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Abstract—Lithium-ion batteries (a type of secondary battery) 

are now used as a power source in many applications due to their 

high energy density, low self-discharge rates, and ability to store 

long-term energy. However, overcharging is inevitable due to 

frequent charging and discharging of these batteries. This may 

result in property damage caused by system shutdown, accident, 

or explosion. Therefore, reliable and efficient use requires 

accurate prediction of the battery state of charge (SOC). In this 

paper, a method of estimating SOC using vehicle simulator 

operation is proposed. After manufacturing the simulator for the 

battery discharge experiment, voltage, current, and discharge-

time data were collected. The collected data was used as input 

parameters for multilayer neural network (MNN) and recurrent 

neural network–based long short-term memory (LSTM) to 

predict SOC of batteries and compare errors. In addition, 

discharge experiments and SOC estimates were performed in 

real time using the developed MNN and LSTM surrogate models. 

Keywords—Lithium-ion battery; state of charge; multilayer 
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I. INTRODUCTION 

With the recent occurrence of energy depletion and 
environmental pollution, research on eco-friendly and efficient 
energy sources is underway [1]. Recent developments in 
lithium-ion (Li-ion) batteries have yielded large energy density 
batteries with very low power losses (due to self-discharge) 
and longer life spans, making them the primary source of 
power for various electronic devices [2]. Secondary batteries, 
such as Li-ion batteries, also provide economic and 
environmental advantages over primary batteries used once and 
discarded. However, due to the nature of secondary battery 
operations (frequent charging and discharging), overcharging is 
a likely occurrence, in which case the electronic device may be 
shut down or risk an explosion [3]. Accurate identification and 
management of battery conditions are essential to solving these 
problems and ensuring efficient optimal usage and stability. A 
battery management system (BMS) helps manage energy 
efficiently and reliably when using secondary batteries. Related 
research has been recently undertaken as Li-ion battery 
applications continue to increase [4]. One of the parameters 
used in a BMS is the state of charge (SOC), an indicator of the 
remaining capacity of a battery, with 100% representing full 
capacity and 0% representing no capacity. It can also represent 
the state of health and the output performance of the battery 

[5]. Therefore, accurate prediction of SOC can help device 
users achieve better efficiency and reliability. 

Methods for estimating SOC include open-circuit voltage 
(OCV), current calculation, and artificial neural network 
models. OCV is a method of estimating SOC by measuring 
voltages in open circuits where no current flows. However, it is 
difficult to achieve a real-time SOC estimation with this 
method due to the long stabilization time needed to attain 
equilibrium for accurate measurement [6]. The current 
accumulation method is easy to implement by randomly setting 
the initial SOC and then charging and discharging the battery 
to calculate the amount of change in the current. However, if 
the initial SOC setting deviates considerably from the expected 
value, the SOC error accumulates, making it difficult to 
estimate SOC accurately [7]. In this paper, The SOC was 
estimated using artificial neural networks. Artificial neural 
networks are implemented based on human brain structures 
and are used in various fields, such as pattern recognition, 
identification, and classification, and can efficiently learn the 
relationships between input and output parameters [8]. A 
battery SOC estimation using artificial neural networks does 
not require consideration of the battery’s internal electrical and 
chemical properties. This method is advantageous for 
estimating nonlinear models and can operate on low-
specification processors [9][10]. The artificial neural networks 
used in this paper are a multilayer neural network (MNN) and a 
recurrent neural network (RNN)-based long short-term 
memory (LSTM). An RNN is a neural network in which the 
previous learning information (history) influences the current 
learning [11]. It is structured in a chain format and is 
advantageous for predicting time-series data. However, as the 
amount of data increases, a gradient loss problem occurs; 
hence, an LSTM was employed to eliminate this challenge 
[12]. 

