
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

Comprehensive Study on Machine Learning
Techniques for Software Bug Prediction

Nasraldeen Alnor Adam Khleel, Károly Nehéz
Department of Information Engineering

Institute of Information Science
University of Miskolc

H-3515 Miskolc
Hungary

Abstract—Software bugs are defects or faults in computer
programs or systems that cause incorrect or unexpected
operations. These negatively affect software quality, reliability,
and maintenance cost; therefore many researchers have already
built and developed several models for software bug prediction.
Till now, a few works have been done which used machine
learning techniques for software bug prediction. The aim of this
paper is to present comprehensive study on machine learning
techniques that were successfully used to predict software bug.
Paper also presents a software bug prediction model based on
supervised machine learning algorithms are Decision Tree (DT),
Naïve Bayes (NB), Random Forest (RF) and Logistic Regression
(LR) on four datasets. We compared the results of our proposed
models with those of the other studies. The results of this study
demonstrated that our proposed models performed better than
other models that used the same data sets. The evaluation process
and the results of the study show that machine learning
algorithms can be used effectively for prediction of bugs.

Keywords—Static code analysis; software bug prediction;
software metrics; machine learning techniques

I. INTRODUCTION
Due to the increasing size, complexity of software

products and inadequate software testing no system or
software can claim to be bugs free. There are many activities
related to software testing such as implementing processes,
procedures, and standards that must be carried out in a specific
sequence to ensure that quality objectives are achieved or
testing a product for issues such as software bugs. There are
different classifications of bugs in software testing like Major
defect: a defect, which will cause an observable product
failure or deviation from functional requirements. Minor
defect: a defect that will not cause a failure in execution of the
product. Fatal defect: a defect that will cause
application/system crash or close abruptly. Bugs can also be
classified into functional defects, performance defects,
usability defects, compatibility defects, security defects, etc.
The use of analytical methods to check and review source
codes is standard development practice. This process can be
accomplished manually or automatically using static code
analysis tools, dynamic code analysis tools, etc. Recently a lot
of tools evolved for static code analysis, to provide a truly
practical, value added solution to many of the problems that
software development organizations face. But there are
numerous false positives and false negatives results, which

make these tools hard to be used in practice. So, there must be
found another methodology or approach for static code
analysis such as Machine Learning (ML) algorithms [1], [9],
[12]. Software bugs usually appear during software
development process. Software bugs are often difficult to
detect or identify, and developers spend a large amount of
time locating and fixing them. As well, some bugs cannot be
detected at an early phase of development. To relieve the issue
of bug fixing, the researchers did many extensively studies for
bug prediction. Many machine learning (ML) driven
prediction models have been built and tested on various basis.
The process of software bug report is an important part of
software maintenance, but the process of bug reports
assignment can be very expensive in large software
development projects, where a lot of studies suggest
automating bug assignment approaches using machine
learning in open-source software. Software Bug Prediction
(SBP) plays a vital and important role in the process of
improving software product quality. SBP is a process of
generating machine learning models (classifiers) to predict
software (code) defects based on historical data. The most
recent methodologies used to predict software bugs are
supervised(classification)machine learning models, and with
recent advances in machine learning techniques, new models
have emerged that have enhanced performance and
capabilities in predicting software bug [2]. Classification is a
major task of data analysis using machine learning algorithms
that allow the machine to learn associations between instances
and decision labels, from which an algorithm builds a model
to predict the labels of new instances for a specific sample
data. In machine learning, classification can be categorized
into three types: binary (yes or no), multi-class, and multi-
label classification [5], [25]. To build a dataset containing
useful buggy code element characterization information, we
chose Promise Repository dataset that stores software metrics
along with bug information for many projects, these datasets
were collected from real software projects by NASA [26]. The
objective of this study is to investigate the previous studies
that used most effective machine learning techniques for
software bug prediction. In this paper, four supervised
machine learning models are identified and utilized on four
different datasets to evaluate the Machine learning algorithms
capabilities in software bug prediction. The paper compares
the proposed models based on various performance measures
like accuracy, precision, recall, F1-score and ROC curves. The

726 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

structure of this study is organized as follow. Section 2
presents a discussion on software bug prediction by analyzing
static code analysis. An overview of the machine learning
techniques is presented in Section 3. After that, the literature
review is presented in Section 4. Section 5 presents our
research methodology. Section 6 presents software metrics
and data sets. An overview of the selected machine learning
classifiers and their evaluation is presented in Sections 7 and
8. Section 9 presents the experimental results and discussion
followed by conclusions and future work in the Section 10.

