

Lower performance when performing selective queries;

Higher consumption of disk space for data storage.

pbf
Compressed data storage format;

Self-described data storage format;

Small community, which makes it difficult to develop in case of

problems with the format;

Storing data type information for each stored value.

parquet

Column-oriented format allows to allows you to significantly speed

up the work of the analyst.

Efficient storage in terms of space occupied.

It provides fast reading experience.

Doesn't support changing data;

Does not support schema evolution;

Transactions are not supported;

No possibility of using in streaming systems;

Loss of information due to loss of metadata.

orc

Indexing that speeds up I/O operations;

The presence of metadata to facilitate the optimal execution of

queries;

Transactional support.

Doesn't support schema evolution;

Loss of information due to loss of metadata;

Transactionality occurs by adding new files.

sequence

Compact format;

There are 2 types of file compression - at the record level and at the

block level;

The ability to parallelize tasks by independently unpacking and

using different portions of the same file;

Can act as a container for many small files

Lack of multilingual support - this format is specific to the Apache

Hadoop ecosystem, which determines the use of only the Java API.

Doesn't support complex structures;

Doesn't support column types.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

555 | P a g e
www.ijacsa.thesai.org

A number of disadvantages of the described formats for
storing big data have been identified. The main ones are the
following:

 Failure to comply with the requirements of the
“General Data Protection Regulation” [32]. This
regulation defines the human right to "oblivion". In this
case, the storage tools must be able to delete the record.
In the formats described earlier, only text formats have
the ability to delete one record. Other formats require
deleting the entire file and writing a new one.

 The need for a transactional data record. Of the above
formats, only the ORC format has this property, which
requires the addition of delta files to update records.

 Building data storages on dimensional model;

 Requirements for schema enforcement.

The conventionally described data storage formats can be
divided into groups containing alternative formats, depending
on the tasks assigned to these formats when they are used in
big data processing systems.

Accessibility to the data described formats can be divided
into the following groups:

 changeable (JSON, CSV);

 unchangeable (Parquet, Avro, ORC, SequenceFile,
PBF).

The following groups are distinguished by the internal
structure of the file:

 textual (JSON, CSV);

 column-oriented (Parquet, ORC);

 row-oriented (Avro, PBF, SequenceFile).

According to their application in tasks of processing and
storing data in big data systems, the formats can be divided into
the following groups:

 formats for data streaming (JSON, CSV, Avro, PBF);

 formats for data storing (Parquet, ORC, SequenceFile).

III. CHALLENGES

The limitations of the previously described formats have
determined further research and development in the storage of
information in data lakes. Among the most well-known
emerging big data storage facilities are the following projects:
Apache Hudi [19], Delta Lake [20], Apache Iceberg [21].

A. Apache Hudi

Apache Hudi (Hadoop Upserts Deletes Incrementals) [19]
is a framework developed for managing big data storage in
distributed file systems such as cloud storage, HDFS and other
storage combined with Hadoop FileSystem. A distinctive
feature of this system is a support of transactional operations
(ACID).

Changes to data tables are achieved in two ways: copy on
write and merge on read.

 Copy on write: Data is stored in the Parquet file format
and each update creates a new version of the file at
write time. This storage type is most suitable for read-
intensive batch downloads.

 Merge on Read: The data is stored as a combination of
the Parquet and Avro file formats. Updates are logged
in delta files. This type of storage is better suited for
streaming write-intensive workloads.

Data queries are divided into following types:

 Snapshot: The last snapshot of the table as of this
commit action. For “Merge on Read” tables, the
snapshot query will merge base files and delta files on
the fly, resulting in latency.

 Incremental: changes in the table since commit.

 Read-Optimized: The last snapshot of the table at the
time of this commit action. For “Merge On Read”
tables, read-optimized queries return a view that
contains only the data in the underlying files, without
merging delta files.

Recent privacy regulations such as the GDPR [32] require
companies to be able to perform record-level updates and
deletions in order to satisfy the human right to be forgotten.
With support for deletes in Hudi datasets, the process of
updating or deleting information for a specific user or over a
period of time is greatly simplified.

B. Apache Iceberg

Apache Iceberg [20] - is a tabular format for storing tables
larger than a petabyte. Iceberg was designed from the ground
up for use in the cloud, and the key was to address the various
data consistency and performance issues that Hive [33] suffers
from when used with data residing in S3 [34]. Iceberg defines
how to manage large analytic spreadsheets using immutable
file formats such as Parquet, Avro, and ORC.