In this paper, a vehicle driving simulator has been built to 
estimate the SOC of Li-ion batteries based on the actual 
vehicle's output. After completing the production of the vehicle 
driving simulator, a Highway Fuel Economy Test (HWFET), a 
vehicle fuel efficiency test mode used by the U.S. 
Environmental Protection Agency, was applied to the motor 
driver in the simulator. Voltage, current, and discharge time 
data for the battery were collected according to the output of 
the simulator. The values were verified in real time and used as 
input parameters in the MNN and the LSTM for estimating the 
SOC. 
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The composition of this paper is as follows. Section 2 
describes the internal configuration and fabrication process of 
the vehicle driving simulator used in the battery discharge 
experiment. Section 3 introduces the proposed SOC estimation 
algorithm; MNN, one of the types of artificial neural networks 
used in this paper; and RNN-based LSTMs, and describes 
learning methods for SOC estimation. Section 4 describes the 
experimental process of the proposed algorithm, the number of 
input parameters, and the results of SOC estimation according 
to the MNN and the RNN used. Finally, Section 5 describes the 
conclusions of this study and plans for future studies. 

II. VEHICLE DRIVING SIMULATOR 

In this paper, a vehicle driving simulator has been created 
to determine the SOC change of the battery due to the actual 
vehicle output. The composition of the simulator is shown in 
Fig. 1. 

The simulator is a two-wheel-drive vehicle consisting of a 
remote control (RC) car frame, four tires, two DC motors 
(rated voltage 12V and 6000 RPM), one motor driver 
(MDD3A), one Arduino pro-mini module, and one D.C. 
converter. The motor driver and Arduino pro-mini modules are 
devices designed to control the revolutions per minute (RPM) 
of the motor to be implemented according to the HWFET. It 
was applied as the driving cycle of the discharge experiment 
simulation, with the D.C. converter continuously adjusting the 
input voltage to the motor rated voltage of 12V. The HWFET, 
defined by the U.S. Environmental Protection Agency, is a test 
cycle to measure the fuel efficiency on a highway, as shown in 
Fig. 2. 

Hyundai Motor’s Avante Sports A.D. 16 model and 
255/40/18 (cross-section width, flat ratio, wheel size) tire 
specifications were set as models to simulate precisely the 
actual vehicle speed. The motor’s output in the simulator was 
controlled by the proposed motor driver for the HWFET after 
calculating the speed of the actual vehicle using the third gear 
ratio, tire specifications, and the motor RPM of the simulator. 
Fig. 3 shows a photograph of the built vehicle driving 
simulator. The simulator was fixed using steel frames and MC 
nylon board to prevent the simulator from moving or losing its 
balance due to motor vibration during the discharge experiment 
simulation. 

 

Fig. 1. Configuration of the Vehicle Driving Simulator. 

 

Fig. 2. Highway Fuel Economy Test Cycle. 

 

Fig. 3. The Vehicle Driving Simulator. 

III. SOC ESTIMATION ALGORITHM USING THE PROPOSED 

NEURAL NETWORKS 

A. Battery SOC Estimation Method 

This paper proposes a method to estimate the SOC of a 
battery using a vehicle driving simulator, MNN, and LSTM. 
Fig. 4 illustrates the proposed battery SOC estimation 
algorithm. First, four fully charged batteries are connected in 
series and used as input voltage for the simulator. Next, the 
discharge experiment was conducted using a vehicle driving 
simulator. After the discharge experiment was completed, the 
measured voltage, current, and discharge-time data were sent 
to a PC using voltage and current sensors and the Arduino 
modules. After processing the transmitted data with different 
numbers of input parameters, Four MNN and LSTM models 
were developed respectively to estimate the SOC of each 
battery. 

 

Fig. 4. SOC Estimation Diagram of Batteries using Artificial Neural 

Networks and a Vehicle Driving Simulator. 
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B. Multilayer Neural Network 

A MNN compensates for the shortcomings of perceptrons, 
which can only be learned limitedly because they consist only 
of linear functions, by adding one or more hidden layers 
between the input and output layers in the tomographic 
perceptrons. The MNN is shown in Fig. 5. 

