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Abstract—Software bugs are defects or faults in computer 
programs or systems that cause incorrect or unexpected 
operations. These negatively affect software quality, reliability, 
and maintenance cost; therefore many researchers have already 
built and developed several models for software bug prediction. 
Till now, a few works have been done which used machine 
learning techniques for software bug prediction. The aim of this 
paper is to present comprehensive study on machine learning 
techniques that were successfully used to predict software bug. 
Paper also presents a software bug prediction model based on 
supervised machine learning algorithms are Decision Tree (DT), 
Naïve Bayes (NB), Random Forest (RF) and Logistic Regression 
(LR) on four datasets. We compared the results of our proposed 
models with those of the other studies. The results of this study 
demonstrated that our proposed models performed better than 
other models that used the same data sets. The evaluation process 
and the results of the study show that machine learning 
algorithms can be used effectively for prediction of bugs. 

Keywords—Static code analysis; software bug prediction; 
software metrics; machine learning techniques 

I. INTRODUCTION 
Due to the increasing size, complexity of software 

products and inadequate software testing no system or 
software can claim to be bugs free. There are many activities 
related to software testing such as implementing processes, 
procedures, and standards that must be carried out in a specific 
sequence to ensure that quality objectives are achieved or 
testing a product for issues such as software bugs. There are 
different classifications of bugs in software testing like Major 
defect: a defect, which will cause an observable product 
failure or deviation from functional requirements. Minor 
defect: a defect that will not cause a failure in execution of the 
product. Fatal defect: a defect that will cause 
application/system crash or close abruptly. Bugs can also be 
classified into functional defects, performance defects, 
usability defects, compatibility defects, security defects, etc. 
The use of analytical methods to check and review source 
codes is standard development practice. This process can be 
accomplished manually or automatically using static code 
analysis tools, dynamic code analysis tools, etc. Recently a lot 
of tools evolved for static code analysis, to provide a truly 
practical, value added solution to many of the problems that 
software development organizations face. But there are 
numerous false positives and false negatives results, which 

make these tools hard to be used in practice. So, there must be 
found another methodology or approach for static code 
analysis such as Machine Learning (ML) algorithms [1], [9], 
[12]. Software bugs usually appear during software 
development process. Software bugs are often difficult to 
detect or identify, and developers spend a large amount of 
time locating and fixing them. As well, some bugs cannot be 
detected at an early phase of development. To relieve the issue 
of bug fixing, the researchers did many extensively studies for 
bug prediction. Many machine learning (ML) driven 
prediction models have been built and tested on various basis. 
The process of software bug report is an important part of 
software maintenance, but the process of bug reports 
assignment can be very expensive in large software 
development projects, where a lot of studies suggest 
automating bug assignment approaches using machine 
learning in open-source software. Software Bug Prediction 
(SBP) plays a vital and important role in the process of 
improving software product quality. SBP is a process of 
generating machine learning models (classifiers) to predict 
software (code) defects based on historical data. The most 
recent methodologies used to predict software bugs are 
supervised(classification)machine learning models, and with 
recent advances in machine learning techniques, new models 
have emerged that have enhanced performance and 
capabilities in predicting software bug [2]. Classification is a 
major task of data analysis using machine learning algorithms 
that allow the machine to learn associations between instances 
and decision labels, from which an algorithm builds a model 
to predict the labels of new instances for a specific sample 
data. In machine learning, classification can be categorized 
into three types: binary (yes or no), multi-class, and multi-
label classification [5], [25]. To build a dataset containing 
useful buggy code element characterization information, we 
chose Promise Repository dataset that stores software metrics 
along with bug information for many projects, these datasets 
were collected from real software projects by NASA [26]. The 
objective of this study is to investigate the previous studies 
that used most effective machine learning techniques for 
software bug prediction. In this paper, four supervised 
machine learning models are identified and utilized on four 
different datasets to evaluate the Machine learning algorithms 
capabilities in software bug prediction. The paper compares 
the proposed models based on various performance measures 
like accuracy, precision, recall, F1-score and ROC curves. The 
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structure of this study is organized as follow. Section 2 
presents a discussion on software bug prediction by analyzing 
static code analysis. An overview of the machine learning 
techniques is presented in Section 3. After that, the literature 
review is presented in Section 4. Section 5 presents our 
research methodology. Section 6 presents software metrics 
and data sets. An overview of the selected machine learning 
classifiers and their evaluation is presented in Sections 7 and 
8. Section 9 presents the experimental results and discussion 
followed by conclusions and future work in the Section 10. 