All information is stored in several different files:

1) Snapshot metadata file contains metadata about the

table, such as the table schema, section specification, and the

path to the list of manifests.

2) Manifest List contains an entry for each manifest file

associated with the snapshot.

3) Manifest file contains a list of paths to related data files.

4) Data file is a physical data file written in formats such

as Parquet, ORC, and others.

Apache Iceberg has the following benefits:

1) Lack of "dirty reading" [35]. The use of a snapshot

guarantees isolated reading and writing. Readers will always

see a consistent version of the data without having to lock the

table. Writers work in isolation without affecting the live table.

2) Performance benefits. Instead of listing O(n) partitions

in a table during scheduling, Iceberg performs O(1).

3) Data schema evolution. Iceberg ensures that schema

changes are independent and have no side effects.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

556 | P a g e
www.ijacsa.thesai.org

4) Evolution of partitions. Through the implementation of

hidden partitioning, Iceberg is also able to propose an evolution

in the partitioning specification. This means that the project

provides the ability to change the granularity or the column that

is split without breaking the table.

5) Support for the query engine. Iceberg is supported by

the Apache Spark project, that is, data can be read and written

using Spark DataFrames [25], and also read using SparkSQL

[25].

C. Delta Lake

Delta Lake is a storage layer for improving the reliability of
data lakes [36–38]. Delta Lake can operate on the basis of
implemented data lakes using Apache Hadoop [11], Amazon
S3 [32] or Azure Data Lake Storage [39].

Delta Lake is characterized by the following properties:

 Support for ACID transactions. Delta Lake Brings
ACID Transactions to Data Lakes for Serializability
and Highest Isolation.

 Scalable metadata processing. Delta Lake processes
metadata using the distributed computing power of
Apache Spark.

 Data versioning. Delta Lake provides snapshots of
data, allowing you to access and downgrade to earlier
versions.

 Open format - all data in Delta Lake is stored in
Apache Parquet columnar format, which allows you to
efficiently compress and encode data.

 Unified batch and streaming source and consumer in
one.

 Evolution of the scheme. Delta Lake allows for table
schema changes that can be applied automatically.

IV. CONCLUSION

Today, data lakes are the most advanced area of big data
processing and analysis. In recent years, many platforms have
emerged that provide the ability to build data lakes. This study
explored the storage tools provided for building data lakes
based on the Apache Hadoop platform.

As part of the study, we reviewed the main formats for
storing big data in data lakes. Three groups of big data storage
formats have been studied: textual, row-oriented, column-
oriented. Each group describes the alternatives among the
formats. The distinctive characteristics of each format are
presented, including features of the internal file structure,
supported data types, recommendations for use; highlighted the
advantages and disadvantages of each format.

A comparative analysis of the most popular formats for
storing big data has been carried out. The studies aimed at
identifying the effectiveness of a particular data storage format
in relation to the task have been analyzed. The main
advantages and disadvantages of the most popular big data
storage formats are highlighted.

During the study, the main prerequisites for further research
and development of tools for storing big data in the
construction of data lakes were studied and determined. One of
the main reasons for further research was the requirement for
the confidentiality of personal data. This requirement
determines the ability to delete a record from the data store. In
addition, one of the obvious disadvantages of data storage
formats is the lack of transactional operations.

New trends in the field of building data warehouses in the
context of data lake architectures are considered; highlighted
new requirements for the development of data warehouses. A
review of modern tools that meet new requirements is carried
out. Their distinctive characteristics and advantages of use
have been highlighted.

The analysis of the main properties of data storage formats,
their structure and application features, as well as the study of
modern trends in the storage and processing of big data in data
lakes are necessary for further experimental evaluation of these
tools, as well as the development of a methodology for
choosing a format that meets system requirements when
developing a system for processing big data. These tasks are
further objectives of the authors' research.

REFERENCES

[1] A.F. Alasta, and M.A. Enaba, “Data warehouse on Manpower
Employment for Decision Support System,” Int'l Journal of Computing,

Communications & Instrumentation Engg., vol. 1, pp. 48-53, 2014.

[2] D. Chong and H. Shi, “Big data analytics: A literature review,” J.
Manag. Anal., vol. 2, 175–201, 2015.

[3] V.S. Tomashevskaya, and D.A. Yakovlev, “Research of unstructured
data interpretation problems,” Russian Technological Journal, vol. 9, no.