II. SOFTWARE BUG PREDICTION BY ANALYZING STATIC
CODE

Static code analysis is a method of analyzing software
code without its execution to find potential problems like
defects or bugs issues that might arise at runtime to check the
quality of source code and addressing weaknesses in the
program code through evaluating and correct source code
based on some factors like structure, content, and
documentation. There are many commercial and open source
tools developed for static code analysis [3], [24]. These tools
remove the unnecessary fuzz from source code and perform
some automated checks to improve and ensure a certain level
of quality. This can be performed very early in the
development process, during this procedure the code must
pass many formal tests to be considered bug free. There exist
several ways of analyzing static code by exploiting the natural
language found within a program’s text based on compliance
with different coding standards. These types of analysis may
be manual, which is usually very time consuming like code
inspections, or automated using one or more tools. Software
Bug Prediction (SBP) considers a vital activity during
software development and maintenance. SBP is a
methodology related to figure out bugs in the software module
by considering software metrics as a parameter [4]. Numerous
studies have confirmed that machine learning techniques are
suitable techniques for predicting software bug to identify
defective software code [5], [6], [9]. Bug reports are basic
software development tools which describe software bugs,
especially in open-source software [7], [30]. To warranty the
quality of software, many projects use bug reports to gather
and record the bugs reported [8]. The bugs classified into two
classes: intrinsic bugs refer to bugs that were introduced by
one or more specific changes to the source code and extrinsic
bugs refer to bugs that were introduced by changes not
recorded in the version control system [5], [18]. Several
techniques have been developed over the years to
automatically detect bugs in source code. Often, these
techniques depend on formal methods program analysis. Many
studies in literature use code features as input for machine
learning algorithms to perform bug prediction. The most
machine learning algorithms that can be used to detect
software bugs is classification techniques [10].

III. MACHINE LEARNING TECHNIQUES
Machine learning is an area of research where computer

programs can learn and get better at performing specific tasks
by training on historical data [2]. Machine learning algorithms
can be applied to analyze data from different perspectives to
allow developers to obtain useful information [10], [38]. High

quantities of data are needed to develop machine learning
models-based prediction [11], [31], [33]. Machine learning
algorithms build models from training examples, which are
then used to make predictions when faced with new examples.
Supervised learning is a type of machine-learning algorithm
that builds a prediction model by training the labeled data to
execute the prediction task. The goal of supervised machine
learning algorithms is to develop an inferring function through
concluding relationships between independent
variables(inputs) and dependent variables(outputs) of the
training datasets [5], [27]. Classification is a method uses a
data mining or machine learning approach classify the data,
classification techniques deal with a software component,
named classifier, this classifier invoked with inputs (features).
Features are extracted from the training data examples as text,
numbers, or nominal values. Bug prediction is one application
of machine learning that aims to identify critical pieces in
source code potential contain defects. This process can be
used in software projects to earning insights into how and
where bugs happen to enhance software quality.

IV. LITERATURE REVIEW
Software bug prediction is one of the most popular

research areas in software engineering. The major aim of the
software bug prediction is to detect bugs in software modules
by considering software metrics as input (parameters). The
research described in this paper presents a comprehensive
study on machine learning techniques for software bug
prediction. The following subsection covers the recent
literature related to bug prediction. Considerable research has
been performed on software bug prediction using machine
learning techniques. For example, Wang et al. in [1] proposed
a combination approach of contexts and neural network to
detecting bugs. The results show that the tool can have a
relative improvement up to 160% on F-score. Also, the tool
can detect 48 true bugs in the list of top 100 reported bugs.
Jonsson et al. in [2] evaluated automated bug assignment
techniques that are based on machine learning classification.
The results of study show that the prediction of accuracies is
between 50% and 90% when large training sets are used.
Chappell et al. in [3] presented report on using machine
learning techniques for finding bugs in C programs.
Hammouri et al. in [5] presented machine learning model for
software bug prediction. The experiment was conducted on
the basis of three supervised machine learning algorithms
Naïve Bayes, Decision Tree, and Artificial Neural Networks
to predict future software bugs based on historical data. The
results show that the use of machine learning algorithms is
effective and leads to a high rate of accuracy. The comparison
results showed that the Decision Tree (DT) classifier has the
best results over the others. Kumar Pandey et al. in [6]
conducted compare various Bayesian network classifier and
how they are useful for bugs prediction and random forest.
The experimental results revealed that the Bayesian network is
better than random forest. Meenakshi et al. in [7] proposed
various ML models for software bug prediction. The
experiment results demonstrated that the machine learning
techniques are efficient and suitable approaches to predict the
future software bugs and the comparison of results showed
that the DT classifier has the best results over the others. Un-

727 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

Nisa Uqaili et al. in [8] proposed an approach to classify
different types of bugs according to their severity and priority
basis. They applied three supervised machine learning models
(Naïve Bayes, Random Forest, and Multilayer Perceptron) for
prediction of fault prone. The experimental results showed
that the Random-Forest (RF) method better than other
techniques of machine learning. Aleem et al. in [10]
conducted study to a comparative the performance of some
machine learning algorithms for software bug prediction. The
results showed most of the applied machine learning
techniques performed well on software bug prediction. Islamet
et al. in [11] presented an empirical study using deep learning
libraries to explore the bugs in software. They conducted 2716
comprehensive bug characteristics studies to identify the bug
types and root causes of bugs. The study found that the most
severe bug types in deep learning software are data bug and
logic bug, where appearing more than 50% of the times and
main causes of these bugs are incorrect model parameter and
structural inefficiency. Sharma et al. in [13] proposed a new
approach of creating a dictionary to classify critical terms and
determine severity using two machine learning algorithms
(Naïve Bayes Multinomial and K-nearest neighbor
algorithms), and the results were evaluated based on two
performance measures (accuracy and accuracy). The results
demonstrated that the K-nearest neighbor classifier performs
better Naïve Bayes Multinomial classifier to classify the
severity of the bug Table I illustrates techniques used in
previous studies on machine learning-based software bugs
prediction. Bold number indicates comparative studies, capital
and bold X shows the classifier giving the best results.