II. SOFTWARE BUG PREDICTION BY ANALYZING STATIC 
CODE 

Static code analysis is a method of analyzing software 
code without its execution to find potential problems like 
defects or bugs issues that might arise at runtime to check the 
quality of source code and addressing weaknesses in the 
program code through evaluating and correct source code 
based on some factors like structure, content, and 
documentation. There are many commercial and open source 
tools developed for static code analysis [3], [24]. These tools 
remove the unnecessary fuzz from source code and perform 
some automated checks to improve and ensure a certain level 
of quality. This can be performed very early in the 
development process, during this procedure the code must 
pass many formal tests to be considered bug free. There exist 
several ways of analyzing static code by exploiting the natural 
language found within a program’s text based on compliance 
with different coding standards. These types of analysis may 
be manual, which is usually very time consuming like code 
inspections, or automated using one or more tools. Software 
Bug Prediction (SBP) considers a vital activity during 
software development and maintenance. SBP is a 
methodology related to figure out bugs in the software module 
by considering software metrics as a parameter [4]. Numerous 
studies have confirmed that machine learning techniques are 
suitable techniques for predicting software bug to identify 
defective software code [5], [6], [9]. Bug reports are basic 
software development tools which describe software bugs, 
especially in open-source software [7], [30]. To warranty the 
quality of software, many projects use bug reports to gather 
and record the bugs reported [8]. The bugs classified into two 
classes: intrinsic bugs refer to bugs that were introduced by 
one or more specific changes to the source code and extrinsic 
bugs refer to bugs that were introduced by changes not 
recorded in the version control system [5], [18]. Several 
techniques have been developed over the years to 
automatically detect bugs in source code. Often, these 
techniques depend on formal methods program analysis. Many 
studies in literature use code features as input for machine 
learning algorithms to perform bug prediction. The most 
machine learning algorithms that can be used to detect 
software bugs is classification techniques [10]. 

III. MACHINE LEARNING TECHNIQUES 
Machine learning is an area of research where computer 

programs can learn and get better at performing specific tasks 
by training on historical data [2]. Machine learning algorithms 
can be applied to analyze data from different perspectives to 
allow developers to obtain useful information [10], [38]. High 

quantities of data are needed to develop machine learning 
models-based prediction [11], [31], [33]. Machine learning 
algorithms build models from training examples, which are 
then used to make predictions when faced with new examples. 
Supervised learning is a type of machine-learning algorithm 
that builds a prediction model by training the labeled data to 
execute the prediction task. The goal of supervised machine 
learning algorithms is to develop an inferring function through 
concluding relationships between independent 
variables(inputs) and dependent variables(outputs) of the 
training datasets [5], [27]. Classification is a method uses a 
data mining or machine learning approach classify the data, 
classification techniques deal with a software component, 
named classifier, this classifier invoked with inputs (features). 
Features are extracted from the training data examples as text, 
numbers, or nominal values. Bug prediction is one application 
of machine learning that aims to identify critical pieces in 
source code potential contain defects. This process can be 
used in software projects to earning insights into how and 
where bugs happen to enhance software quality. 