Single-layer perceptrons use the feedforward method to 
update weights. In MNN, feedforward and backpropagation are 
used, unlike a single-layer perceptron. Feedforward updates 
weights in the direction of the output layer at the input layer, 
but backpropagation is a method of reducing the error by 
updating weights in the direction of the input layer at the 
output layer. Backpropagation is divided into four stages; 
calculate output values using existing weights as a first step. 
Then, in two steps, a partial value of the error of each weight is 
subtracted from the existing weight. The next three steps are 
stage 2 for all weights. Finally, steps 1 through 3 are repeated 
for the given number of lessons. Fig. 6 illustrates the concept 
of a backpropagation [13]. Due to these MNN learning 
methods, they can be expressed more complexly than single-
layer perceptrons and are also advantageous for classification 
and numerical prediction. 

The process of updating the weights of the backpropagation 
is shown in (1) through (5). First, the input and output values 
used to calculate net radio waves can be obtained from the 
following expressions. 

𝑛𝑒𝑡𝑗 =  ∑ 𝑤𝑖𝑗𝑋𝑖𝑖                  (1) 

(𝑋𝑗 = 𝑓(𝑛𝑒𝑡𝑗 + 𝜃𝑗)              (2) 

where 𝑛𝑒𝑡𝑗  is the input value of the node j, 𝑤𝑖𝑗  is the 

weight of the i-th node entering the j-th node, 𝑓(𝑛𝑒𝑡𝑗 + 𝜃𝑗) is 

the activation function, 𝑋𝑖 , 𝑋𝑗  is the output value of the 

previous node entering the i and j nodes, and θ is the input bias 
value. When updating weights with errors, the required values 
can be obtained in the following expressions: 

𝛿𝑖 =  λ(𝑙𝑖 − 𝑋𝑖)𝑓′(𝑋𝑖)              (3) 

𝛿𝑗 =  λ ∑ 𝛿𝑖𝑤𝑗𝑖𝑓′(𝑋𝑗)𝑖                (4) 

where l is the label value and X is the output value. Weights 
can be updated using the above obtained δ. 

𝑤𝑗𝑖(𝑡 + 1) =  𝑤𝑗𝑖(𝑡) +  η𝛿𝑗𝑦𝑖               (5) 

where t is the time index and η is the learning rate. 

C. Long Short-Term Memoryn 

The LSTM is an RNN-based neural network developed to 
improve the gradient loss problem as the distance between the 
learning data increases. Fig. 7 shows the structure of an LSTM, 
consisting of three gates and one cell state. 

Equations (6)–(11) describe the process of the LSTM 
operation. First, the forget gate uses sigmoid functions to keep 
or discard previous and current learning data while the input 
gate stores the values to be updated in the cell state using the 
sigmoid and other activation functions. It then updates the cell 
state by adding the resulting values of the forget gate and input 
gate. Finally, the output gate determines the final output value 

by multiplying the current and previous data with the value 
from the sigmoid function, the value obtained by the cell state, 
and the value obtained using the activation function [14]. 

𝑓𝑡 = 𝜎(𝑤𝑓  ∙ [ℎ𝑡−1, 𝑥𝑡]) +  𝑏𝑓               (6) 

𝑖𝑡 = 𝜎(𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡]) + 𝑏𝑖              (7) 

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝐶  ∙ [ℎ𝑡−1, 𝑥𝑡]) +  𝑏𝐶               (8) 

𝐶𝑡 =  𝑓𝑡  ∙ 𝐶𝑡−1 +  𝑖𝑡  ∙  �̃�𝑡               (9) 

𝑂𝑡 = 𝜎(𝑤𝑂  ∙ [ℎ𝑡−1, 𝑥𝑡]) + 𝑏𝑂            (10) 

ℎ𝑡  = 𝑂𝑡  ∙ tanh (𝐶𝑡)             (11) 

 

Fig. 5. Structure of the Multilayer Neural Network. 

 

Fig. 6. Schematic of the Back Propagation Algorithm. 