TABLE I. ML TECHNIQUES USED IN PREVIOUS STUDIES FOR SOFTWARE
BUGS PREDICTION

Reference
Machine Learning techniques

DT NB ANNs RF SVM DL K-NN LR

 [1] x

 [3] x

 [4] x

 [5] X x x

 [6] x

 [7] X x

 [8] x x X

[10] x x X x X

[11] x

[12] x x

[13] x

[16] x x x x

[18] x x x X

V. RESEARCH METHODOLOGY
The main objective of this study is to identify and analyze

the latest studies that use machine learning techniques for
software bug prediction. A literature review has been used as a
research methodology in this study as it is a defined and
methodical way of identifying, evolution, and analyzing
published literature to investigate the research questions.

A. Study Selection
There are a lot of criteria to identify the relevant studies in

this study and papers collected and reviewed by year of
publication as it is shown in Fig. 1. For a paper to be included
in this study, it must meet various inclusion criteria.

• Studies that suggest and discuss the use of machine
learning techniques to predict software bugs.

• Studies that motivate and discuss the benefits of using
machine learning techniques for software bug
prediction.

• Studies that provide an empirical basis for the results
and have been published in a high-quality journal or in
conference proceedings.

B. Research Questions
This study aims to establish a starting point for future

research for software bug prediction and simultaneously
provide practitioners with a summary of most relevant work
done in the area of software bug prediction uses machine
learning techniques to heel and allow picking machine
learning techniques that suits them. The research questions
identified in this context are given in Table II.

Fig. 1. Number of Papers Collected and Reviewed by Year of Publication.

TABLE II. RESEARCH QUESTIONS

RQ# Research Question Motivation

RQ1
Which ML models have been
used for software bug
prediction?

Identify the machine learning
models commonly being used
for software bug prediction.

RQ2
How these models have been
trained and what languages have
been used?

To find out how these models
were trained and what languages
are used.

RQ3
Which performance measures
are used for software bug
prediction?

Assess the performance of the
machine learning techniques for
software bug prediction.

RQ4

What the conclusions can we
draw about the efficiency of
machine learning algorithms
used in predicting software bug
from results presented in the
selected studies?

Identify the efficiency of
machine learning algorithms
used in predicting software bug
from results presented in the
selected studies.

728 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

1) RQ1: Which ML models have been used for software
bug prediction?: To answer this research question, this study
identified the machine learning models commonly being used
for software bug prediction in previous studies as shown in
Fig. 2, and these models are:

• Decision Tree is a popular learning method used in data
mining and machine learning for the purpose of
regression and classification. It refers to a hierarchal
model or a tree with decision nodes that have more than
one branch and leaf nodes that represent the decision.
Each node in a decision tree represents a feature in an
instance to be classified, and each branch represents the
value thresholds the contained nodes can assume.
Instances are categorized beginning at the root node and
sorted based on their attribute values [5], [29].

• Naïve Bayes (NB) is a supervised learning algorithm
and defines as simple probabilistic classifier and
efficient based on Bayes theorem with independence
assumption between the features, this means that the
Naive Bayes classifier is based on estimating the
probabilities of the unobserved node, based on the
observed probabilities [5], [22].

• Artificial Neural Networks (ANNs): ANNs are machine
learning models or nonlinear classifiers used to model
complex relationships between inputs and outputs for
classification purposes. An ANN model contains
multiple units (layers) for information processing which
are known as neurons. The layers are typically named
the input layer, hidden layer, and output layer [5]. When
implementing a neural network, a set of consistent
training values must be available to set up the expected
operation of the network and a set of validation values
to validate the training process [14].

• Random Forest is one of the most utilized models, due
its effortlessness and the way, which it can be utilized
for both characterization and relapse assignments. It is
an adaptable and simple to utilize machine learning
calculation, even without hyper-parameter tuning [23].

• Support Vector Machine (SVM): SVM is one of the
regulated machine learning models. It is a
comparatively novel learning approach used for binary
classification. The primary role is to discover a hyper-
plane, which divide the dimensional data completely
into two categories [15], [32].

• Deep Learning (DL): DL is one of an artificial
intelligence function that mimics the workings of the
human brain. It allows and helps to solve complex
problems with using a data set that is very diverse,
unstructured, and interconnected [40].

• K-Nearest Neighbor define as a simple supervised
classification algorithm in which an object is classified
by looking at the K nearest objects and by choice most
frequently occurring class [28].

• Logistic Regression (LR): LR is a statistical
classification technique which is based on maximum
likelihood estimation. It is meant for predicting the
likelihood of an entity belonging one class or another
class [16], [28], [37], [39].

2) RQ2: How these models have been trained and what
languages have been used? To answer this research question,
the essential issue of software bug prediction with machine
learning techniques is how train and test the model [17]. A
large and representative data set is the basis for training and
testing machine learning models. So, in the literature review
and in our experimental study, different and large datasets,
and different programming languages such C, C++ and Java
has been used to training machine learning models.