IV. LITERATURE REVIEW 
Software bug prediction is one of the most popular 

research areas in software engineering. The major aim of the 
software bug prediction is to detect bugs in software modules 
by considering software metrics as input (parameters). The 
research described in this paper presents a comprehensive 
study on machine learning techniques for software bug 
prediction. The following subsection covers the recent 
literature related to bug prediction. Considerable research has 
been performed on software bug prediction using machine 
learning techniques. For example, Wang et al. in [1] proposed 
a combination approach of contexts and neural network to 
detecting bugs. The results show that the tool can have a 
relative improvement up to 160% on F-score. Also, the tool 
can detect 48 true bugs in the list of top 100 reported bugs. 
Jonsson et al. in [2] evaluated automated bug assignment 
techniques that are based on machine learning classification. 
The results of study show that the prediction of accuracies is 
between 50% and 90% when large training sets are used. 
Chappell et al. in [3] presented report on using machine 
learning techniques for finding bugs in C programs. 
Hammouri et al. in [5] presented machine learning model for 
software bug prediction. The experiment was conducted on 
the basis of three supervised machine learning algorithms 
Naïve Bayes, Decision Tree, and Artificial Neural Networks 
to predict future software bugs based on historical data. The 
results show that the use of machine learning algorithms is 
effective and leads to a high rate of accuracy. The comparison 
results showed that the Decision Tree (DT) classifier has the 
best results over the others. Kumar Pandey et al. in [6] 
conducted compare various Bayesian network classifier and 
how they are useful for bugs prediction and random forest. 
The experimental results revealed that the Bayesian network is 
better than random forest. Meenakshi et al. in [7] proposed 
various ML models for software bug prediction. The 
experiment results demonstrated that the machine learning 
techniques are efficient and suitable approaches to predict the 
future software bugs and the comparison of results showed 
that the DT classifier has the best results over the others. Un-
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Nisa Uqaili et al. in [8] proposed an approach to classify 
different types of bugs according to their severity and priority 
basis. They applied three supervised machine learning models 
(Naïve Bayes, Random Forest, and Multilayer Perceptron) for 
prediction of fault prone. The experimental results showed 
that the Random-Forest (RF) method better than other 
techniques of machine learning. Aleem et al. in [10] 
conducted study to a comparative the performance of some 
machine learning algorithms for software bug prediction. The 
results showed most of the applied machine learning 
techniques performed well on software bug prediction. Islamet 
et al. in [11] presented an empirical study using deep learning 
libraries to explore the bugs in software. They conducted 2716 
comprehensive bug characteristics studies to identify the bug 
types and root causes of bugs. The study found that the most 
severe bug types in deep learning software are data bug and 
logic bug, where appearing more than 50% of the times and 
main causes of these bugs are incorrect model parameter and 
structural inefficiency. Sharma et al. in [13] proposed a new 
approach of creating a dictionary to classify critical terms and 
determine severity using two machine learning algorithms 
(Naïve Bayes Multinomial and K-nearest neighbor 
algorithms), and the results were evaluated based on two 
performance measures (accuracy and accuracy). The results 
demonstrated that the K-nearest neighbor classifier performs 
better Naïve Bayes Multinomial classifier to classify the 
severity of the bug Table I illustrates techniques used in 
previous studies on machine learning-based software bugs 
prediction. Bold number indicates comparative studies, capital 
and bold X shows the classifier giving the best results. 

TABLE I. ML TECHNIQUES USED IN PREVIOUS STUDIES FOR SOFTWARE 
BUGS PREDICTION 

Reference 
Machine Learning techniques 

DT NB ANNs RF SVM DL K-NN LR 

 [1]   x      

 [3]   x      

 [4]  x       

 [5] X x x      

 [6]  x       

 [7] X x       

 [8]  x x X     

[10] x x X x X    

[11]      x   

[12]  x     x  

[13]  x       

[16]  x x  x  x  

[18]  x  x x   X 

V. RESEARCH METHODOLOGY 
The main objective of this study is to identify and analyze 

the latest studies that use machine learning techniques for 
software bug prediction. A literature review has been used as a 
research methodology in this study as it is a defined and 
methodical way of identifying, evolution, and analyzing 
published literature to investigate the research questions. 

A. Study Selection 
There are a lot of criteria to identify the relevant studies in 

this study and papers collected and reviewed by year of 
publication as it is shown in Fig. 1. For a paper to be included 
in this study, it must meet various inclusion criteria. 

• Studies that suggest and discuss the use of machine 
learning techniques to predict software bugs. 