 

Fig. 7. Structure of the Long Short-Term Memory (LSTM). 
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where ℎ𝑡−1  is the previous data, 𝑥𝑡  is the current data, w 
and b are the weights and biases, 𝑓𝑡 is the value of the previous 

and current data, 𝑖𝑡 and �̃�𝑡 are the values of the sigmoid and the 
activation functions, 𝐶𝑡 is the updated value of the cell state, 𝑂𝑡 
is the value of the output gate, and ℎ𝑡 is the final output value. 

IV. EXPERIMENTAL PROCESS AND RESULT 

A. Experimental Process 

In this research, a battery discharge experiment was 
conducted using a vehicle driving simulator. The equipment 
used in the discharge experiment included four Li-ion batteries 
(rated capacity 1300 mAh), a power supply, a battery chamber 
(to ensure fire safety due to the strong reactivity of lithium ions 
[15]), a vehicle driving simulator, voltage and current sensors, 
and an Arduino module. Fig. 8 shows the equipment used for 
the discharge experiment and the experimental environment. 

The battery charging and discharging experiments were 
conducted by connecting the four batteries in series. As 
expected in series connections, the same amount of current 
flows through each circuit. However, frequent charging and 
discharging may result in charge imbalances depending on the 
electrical and chemical characteristics of the battery and the 
battery operating environment [16]. Therefore, this experiment 
used a cell balancing module to equalize the voltage of the four 
batteries during charging and discharging. The sequence of 
experiments for estimating each battery’s SOC is as follows: 
First, by defining a SOC of 100% (full capacity), the four 
batteries were fully charged at constant voltages of 4.2 volts 
via a power supply. Next, the batteries were kept for a 
stabilization period of about an hour to overcome charge 
imbalances. The discharge experiment was then conducted 
using the four batteries as input voltages for the vehicle driving 
simulator. Fig. 9 shows a voltage graph of changes during one 
cycle discharge experiment for each battery. The x-axis is the 
number of samples, and the y-axis is the voltage of each 
battery. The number of samples per cycle is between 2000 and 
2200. One cycle of the discharge experiment is defined as from 
the beginning of the discharge experiment to the point when 
some of the four batteries are discharged and the vehicle 
driving simulator is shut down. The above steps were then 
repeated to obtain the voltage, current, and discharge-time data 
for 10 cycles. The discharge-time data used in this experiment 
is time data that accumulates from the beginning to the end of 
the discharge experiment. 

 

Fig. 8. Experimental Environment and Equipment. 

 
(a) Discharge Graph of Battery 1. 

 
(b) Discharge Graph of Battery 2. 

 
(c) Discharge Graph of Battery 3. 

 
(d)Discharge Graph of Battery 4. 

Fig. 9. Cycle Discharge Experiment Voltage Graph for (a) Battery 1, (b) 

Battery 2, (c) Battery 3, and (d) Battery 4. 

These data were later transferred to a PC and then used as 
input parameters for the MNN and LSTM to estimate the SOC 
of each battery (Python, TensorFlow, and Keras package were 
used for learning). To obtain the SOC to be used as the training 
label for the MNN and LSTM, four fully discharged batteries 
were charged individually and then any initial SOC was 
specified. The current data acquired by the discharge 
experiment are then computed using the current calculation 
method. The current calculation method is presented as 

SOC(t) = SOC(0) −  ∫
𝐼(𝑡)

𝐶𝑛

𝑡

0
𝑑𝑡            (12) 

Where SOC(t) stands for SOC at time t, I(t) stands for 
current at time t, SOC(0) stands for initial SOC, and C stands 
for battery rated capacity. 

Using MNN and LSTM, four models were developed that 
use different input parameters. The learning structure of MNN 
and LSTM used in this document is shown in Fig. 10 and 11. 
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Fig. 10. Structure of the used MNN Models. 

 

Fig. 11. Structure of the used LSTM Models. 