3) RQ3: Which performance measures are used for
software bug prediction? To answer this research question,
several measures are used for gauging the performance of
different machine learning models. These performance
measures are used for comparing and evaluating models
developed using various machine learning techniques. A
depiction of the number of studies using each performance
measures is used in Fig. 3. The most used performance metric
is accuracy, which is closely followed by recall, precision, and
F1-score, and some less commonly metrics are H-measure,
Area Under the Curve (AUC) and Receiver Operating
Characteristics (ROC) curve.

Fig. 2. Number of Studies across ML Techniques based on Classifications.

Fig. 3. Studies using different Performance Measures for SBP.

729 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

4) RQ4: What the conclusions can we draw about the
efficiencies of machine learning techniques for software bug
prediction from results presented in the selected studies?: To
answer this research question, this study evaluates the best
machine learning techniques for devolving an effective model
for software bug prediction through evaluating the presented
software bug prediction models in previous studies. Different
machine learning techniques have different characteristic like
speed, accuracy, interpretability, and simplicity. This study
focused on the studies that applied machine learning
algorithms and performance measures that most used. Looking
at the results achieved in the literature review and the results
achieved in our study, machine learning techniques are well
applicable to static code analysis for software bug prediction.

VI. SOFTWARE METRICS (FEATURES) AND DATASETS
Software metrics are a quantitative and standard measure

of some property of software that assigns numbers or symbols
to attributes of the measured entity. Software metrics can be
used to collect information regarding structural properties of a
software design which can be further statistically analyzed,
interpreted and linked to its quality. In software comprise
complexity, cohesion, and coupling related metrics can be
measured during the software development phases such as
design or coding and it also used to calculate the quality of
software [19], [34], [36]. Software metrics can be classified to
static code metrics and process metrics. Static code metrics
can be directly extracted from source code, like Lines of Code
(LOC), Cyclomatic Complexity Number (CCN). Object
oriented metrics is a subcategory of static code metrics, like
Depth of Inheritance Tree (DIT), coupling between Objects
(CBO), Number of Children (NOC), and Response for Class
(RFC). Process metrics can be extracted from Source Code
Management system based on historic changes on source code
overtime. Metrics can also be classified based on development
phase of software life cycle, into source code level metrics,
detailed design level metrics or test level metrics. Object-
oriented metrics are often used to assess the testability,
maintainability or reusability of source code [20], [35].
Commonly dataset that used for software bug prediction
domain is promise repository dataset. To perform this
experiment, the data is obtained from the publicly available
and published data in defect prediction datasets that stored
software metrics along with defect information of several
projects, these datasets were collected from real software
projects by NASA. These public domain datasets are used in
this experiment because this is a benchmarking procedure of
defect prediction research [17, 21]. To perform machine
learning on the available source code, it is necessary to
establish a set of features that can be extracted that contain the
information needed. Many studies [4, 6, 7, and 14] use
software metrics as independent variables to measuring the
quality of software modules and build software bug prediction
models. It is intuitive to think that the bug proneness of a
module is correlated with its complexity; therefore, bug
prediction studies usually employ product metrics to improve
prediction accuracy. The projects used in this study were
developed using different programming languages and include
heterogeneous code metrics like Object-Oriented (OO)

metrics, Halstead metrics, Lines of Codes (LoC), and McCabe
complexity. Various defects detection methods like Black box
probing, automatic formal methods, etc. And different
machine learning models like linear regression, the M5’ model
tree learner and the J48 decision tree learner have been
implemented in these projects [10]. Table III, Table IV shows
the information about dataset, and software metrics (features).

TABLE III. DESCRIPTIONS OF DATASETS (PROJECTS) USED IN THIS STUDY

Projects #
Modules

%
Defects Language Description

JM1 10885 19% C

Real-time predictive
ground system: Uses
simulations to generate
predictions.

PC1 1107 6.8% C Flight software for earth
orbiting satellite.

KC1 2107 15.4% C++
Storage management for
receiving and processing
ground data.

KC2 523 20% C++ Software for science data
processing.

TABLE IV. DESCRIPTIONS OF SOFTWARE METRICS (FEATURES) USED IN
THIS STUDY

Metrics Type Description

Loc McCabe It counts the line of code in
software module.

v(g) McCabe Measure McCabe Cyclomatic
Complexity.

ev (g) McCabe McCabe Essential Complexity.

iv (g) McCabe McCabe Design Complexity.

N Derived Halstead Total number of operators and
operands.

V Derived Halstead Volume.

L Derived Halstead Program length.

D Derived Halstead Measure difficulty.

I Derived Halstead Measure Intelligence.

E Derived Halstead Measure Effort.

B Derived Halstead Effort estimate.

T Derived Halstead Time Estimator.

Locoed Line Count Number of lines in software
module.

Locomment Line Count Number of comments.

Loblank Line Count Number of blank lines.

Locodeandcom
ment Line Count Number of codes and comments.

uniq_op Basic Halstead Unique operators.

uniq_opnd Basic Halstead Unique operands.

total_op Basic Halstead Total operators.

total_opnd Basic Halstead Total operands.