• Studies that motivate and discuss the benefits of using 
machine learning techniques for software bug 
prediction. 

• Studies that provide an empirical basis for the results 
and have been published in a high-quality journal or in 
conference proceedings. 

B. Research Questions 
This study aims to establish a starting point for future 

research for software bug prediction and simultaneously 
provide practitioners with a summary of most relevant work 
done in the area of software bug prediction uses machine 
learning techniques to heel and allow picking machine 
learning techniques that suits them. The research questions 
identified in this context are given in Table II. 

 
Fig. 1. Number of Papers Collected and Reviewed by Year of Publication. 

TABLE II. RESEARCH QUESTIONS 

RQ# Research Question Motivation 

RQ1 
Which ML models have been 
used for software bug 
prediction? 

Identify the machine learning 
models commonly being used 
for software bug prediction. 

RQ2 
How these models have been 
trained and what languages have 
been used? 

To find out how these models 
were trained and what languages 
are used. 

RQ3 
Which performance measures 
are used for software bug 
prediction? 

Assess the performance of the 
machine learning techniques for 
software bug prediction. 

RQ4 

What the conclusions can we 
draw about the efficiency of 
machine learning algorithms 
used in predicting software bug 
from results presented in the 
selected studies? 

Identify the efficiency of 
machine learning algorithms 
used in predicting software bug 
from results presented in the 
selected studies. 
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1) RQ1: Which ML models have been used for software 
bug prediction?: To answer this research question, this study 
identified the machine learning models commonly being used 
for software bug prediction in previous studies as shown in 
Fig. 2, and these models are: 

• Decision Tree is a popular learning method used in data 
mining and machine learning for the purpose of 
regression and classification. It refers to a hierarchal 
model or a tree with decision nodes that have more than 
one branch and leaf nodes that represent the decision. 
Each node in a decision tree represents a feature in an 
instance to be classified, and each branch represents the 
value thresholds the contained nodes can assume. 
Instances are categorized beginning at the root node and 
sorted based on their attribute values [5], [29]. 

• Naïve Bayes (NB) is a supervised learning algorithm 
and defines as simple probabilistic classifier and 
efficient based on Bayes theorem with independence 
assumption between the features, this means that the 
Naive Bayes classifier is based on estimating the 
probabilities of the unobserved node, based on the 
observed probabilities [5], [22]. 

• Artificial Neural Networks (ANNs): ANNs are machine 
learning models or nonlinear classifiers used to model 
complex relationships between inputs and outputs for 
classification purposes. An ANN model contains 
multiple units (layers) for information processing which 
are known as neurons. The layers are typically named 
the input layer, hidden layer, and output layer [5]. When 
implementing a neural network, a set of consistent 
training values must be available to set up the expected 
operation of the network and a set of validation values 
to validate the training process [14]. 

• Random Forest is one of the most utilized models, due 
its effortlessness and the way, which it can be utilized 
for both characterization and relapse assignments. It is 
an adaptable and simple to utilize machine learning 
calculation, even without hyper-parameter tuning [23]. 

• Support Vector Machine (SVM): SVM is one of the 
regulated machine learning models. It is a 
comparatively novel learning approach used for binary 
classification. The primary role is to discover a hyper-
plane, which divide the dimensional data completely 
into two categories [15], [32]. 

• Deep Learning (DL): DL is one of an artificial 
intelligence function that mimics the workings of the 
human brain. It allows and helps to solve complex 
problems with using a data set that is very diverse, 
unstructured, and interconnected [40]. 

• K-Nearest Neighbor define as a simple supervised 
classification algorithm in which an object is classified 
by looking at the K nearest objects and by choice most 
frequently occurring class [28]. 

• Logistic Regression (LR): LR is a statistical 
classification technique which is based on maximum 
likelihood estimation. It is meant for predicting the 
likelihood of an entity belonging one class or another 
class [16], [28], [37], [39]. 

2) RQ2: How these models have been trained and what 
languages have been used? To answer this research question, 
the essential issue of software bug prediction with machine 
learning techniques is how train and test the model [17]. A 
large and representative data set is the basis for training and 
testing machine learning models. So, in the literature review 
and in our experimental study, different and large datasets, 
and different programming languages such C, C++ and Java 
has been used to training machine learning models. 