One discharge time data was added to each of the four 
MNN models and four LSTM models constructed using 2, 3, 4, 
and 5 values for voltage (V) and current (I) data. In Fig. 10 and 
11, the input parameter (T) represents the time from the 
beginning to the end of the discharge experiment, and voltage 
and current data are sampled once every two seconds of the 
discharge experiment. The four MNN models all have the same 
hidden layer structure, consisting of two layers. The first node 
count was 128, the second node count was 64, and the sigmoid 
was used as an activation function. There was one node in the 
output layer and the model was trained using 15000 epochs. 
The four LSTM models all have the same hidden layer 
structure, consisting of three LSTM layers. The first node 
count was 150, the second node count was 100, the third node 
count was 50, and the sigmoid was used as an activation 
function. There was one node in the output layer and the model 
was trained using 5000 epochs. 

B. Experimental Result 

In this paper, The SOC was estimated by adding different 
numbers of voltage and current data and one discharge-time 
parameter to MNN and LSTM. The SOC errors of each 
estimated battery using MNN are presented in Table Ⅰ and 
Fig.  12. The models were named according to the number of 

input parameters employed: 5-input (two voltages, two 
currents, one discharge time), 7-input (three voltages, three 
currents, one discharge time), 9-input (four voltages, four 
currents, one discharge time), and 11-input (five voltages, five 
currents, and one discharge time). Each battery’s error function 
was estimated using the mean absolute error (MAE) and is 
given as 

MAE =  
1

𝑛
∑ |𝑦𝑖 − �̂�|𝑛

𝑖=1              (13) 

where 𝑛  is the number of data to be calculated, y is the 
estimated value of SOC, and �̂� is the predicted value using the 
current loading method and MNN or LSTM. 

The SOC error estimated by the 5-input model showed that 
all four batteries had errors between 1% and 2%. The SOC 
error of the 9-input and 11-input models resulted in less than 
1% errors on some batteries. The SOC error of the 11-input 
model is relatively smaller than that of the other models. The 
least estimated error (0.83%) among the four models was 
Battery 3 on the 9-input model. Consequently, the SOC 
estimation performance of 9 and 11 input models is considered 
to be superior to that of other models. The SOC error of each 
estimated battery using LSTM is presented in Table Ⅱ and 
Fig. 13. 

TABLE I.  SOC ESTIMATION ERROR USING MNN MODELS 

 Battery1 Battery2 Battery3 Battery4 

5-input 1.68% 1.71% 1.41% 1.54% 

7-input 1.31% 1.52% 1.02% 1.15% 

9-input 1.35% 1.31% 0.83% 1.01% 

11-input 0.95% 1.07% 0.89% 1.1% 

 

Fig. 12. SOC Estimation Error Graph using MNN Models. 

TABLE II.  SOC ESTIMATION ERROR USING LSTM MODELS 

 Battery1 Battery2 Battery3 Battery4 

5-input 1.6% 1.83% 1.82% 1.69% 

7-input 0.82% 0.89% 0.8% 0.85% 

9-input 0.65% 1.18% 0.76% 0.88% 

11-input 0.61% 1.02% 0.73% 0.78% 
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Fig. 13. SOC Estimation Error Graph using LSTM Models. 

The SOC error estimated by the all models showed that all 
had errors below 2%. The SOC error of the 7~11-input models 
resulted in less than 1% errors on some batteries. The SOC 
error of the 11-input model is relatively smaller than that of the 
other models. The least error (0.61%) was Battery 1 on the 11-
input model. Consequently, it is judged that the SOC 
estimation performance of 11 input models is superior to that 
of other models. Figs. 14 through 17 graph the SOC estimation 
results of the MNN models and LSTM models (Estimated 
Result of Battery 1). “Estimation” label and “Calculation” label 
in Fig. 14, 15, 16 and 17 show estimated values using artificial 
neural networks and SOC label values obtained using current 
integration, respectively. 

 
(a) Result of MNN. 

 
(b) Result of LSTM. 

Fig. 14. SOC Estimation Result of 5-Input Model for (a) MNN and (b) LSTM. 

 
(a) Result of MNN. 

 
(b) Result of LSTM. 

Fig. 15. SOC Estimation Result of 7-Input Model for (a) MNN and (b) 

LSTM. 