1, pp. 7-17, 2021. https://doi.org/10.32362/2500-316X-2021-9-1-7-17.

[4] F. Cappa, R. Oriani, E. Peruffo, and I. McCarthy, “Big data for creating
and capturing value in the digitalized environment: unpacking the

effects of volume, variety, and veracity on firm performance,” Journal of
Product Innovation Management, vol. 38, no. 1, pp. 49-67, 2021.

[5] C. Yang, Q. Huang, Z. Li, K. Liu, and F. Hu, “Big Data and cloud

computing: Innovation opportunities and challenges,” Int. J. Digit.
Earth, vol. 10, pp. 13–53, 2017.

[6] D. Ilin, and E. Nikulchev, “Performance Analysis of Software with a

Variant NoSQL Data Schemes,” In 2020 13th International Conference"
Management of large-scale system development"(MLSD); IEEE, pp. 1-

5, 2020. https://doi.org/10.1109/MLSD49919.2020.9247656.

[7] J. Darmont, C. Favre, S. Loudcher, and C. Nous, “Data Lakes for Digital
Humanities,” In 2nd International Digital Tools & Uses Congress

(DTUC 2020); Hammamet, Tunisia, pp. 38-41, 15-17 October 2020.

[8] P.-N. Sawadogo, E. Scholly, C. Favre, E. Ferey, S. Loudcher, and
J. Darmont, “Metadata Systems for Data Lakes: Models and Features,”

In 1st International Workshop on BI and Big Data Applications
(BBIGAP@ADBIS 2019); Bled, Slovenia, pp. 440–451, 8 September

2019.

[9] P.P. Khine, and Z.S. Wang, “Data Lake: a new ideology in big data era,”

ITM Web of Conferences, vol. 17, p. 03025, 2018.
https://doi.org/10.1051/itmconf/20181703025.

[10] HDFS. 2020 HDFS Architecture Guide. Available online:

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html (accessed on 24
July 2021).

[11] V. Belov, A. Tatarintsev, and E. Nikulchev, “Comparative

Characteristics of Big Data Storage Formats,” Journal of Physics:
Conference Series, vol. 1727, p. 012005, 2021.

https://doi.org/10.1088/1742-6596/1727/1/012005.

[12] A. Agocs, and J.-M. Le Goff, “A web service based on RESTful API
and JSON Schema/JSON Meta Schema to construct knowledge graphs,”

In 2018 International Conference on Computer, Information and

https://doi.org/10.32362/2500-316X-2021-9-1-7-17
https://doi.org/10.1109/MLSD49919.2020.9247656
https://doi.org/10.1088/1742-6596/1727/1/012005

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

557 | P a g e
www.ijacsa.thesai.org

Telecommunication Systems (CITS); Alsace, Colmar, France, pp. 1-5,

11-13 July 2018. doi: https://doi.org/10.1109/CITS.2018.8440193.

[13] J. Mitlöhner, S. Neumaier, J. Umbrich, and A. Polleres, “Characteristics
of Open Data CSV Files,” In 2nd International Conference on Open and

Big Data (OBD), Vienna, Austria, pp. 72-79, 22-24 August 2016,
https://doi.org/10.1109/OBD.2016.18.

[14] Apache. SequenceFile. Available online:

https://cwiki.apache.org/confluence/display/HADOOP2/SequenceFile
(accessed on 24 July 2021).

[15] Apache. Parquet official documentation 2018. Available online:

https://parquet.apache.org/documen-tation/latest/ (accessed on 24 July
2021).

[16] ORC. ORC specification 2020. Available online:

https://orc.apache.org/specification/ORCv1/ (accessed on 24 July 2021).

[17] Apache. Avro specification 2012. Available online:

http://avro.apache.org/docs/current/spec.html (accessed on 24 July
2021).

[18] Protocol Buffers. Language Guide. Available online:

https://developers.google.com/protocol-buffers/docs/overview (accessed
on 24 July 2021).

[19] Apache Hudi. Quick-Start Guide. Available online:

https://hudi.apache.org/docs/spark_quick-start-guide.html (accessed on
24 July 2021).

[20] Apache. Apache Iceberg. Available online: https://iceberg.apache.org/

(accessed on 24 July 2021).

[21] Databricks. Delta Lake documentation 2020. Available online:
https://docs.delta.io/latest/index.html (accessed on 24 July 2021).