3) RQ3: Which performance measures are used for 
software bug prediction? To answer this research question, 
several measures are used for gauging the performance of 
different machine learning models. These performance 
measures are used for comparing and evaluating models 
developed using various machine learning techniques. A 
depiction of the number of studies using each performance 
measures is used in Fig. 3. The most used performance metric 
is accuracy, which is closely followed by recall, precision, and 
F1-score, and some less commonly metrics are H-measure, 
Area Under the Curve (AUC) and Receiver Operating 
Characteristics (ROC) curve. 

 
Fig. 2. Number of Studies across ML Techniques based on Classifications. 

 
Fig. 3. Studies using different Performance Measures for SBP. 
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4) RQ4: What the conclusions can we draw about the 
efficiencies of machine learning techniques for software bug 
prediction from results presented in the selected studies?: To 
answer this research question, this study evaluates the best 
machine learning techniques for devolving an effective model 
for software bug prediction through evaluating the presented 
software bug prediction models in previous studies. Different 
machine learning techniques have different characteristic like 
speed, accuracy, interpretability, and simplicity. This study 
focused on the studies that applied machine learning 
algorithms and performance measures that most used. Looking 
at the results achieved in the literature review and the results 
achieved in our study, machine learning techniques are well 
applicable to static code analysis for software bug prediction. 

VI. SOFTWARE METRICS (FEATURES) AND DATASETS 
Software metrics are a quantitative and standard measure 

of some property of software that assigns numbers or symbols 
to attributes of the measured entity. Software metrics can be 
used to collect information regarding structural properties of a 
software design which can be further statistically analyzed, 
interpreted and linked to its quality. In software comprise 
complexity, cohesion, and coupling related metrics can be 
measured during the software development phases such as 
design or coding and it also used to calculate the quality of 
software [19], [34], [36]. Software metrics can be classified to 
static code metrics and process metrics. Static code metrics 
can be directly extracted from source code, like Lines of Code 
(LOC), Cyclomatic Complexity Number (CCN). Object 
oriented metrics is a subcategory of static code metrics, like 
Depth of Inheritance Tree (DIT), coupling between Objects 
(CBO), Number of Children (NOC), and Response for Class 
(RFC). Process metrics can be extracted from Source Code 
Management system based on historic changes on source code 
overtime. Metrics can also be classified based on development 
phase of software life cycle, into source code level metrics, 
detailed design level metrics or test level metrics. Object-
oriented metrics are often used to assess the testability, 
maintainability or reusability of source code [20], [35]. 
Commonly dataset that used for software bug prediction 
domain is promise repository dataset. To perform this 
experiment, the data is obtained from the publicly available 
and published data in defect prediction datasets that stored 
software metrics along with defect information of several 
projects, these datasets were collected from real software 
projects by NASA. These public domain datasets are used in 
this experiment because this is a benchmarking procedure of 
defect prediction research [17, 21]. To perform machine 
learning on the available source code, it is necessary to 
establish a set of features that can be extracted that contain the 
information needed. Many studies [4, 6, 7, and 14] use 
software metrics as independent variables to measuring the 
quality of software modules and build software bug prediction 
models. It is intuitive to think that the bug proneness of a 
module is correlated with its complexity; therefore, bug 
prediction studies usually employ product metrics to improve 
prediction accuracy. The projects used in this study were 
developed using different programming languages and include 
heterogeneous code metrics like Object-Oriented (OO) 

metrics, Halstead metrics, Lines of Codes (LoC), and McCabe 
complexity. Various defects detection methods like Black box 
probing, automatic formal methods, etc. And different 
machine learning models like linear regression, the M5’ model 
tree learner and the J48 decision tree learner have been 
implemented in these projects [10]. Table III, Table IV shows 
the information about dataset, and software metrics (features). 