BranchCount Branch Total Number of branch count.

730 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

VII. CLASSIFIERS USED FOR SOFTWARE BUG PREDICTION IN
THIS STUDY

The next step after collecting datasets is using the
collected datasets to train a machine learning models potential
buggy modules as it is shown is Fig. 4. Four supervised
machine learning algorithms will be analyzed and evaluated in
this study, which are DT, NB, RF and LR. These algorithms
were chosen because are the most algorithms used in previous
studies.

Fig. 4. Structure of Software Bug Prediction Model.

VIII. BUILDING AND EVALUATION OF PREDICTION MODELS
Most studies of software bug prediction divide the data

into two sets: a training set and a test set. The training set is
used to train the bug prediction models, whereas the testing set
is used to evaluate the performance of the bug prediction
models. After building the prediction model, we need to
evaluate the performance of the model. To evaluate the
performance of using machine learning models in software
bug prediction in this study used a set of performance
measures based on the confusion matrixes and ROC (Receiver
Operating Characteristic) Curves. Confusion
matrix(correlation matrix) is often used to describe the
performance of machine learning models(classification
methods) using a set of test data, correlation summarizes the
results of the testing algorithm and provides a report of (1)
True Positives (TP), (2) False Positives (FP), (3) True
Negatives (TN), and (4) False Negatives (FN). ROC curves
are plots the false positive rate on the x-axis and true positive
rate on the y-axis over all possible or potential classification
thresholds. The subsections bellow describes the confusion
matrix and performance measures applied as it is shown in
Table V and equations.

• Accuracy: Accuracy is the ratio of true results that
calculated as the sum total of true positive and true
negative instances divided by 100. The top (maximum)
accuracy is 1, whereas the low (minimum) accuracy is
0. Accuracy can be computed by using the following
formula:

Accuracy = (TP + TN)
(TP + TN+ FP + FN)

 (1)

• Precision: Precision is defined as the number of true
positive predictions divided by the total number of
positive predictions or fraction of true positive and
predicted yes instances. The top (maximum) precision
is 1, whereas the low (minimum) is 0 and it can be
calculated as:

Precision = TP
(TP + FP)

 (2)

• Recall: Recall is the number of positive predictions
divided by the total number of positives or defined as
the fraction between true positive instances and actual
yes instances. The top (maximum) recall is 1, whereas
the low (minimum) is 0. The formula of recall given
below:

Recall = TP
TP + FN

 (3)

• F1-score: F1-score is weighted harmonic mean of
precision and recall or defined as the fraction between
product of the recall and precision to the summation of
recall and precision parameter of classification, it is
used to combine the recall and precision measures in
one measure to compare different machine learning
algorithms. F1-score formula is given below:

F1 − score = (2∗ Recall ∗ Precision)
 (Recall + Precision)

 (4)

TABLE V. THE CORRELATION MATRIX

Predicted
Actual

Class X Class Y

Class X TN FP

Class Y FN TP

IX. RESULT AND DISCUSSION
This study aimed at improving the understanding of the

process of software bug prediction especially using supervised
machine learning techniques. In the literature review, several
papers were found that discussed machine learning models for
predicting software bugs that classify the defective and non-
defective module. It was observed in the RQ1 analysis that
most of the machine learning techniques used in software bug
prediction are NB, ANNs, and SVM. As it is noted in the RQ2
analysis that studies used different performance measures. The
experiment of this study was performed in PYTHON
environment to evaluate four machine learning algorithms:
DT, NB, RF and LR. The evaluation process is implemented
with real datasets. Experimental results are collected and
evaluated based on various performance measures (accuracy,
precision, recall, F1-score and ROC Curves). Results
demonstrated that the machine learning algorithms are
efficient approaches to predict software bugs. The comparison
results demonstrated that the Decision Tree (DT) and Random
Forest (RF) classifiers have the best results. Tables VI to IX
show the performance of proposed models on the four data
sets based on all performance measures. The maximum (best)
accuracy value is 99%, which was achieved by Decision Tree
(DT) and Random Forest (RF) models in JM1, PC1and KC1
datasets. The maximum (best) precision value is 99%, which
was achieved by Decision Tree (DT) and Random Forest (RF)
models in JM1, PC1and KC1 datasets. The maximum (best)
recall value is 100%, which was achieved by Decision Tree
(DT) and Random Forest (RF) models in all datasets. The
maximum (best) F1-score value is 99%, which was achieved
by Decision Tree (DT) and Random Forest (RF) models in

731 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

PC1 dataset. The average accuracy of the proposed models on
the four data sets is shown in Fig. 5 and Fig. 6. As shown, the
two ML models Decision Tree (DT) and Random Forest (RF)
achieved a high average accuracy rate. The average value for
the accuracy rate in all datasets for the two models is over
98.5% on average. The minimum value appears for Naive
Bayes (NB) model in the JM1 dataset, because the data set is
small and the Naive Bayes (NB) model needs a large data set
in order to achieve a high accuracy value. Fig. 7 to Fig. 10
presents the ROC Curves of proposed models on the four data
sets. The results show that Decision Tree (DT) and Random
Forest (RF) models have better values than Naive Bayes (NB)
and Logistic Regression (LR) models. For evaluating the
effectiveness of the proposed models, in Tables X and XI we
have compared the results of our study with the results of
three others studies [4, 7, and 10] which used the same dataset
and different performance measures (Accuracy, Precision,
Recall, and F1-score). The results showed that our proposed
models performed better than others models. After a
comprehensive study of Machine Learning techniques, there
must be a deterministic strategy for selecting machine learning
techniques to predict software bugs.