[22] W. Ali, M.U. Shafique, M.A. Majeed, and A. Raza, “Comparison

between SQL and NoSQL Databases and Their Relationship with Big
Data Analytics,” Asian Journal of Research in Computer Science, vol. 4,

no. 2, pp. 1-10, 2019.
http://dx.doi.org/10.9734/AJRCOS/2019/v4i230108.

[23] H.R. Vyawahare, P.P. Karde, and V.M. Thakare, “Brief Review on SQL
and NoSQL,” International Journal of Trend in Scientific Research and

Developmen, vol. 2, no. 1, pp. 968-971, 2017.
https://doi.org/10.31142/ijtsrd7105.

[24] A.B.M. Moniruzzaman, and S.A. Hossain, “NoSQL Database: New Era

of Databases for Big data Analytics-Classification, Characteristics and
Comparison,” Int. J. Database Theory Appl., vol. 6, pp. 1–14, 2013.

[25] S. Salloum, R. Dautov, X. Chen, P.X. Peng, and J.Z. Huang, “Big data

analytics on Apache Spark,” Int. J. Data Sci. Anal., vol. 1, pp. 145–164,
2016.

[26] R.F. Munir, A. Abelló, O. Romero, M. Thiele, and W. Lehner, “A cost-

based storage format selector for materialized results in big data

frameworks,” Distrib Parallel Databases, vol. 38, pp. 335–364, 2020.

https://doi.org/10.1007/s10619-019-07271-0.

[27] X. Wang, and Z. Xie, “The Case for Alternative Web Archival Formats
to Expedite The Data-To-Insight Cycle,” In JCDL '20: Proceedings of

the ACM/IEEE Joint Conference on Digital Libraries in 2020. E China,
pp. 177-186, 1-5 August 2020.

[28] S. Ahmed, M.U. Ali, J. Ferzund, M.A. Sarwar, A. Rehman, and

A. Mehmood, “Modern Data Formats for Big Bioinformatics Data
Analytics,” International Journal of Advanced Computer Science and

Applications, vol. 8, no. 4, pp. 366-377, 2017.
https://dx.doi.org/10.14569/IJACSA.2017.080450.

[29] D. Plase, L. Niedrite, and R. A. Taranovs, “Comparison of HDFS

Compact Data Formats: Avro Versus Parquet,” Lietuvos ateitis, vol. 9,
no. 3, pp. 267-276, 2017. https://doi.org/10.3846/mla.2017.1033.

[30] T. Ivanov, and M. Pergolesi, “The impact of columnar file formats on

SQL-on-hadoop engine performance: A study on ORC and Parquet,”
Concurrency and Computation: Practice and Experience, vol. 32, no. 5,

p. e5523, 2020.

[31] V. Belov, A. Tatarintsev, and E. Nikulchev, “Choosing a Data Storage

Format in the Apache Hadoop System Based on Experimental
Evaluation Using Apache Spark,” Symmetry, vol. 13, p. 195, 2021.

https://doi.org/10.1002/cpe.5523.

[32] Regulation (EU). EU General Data Protection Regulation (GDPR).
Available online: https://gdpr-info.eu/ (accessed on 24 July 2021).

[33] Hive. 2020 Apache Hive Specification. Available online:

https://cwiki.apache.org/confluence/display/HIVE (accessed on 24 July
2021).

[34] Amazon. Amazon Simple Storage Service Documentation. Available

online: https://docs.aws.amazon.com/s3/index.html (accessed on 24 July
2021).

[35] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O'Neil, and P. O'Neil,

“A Critique of ANSI SQL Isolation Levels,” In Proc. ACM SIGMOD
95, San Jose CA, USA, pp. 1-10, 22-25 May 1995.

[36] P. Sawadogo, and J. Darmont, “On data lake architectures and metadata

management,” Journal of Intelligent Information Systems, vol. 56, no. 1,
pp. 97-120, 2021.

[37] S. Vats, and B. B. Sagar, “Data Lake: A plausible Big Data science for
business intelligence,” In Communication and Computing Systems;

CRC Press, pp. 442-448, 2019.

[38] C. Diamantini, P. Lo Giudice, D. Potena, E. Storti, and D. Ursino, “An
approach to extracting topic-guided views from the sources of a data

lake,” Information Systems Frontiers, vol. 23, pp. 243-262, 2021.

[39] B. Shiyal, “Introduction to Azure Synapse Analytics,” In Beginning
Azure Synapse Analytics; Apress, Berkeley, CA., pp. 49-68, 2021.