 
(a) Result of MNN. 

 
(b) Result of LSTM. 

Fig. 16. SOC Estimation Result of 9-Input Model for (a) MNN and (b) 

LSTM. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 12, No. 8, 2021 

66 | P a g e  

www.ijacsa.thesai.org 

 
(a) Result of MNN 

 
(b) Result of LSTM 

Fig. 17. SOC Estimation Result of 11-Input Model for (a) MNN and (b) 

LSTM. 

Using the LSTM in Table Ⅱ, the estimated error of MNN in 
Table Ⅰ was compared, and the estimated error of MNN in 5-
input model was relatively small compared to LSTM. 
However, in other models with 7 to 11 inputs, LSTM's 
estimation performance can be determined to be superior to 
MNNs because the estimation error of LSTM was small. 

According to Chemali et al. [17], the results obtained using 
LSTM showed an error of 0.573% at a fixed temperature of 
10℃. The model with the smallest error in this paper was the 
LSTM 11-input model, with a SOC error of 0.61% for Battery 
1, which was larger than that of Chemali et al. However, in the 
work by Chemali et al., the error in an environment with 
ambient temperature of 25℃ was 0.774%, indicating that the 
error in this work was smaller. 

 

Fig. 18. SOC Estimation Display a LSTM Model. 

Discharge experiments using the LSTM models in this 
work for SOC prediction in battery SOC estimation were made 
in real time. Fig. 18 shows a screen that uses the LSTM model 
to make real-time estimates. Real-time estimates were made 
using 7 inputs and 9 inputs, with the estimation errors shown in 
Table Ⅲ. 

TABLE III.  REAL-TIME ESTIMATION ERROR WITH LSTM MODEL 

 Battery 1 Battery 2 Battery 3 Battery 4 

7-input 1.79% 2.63% 1.9% 2.25% 

9-input 1.79% 1.23% 2.07% 1.88% 

The estimation results show that the error in real-time 
estimation is relatively higher than that shown in Table Ⅲ. It is 
judged that the error increased due to the influence of noise 
generated during real-time estimation. However, it was 
confirmed that real-time SOC evaluation using the learning 
model is possible. 

V. CONCLUSION 

In this study, we built a vehicle driving simulator to 
monitor changes in battery SOC when driving an actual vehicle 
and then applied the HWFET (cycle mode) to conduct 
discharge experiments. The SOC was estimated based on the 
obtained voltage, current, and discharge-time data using the 
vehicle driving simulator. We used that data as input 
parameters for the MNN and LSTM. We used four MNN and 
four LSTM models and compared the estimation errors of each 
model by adding two, three, four, or five voltages and currents 
and one discharge-time parameter. The SOC error of the four 
MNN models was less than 2%. Among the MNN models, the 
9-input and 11-input models have errors of less than 1% in 
some batteries. The SOC estimation results of the LSTM 
model showed an estimation error of less than 2% for all four 
models and an overall error of less than 1% for the 7-input 
model and 11-input model. Estimation results from both MNN 
and LSTM show that the estimation error of the 11-input 
model is small compared to other models. Moreover, the SOC 
error results of LSTM were relatively small compared to MNN 
except for the 5-input model. Therefore, it was determined that 
the SOC estimation performance of LSTM was superior to that 
of MNN. Discharge experiments were conducted in real time 
using the 7-input LSTM model and 9-input LSTM model that 
were established for SOC estimation and SOC was estimated. 

The discharge experiment was conducted using Li-ion 
batteries as input voltages for the vehicle driving simulators by 
checking and acquiring voltage and current data variations, 
which were expected to be applicable when driving an actual 
vehicle. 

Further studies will consider conducting a discharge 
experiment by applying another driving cycle test, the Federal 
Test Procedure 75 (FTP-75) for city driving test used by the 
U.S. Environmental Protection Agency, to the vehicle driving 
simulators. The data obtained through the discharge 
experiments would be used as input parameters for MNN and 
LSTM to compare the SOC estimation and errors. 
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