TABLE VI. PERFORMANCE MEASURES OF THE PROPOSED MODELS OVER
JM1 DATASET

proposed model
Performance measures

Accuracy Precision Recall F1-score

DT 0.99 0.99 1.00 0.99

NB 0.80 0.81 0.97 0.89

RF 0.99 0.99 1.00 0.99

LR 0.81 0.82 0.99 0.89

TABLE VII. PERFORMANCE MEASURES OF THE PROPOSED MODELS OVER
PC1 DATASET

proposed model
Performance measures

Accuracy Precision Recall F1-score

DT 0.99 0.99 1.00 1.00

NB 0.91 0.94 0.96 0.95

RF 0.99 0.99 1.00 1.00

LR 0.93 0.94 0.99 0.96

TABLE VIII. PERFORMANCE MEASURES OF THE PROPOSED MODELS OVER
KC1 DATASET

proposed model
Performance measures

Accuracy Precision Recall F1-score

DT 0.99 0.99 1.00 0.99

NB 0.85 0.88 0.96 0.92

RF 0.99 0.99 1.00 0.99

LR 0.85 0.87 0.96 0.92

TABLE IX. PERFORMANCE MEASURES OF THE PROPOSED MODELS OVER
KC2 DATASET

proposed model
Performance measures

Accuracy Precision Recall F1-score

DT 0.98 0.98 1.00 0.99

NB 0.83 0.83 0.98 0.90

RF 0.98 0.98 1.00 0.99

LR 0.84 0.86 0.96 0.91

Fig. 5. Average of Accuracy Measure of Models across the JM1 and PC1

Dataset.

Fig. 6. Average of Accuracy Measure of Models across the KC1 and KC2

Dataset.

732 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

Fig. 7. Comparison of ROC Curves for Models across the JM1 Dataset.

Fig. 8. Comparison of ROC Curves for Models across the PC1 Dataset.

Fig. 9. Comparison of ROC Curves for Models across the KC1 Dataset.

Fig. 10. Comparison of ROC Curves for Models across the KC2 Dataset.

733 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

TABLE X. COMPARING THE RESULTS OF OUR STUDY WITH THE RESULTS
OF STUDIES WHICH USES THE SAME DATASET AND ALGORITHMS ACROSS THE

JM1 AND PC1 DATASET

JM1 dataset

Performance
measure

ML
models

Studies

First
Study

Second
Study

Third
Study

Our
study

Accuracy

DT - - 0.81 0.99

NB - - 0.81 0.80

RF - - 0.82 0.99

F1-score

DT - - 0.90 0.99

NB 0.75 - 0.89 0.89

RF 0.76 - 0.90 0.99

LR 0.74 - - 0.89

pc1 dataset

Accuracy

DT - - 0.93 0.99

NB - - 0.88 0.91

RF - - 0.93 0.99

F1-score

DT - - 0.97 1.00

NB 0.89 - 0.94 0.95

RF 0.91 - 0.97 1.00

LR 0.91 - - 0.96

TABLE XI. COMPARING THE RESULTS OF OUR STUDY WITH THE RESULTS
OF STUDIES WHICH USES THE SAME DATASET AND ALGORITHMS ACROSS THE

KC1 AND KC2 DATASET

kc1 dataset

Performance
measure

ML
models

Studies

First
Study

Second
Study

Third
Study

Our
study

Accuracy

DT - - 0.84 0.99

NB - 0.82 0.82 0.85

RF - - 0.85 0.99

Precision NB - 0.80 - 0.88

Recall NB - 0.83 - 0.96

F1-score

DT - - 0.92 0.99

NB 0.82 0.81 0.90 0.92

RF 0.82 - 0.92 0.99

LR 0.81 - - 0.92

kc2 dataset

Accuracy

DT - - 0.82 0.98

NB - - 0.84 0.83

RF - - 0.82 0.98

F1-score

DT - - 0.89 0.99

NB 0.80 - 0.90 0.90

RF 0.76 - 0.89 0.99

LR 0.79 - - 0.91

X. CONCLUSION
Software bug prediction is very important field in static

code analysis to improve software quality and reliability. It is
an approach, in which a prediction model is constructed for
the purpose of predicting future software defects based on
historical data using some software metrics. Many approaches
have been presented using various datasets, various metrics,
and various performance measures. The aims of this study are
successfully achieved. The aims are evaluate and present
comprehensive study on machine learning techniques have
been used for software bug prediction in recent years and
apply the best techniques for software bug prediction in this
study. To compare and evaluate the performance of the
proposed models, we used different performance measures.
The results concluded that ML techniques are gaining interest
in software bug prediction, to improve the efficiency of bug
detection. Four NASA public datasets were chosen for this
experiment and analyze the performance of models. The
experimental results revealed that the DT and RF classifiers
are better than others classifiers. Static code analysis requires
further research to identify and detect of software bugs and
several machine learning techniques can be used to improve
results. As a future work, we plan to introduce other machine
learning techniques with data balancing techniques to improve
the accuracy for predicting software bugs.