TABLE III. DESCRIPTIONS OF DATASETS (PROJECTS) USED IN THIS STUDY 

Projects # 
Modules 

% 
Defects Language Description 

JM1 10885 19% C 

Real-time predictive 
ground system: Uses 
simulations to generate 
predictions. 

PC1 1107 6.8% C Flight software for earth 
orbiting satellite. 

KC1 2107 15.4% C++ 
Storage management for 
receiving and processing 
ground data. 

KC2 523 20% C++ Software for science data 
processing. 

TABLE IV. DESCRIPTIONS OF SOFTWARE METRICS (FEATURES) USED IN 
THIS STUDY 

Metrics Type Description 

Loc McCabe It counts the line of code in 
software module. 

v(g) McCabe Measure McCabe Cyclomatic 
Complexity. 

ev (g) McCabe McCabe Essential Complexity. 

iv (g) McCabe McCabe Design Complexity. 

N Derived Halstead Total number of operators and 
operands. 

V Derived Halstead Volume. 

L Derived Halstead Program length. 

D Derived Halstead Measure difficulty. 

I Derived Halstead Measure Intelligence. 

E Derived Halstead Measure Effort. 

B Derived Halstead Effort estimate. 

T Derived Halstead Time Estimator. 

Locoed Line Count Number of lines in software 
module. 

Locomment Line Count Number of comments. 

Loblank Line Count Number of blank lines. 

Locodeandcom
ment Line Count Number of codes and comments. 

uniq_op Basic Halstead Unique operators. 

uniq_opnd Basic Halstead Unique operands. 

total_op Basic Halstead Total operators. 

total_opnd Basic Halstead Total operands. 

BranchCount Branch Total Number of branch count. 
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VII. CLASSIFIERS USED FOR SOFTWARE BUG PREDICTION IN 
THIS STUDY 

The next step after collecting datasets is using the 
collected datasets to train a machine learning models potential 
buggy modules as it is shown is Fig. 4. Four supervised 
machine learning algorithms will be analyzed and evaluated in 
this study, which are DT, NB, RF and LR. These algorithms 
were chosen because are the most algorithms used in previous 
studies. 

 
Fig. 4. Structure of Software Bug Prediction Model. 

VIII. BUILDING AND EVALUATION OF PREDICTION MODELS 
Most studies of software bug prediction divide the data 

into two sets: a training set and a test set. The training set is 
used to train the bug prediction models, whereas the testing set 
is used to evaluate the performance of the bug prediction 
models. After building the prediction model, we need to 
evaluate the performance of the model. To evaluate the 
performance of using machine learning models in software 
bug prediction in this study used a set of performance 
measures based on the confusion matrixes and ROC (Receiver 
Operating Characteristic) Curves. Confusion 
matrix(correlation matrix) is often used to describe the 
performance of machine learning models(classification 
methods) using a set of test data, correlation summarizes the 
results of the testing algorithm and provides a report of (1) 
True Positives (TP), (2) False Positives (FP), (3) True 
Negatives (TN), and (4) False Negatives (FN). ROC curves 
are plots the false positive rate on the x-axis and true positive 
rate on the y-axis over all possible or potential classification 
thresholds. The subsections bellow describes the confusion 
matrix and performance measures applied as it is shown in 
Table V and equations. 

• Accuracy: Accuracy is the ratio of true results that 
calculated as the sum total of true positive and true 
negative instances divided by 100. The top (maximum) 
accuracy is 1, whereas the low (minimum) accuracy is 
0. Accuracy can be computed by using the following 
formula: 

Accuracy = (TP + TN)
(TP + TN+ FP + FN)

            (1) 

• Precision: Precision is defined as the number of true 
positive predictions divided by the total number of 
positive predictions or fraction of true positive and 
predicted yes instances. The top (maximum) precision 
is 1, whereas the low (minimum) is 0 and it can be 
calculated as: 

Precision = TP 
(TP + FP)

              (2) 

• Recall: Recall is the number of positive predictions 
divided by the total number of positives or defined as 
the fraction between true positive instances and actual 
yes instances. The top (maximum) recall is 1, whereas 
the low (minimum) is 0. The formula of recall given 
below: 