ACKNOWLEDGMENT
The authors gratefully acknowledge the financial

assistance from the Institute of Information Science, Faculty
of Mechanical Engineering and Informatics, University of
Miskolc.

REFERENCES
[1] Y. Li, S. Wang, T. N. Nguyen, and S. V. Nguyen, “Improving bug

detection via context-based code representation learning and attention-
based neural networks”, in Proceedings of the ACM on Programming
Languages, vol. 3, OOPSLA, paper no. 162, pages 1‒30, 2019.

[2] L. Jonsson, M. Borg, D. Broman, K. Sandahl, S. Eldh, and P. Runeson,
“Automated bug assignment: Ensemble-based machine learning in large
scale industrial contexts”, Empirical Software Engineering, vol. 21, pp.
1533‒1578, 2016.

[3] T. Chappelly, C. Cifuentes, P. Krishnan and S. Gevay, “Machine
learning for finding bugs: An initial report” in IEEE Workshop on
Machine Learning Techniques for Software Quality Evaluation,
Klagenfurt, Austria, 21 -21 February 2017, pp. 21‒26.

[4] S. K. Pandey, R. B. Mishra, and A. K. Tripathi, “BPDET: An effective
software bug prediction model using deep representation and ensemble
learning techniques”, Expert Systems with Applications, vol. 144, paper
no. 113085, 2020.

[5] A. Hammouri, M. Hammad, M. Alnabhan, and F. Alsarayrah, “Software
bug prediction using machine learning approach”, International Journal
of Advanced Computer Science and Applications, vol. 9, no. 2, pp. 78‒
83, 2018.

[6] S. K. Pandey, R. B. Mishra, and A. K. Triphathi, “Software bug
prediction prototype using Bayesian network classifier: A
comprehensive model”, Procedia Computer Science, vol. 132, pp. 1412‒
1421, 2018.

[7] S. S. Meenakshi, “Software bug prediction using machine learning
approach”, International Research Journal of Engineering and
Technology, vol. 6, no. 4, pp. 4968‒4971, 2019.

[8] I. U. N. Uqaili, S. N. Ahsan, “Machine learning based prediction of
complex bugs in source code”, The International Arab Journal of
Information Technology, vol. 17, no. 1, pp. 26‒37, 2020.

734 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

[9] Károly, Nehéz, and Khleel Nasraldeen Alnor Adam. "Tools, processes
and factors influencing of code review." Multidiszciplináris
Tudományok 10.3 (2020): 277-284.

[10] Aleem, Saiqa, Luiz Fernando Capretz, and Faheem Ahmed.
"Comparative performance analysis of machine learning techniques for
software bug detection." ITCS, CST, JSE, SIP, ARIA, DMS (2015): 71-
79.

[11] M. J. Islam, P. Pan, G. Nguyen, and H. Rajan,“A comprehensive study
on deep learning bug characteristics”, in Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, Tallinn,
Estonia, 26–30 August 2019, pages 1‒11, 2019.

[12] S. Gitika, S. Sharma, and S. Gujral. “A novel way of assessing software
bug severity using dictionary of critical terms”, Procedia Computer
Science, vol. 70, pp. 632‒639, 2015.

[13] P. Maltare and V. Sharma, “Implementation advance technique for
prediction bug using machine learning”, International Journal of
Computer Science and Information Technologies, vol. 8, no. 1, pp. 16‒
19, 2017.

[14] S. D. Immaculate, M. F. Begam, and M. Floramary. “Software bug
prediction using supervised machine learning algorithms”, in
International Conference on Data Science and Communication,
Bangalore, India, 1-2 March 2019, pages 1‒7, 2019.

[15] G. Rodríguez-Pérez, A. Serebrenik, A. Zaidman, D. M. Germán and J.
M. Gonzalez-Barahona, “How bugs are born: a model to identify how
bugs are introduced in software components”, Empirical Software
Engineering, vol. 25, pp. 1294‒1340, 2020.

[16] M. Sharma, P. Bedi, K.K. Chaturvedi, and V.B. Singh, “Predicting the
priority of a reported bug using machine learning techniques and cross
project validation”, in 12th International Conference on Intelligent
Systems Design and Applications, Kochi, India, 27-29 November 2012,
pp. 539‒545, 2012.

[17] Shirabad, J. Sayyad, and Tim J. Menzies. "The PROMISE repository of
software engineering databases." School of Information Technology and
Engineering, University of Ottawa, Canada 24 (2005).

[18] M. Efendioglu, A. Sen, and Y. Koroglu. “Bug prediction of system C
models using machine learning”, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 38, no. 3, pp. 419‒429,
2019.

[19] Rajkumar, V. and V. Venkatesh. “Hybrid Approach for Fault Prediction
in Object-Oriented Systems.” (2017).

[20] Meiliana, Syaeful Karim, et al. "Software Metrics for Fault Prediction
Using Machine Learning Approaches." IEEE (2017).

[21] Iqbal, Ahmed, et al. "Performance analysis of machine learning
techniques on software defect prediction using NASA datasets." Int. J.
Adv. Comput. Sci. Appl 10.5 (2019): 300-308.

[22] Baarah, Aladdin, et al. "Machine learning approaches for predicting the
severity level of software bug reports in closed source projects." Mach
Learn (2019).

[23] Kukkar, Ashima, et al. "A novel deep-learning-based bug severity
classification technique using convolutional neural networks and
random forest with boosting." Sensors 19.13 (2019): 2964.

[24] Moustafa, Sammar, et al. "Software bug prediction using weighted
majority voting techniques." Alexandria engineering journal 57.4
(2018): 2763-2774.

[25] ÖZTÜRK, Elife, Kökten Ulaş Birant, and Derya Birant. "An Ordinal
Classification Approach for Software Bug Prediction." Dokuz Eylül
Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 21.62
(2019): 533-544.

[26] Ferenc, Rudolf, et al. "An automatically created novel bug dataset and
its validation in bug prediction." Journal of Systems and Software 169
(2020): 110691.

[27] Pecorelli, Fabiano, and Dario Di Nucci. "Adaptive selection of
classifiers for bug prediction: A large-scale empirical analysis of its
performances and a benchmark study." Science of Computer
Programming 205 (2021): 102611.

[28] Sharma, Shubham, and Sandeep Kumar. "Analysis of Ensemble Models
for Aging Related Bug Prediction in Software Systems." ICSOFT. 2018.

[29] Kumar, Raj. "Multiclass Software Bug Severity Classification using
Decision Tree, Naive Bayes and Bagging." Turkish Journal of Computer
and Mathematics Education (TURCOMAT) 12.2 (2021): 1859-1865.

[30] Ferenc, Rudolf, et al. "Deep learning in static, metric-based bug
prediction." Array 6 (2020): 100021.

[31] Ye, Xin, et al. "Bug Report Classification using LSTM architecture for
more accurate software defect locating." 2018 17th IEEE International
Conference on Machine Learning and Applications (ICMLA). IEEE,
2018.

[32] Bani-Salameh, Hani, and Mohammed Sallam. "A Deep-Learning-Based
Bug Priority Prediction Using RNN-LSTM Neural Networks." e-
Informatica Software Engineering Journal 15.1 (2021).

[33] Pascarella, Luca, Fabio Palomba, and Alberto Bacchelli. "Re-evaluating
method-level bug prediction." 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE,
2018.

[34] Puranik, Shruthi, Pranav Deshpande, and K. Chandrasekaran. "A novel
machine learning approach for bug prediction." Procedia Computer
Science 93 (2016): 924-930.

[35] Saharudin, S. N., Wei, K. T. & Na, K. S. (2020). Machine Learning
Techniques for Software Bug Prediction: A Systematic Review. Journal
of Computer Science, 16(11), 1558-1569.

[36] Gupta, Varuna, N. Ganeshan, and Tarun K. Singhal. "Developing
software bug prediction models using various software metrics as the
bug indicators." International Journal of Advanced Computer Science
and Applications (IJACSA) 6.2 (2015).

[37] Baarah, Aladdin, et al. "Machine learning approaches for predicting the
severity level of software bug reports in closed source
projects." International Journal of Advanced Computer Science and
Applications 10.10.14569 (2019).

[38] Qin, Fangyun, Xiaohui Wan, and Beibei Yin. "An empirical study of
factors affecting cross-project aging-related bug prediction with
TLAP." Software Quality Journal 28.1 (2020): 107-134.

[39] Qin, Fangyun, et al. "Studying aging-related bug prediction using cross-
project models." IEEE Transactions on Reliability 68.3 (2018): 1134-
1153.

[40] Som Gupta and Sanjai Kumar Gupta, “A Systematic Study of Duplicate
Bug Report Detection” International Journal of Advanced Computer
Science and Applications(IJACSA), 12(1), 2021.

735 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Software Bug Prediction by Analyzing Static Code
	III. Machine Learning Techniques
	IV. Literature Review
	V. Research Methodology
	A. Study Selection
	B. Research Questions
	1) RQ1: Which ML models have been used for software bug prediction?: To answer this research question, this study identified the machine learning models commonly being used for software bug prediction in previous studies as shown in Fig. 2, and these model�
	2) RQ2: How these models have been trained and what languages have been used? To answer this research question, the essential issue of software bug prediction with machine learning techniques is how train and test the model [17]. A large and representative�
	3) RQ3: Which performance measures are used for software bug prediction? To answer this research question, several measures are used for gauging the performance of different machine learning models. These performance measures are used for comparing and eva�
	4) RQ4: What the conclusions can we draw about the efficiencies of machine learning techniques for software bug prediction from results presented in the selected studies?: To answer this research question, this study evaluates the best machine learning tec�

	VI. Software Metrics (Features) and Datasets
	VII. Classifiers Used for Software Bug Prediction in this Study
	VIII. Building and Evaluation of Prediction Models
	IX. Result and Discussion
	X. Conclusion
	Acknowledgment
	References