Recall = TP 
TP + FN

                (3) 

• F1-score: F1-score is weighted harmonic mean of 
precision and recall or defined as the fraction between 
product of the recall and precision to the summation of 
recall and precision parameter of classification, it is 
used to combine the recall and precision measures in 
one measure to compare different machine learning 
algorithms. F1-score formula is given below: 

F1 − score = (2∗ Recall ∗ Precision)
 (Recall + Precision)

             (4) 

TABLE V. THE CORRELATION MATRIX 

Predicted 
Actual 

Class X Class Y 

Class X TN FP 

Class Y FN TP 

IX. RESULT AND DISCUSSION 
This study aimed at improving the understanding of the 

process of software bug prediction especially using supervised 
machine learning techniques. In the literature review, several 
papers were found that discussed machine learning models for 
predicting software bugs that classify the defective and non-
defective module. It was observed in the RQ1 analysis that 
most of the machine learning techniques used in software bug 
prediction are NB, ANNs, and SVM. As it is noted in the RQ2 
analysis that studies used different performance measures. The 
experiment of this study was performed in PYTHON 
environment to evaluate four machine learning algorithms: 
DT, NB, RF and LR. The evaluation process is implemented 
with real datasets. Experimental results are collected and 
evaluated based on various performance measures (accuracy, 
precision, recall, F1-score and ROC Curves). Results 
demonstrated that the machine learning algorithms are 
efficient approaches to predict software bugs. The comparison 
results demonstrated that the Decision Tree (DT) and Random 
Forest (RF) classifiers have the best results. Tables VI to IX 
show the performance of proposed models on the four data 
sets based on all performance measures. The maximum (best) 
accuracy value is 99%, which was achieved by Decision Tree 
(DT) and Random Forest (RF) models in JM1, PC1and KC1 
datasets. The maximum (best) precision value is 99%, which 
was achieved by Decision Tree (DT) and Random Forest (RF) 
models in JM1, PC1and KC1 datasets. The maximum (best) 
recall value is 100%, which was achieved by Decision Tree 
(DT) and Random Forest (RF) models in all datasets. The 
maximum (best) F1-score value is 99%, which was achieved 
by Decision Tree (DT) and Random Forest (RF) models in 
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PC1 dataset. The average accuracy of the proposed models on 
the four data sets is shown in Fig. 5 and Fig. 6. As shown, the 
two ML models Decision Tree (DT) and Random Forest (RF) 
achieved a high average accuracy rate. The average value for 
the accuracy rate in all datasets for the two models is over 
98.5% on average. The minimum value appears for Naive 
Bayes (NB) model in the JM1 dataset, because the data set is 
small and the Naive Bayes (NB) model needs a large data set 
in order to achieve a high accuracy value. Fig. 7 to Fig. 10 
presents the ROC Curves of proposed models on the four data 
sets. The results show that Decision Tree (DT) and Random 
Forest (RF) models have better values than Naive Bayes (NB) 
and Logistic Regression (LR) models. For evaluating the 
effectiveness of the proposed models, in Tables X and XI we 
have compared the results of our study with the results of 
three others studies [4, 7, and 10] which used the same dataset 
and different performance measures (Accuracy, Precision, 
Recall, and F1-score). The results showed that our proposed 
models performed better than others models. After a 
comprehensive study of Machine Learning techniques, there 
must be a deterministic strategy for selecting machine learning 
techniques to predict software bugs. 

TABLE VI. PERFORMANCE MEASURES OF THE PROPOSED MODELS OVER 
JM1 DATASET 

proposed model 
Performance measures 

Accuracy Precision Recall F1-score 

DT 0.99 0.99 1.00 0.99 

NB 0.80 0.81 0.97 0.89 

RF 0.99 0.99 1.00 0.99 

LR 0.81 0.82 0.99 0.89 

TABLE VII. PERFORMANCE MEASURES OF THE PROPOSED MODELS OVER 
PC1 DATASET 

proposed model 
Performance measures 

Accuracy Precision Recall F1-score 

DT 0.99 0.99 1.00 1.00 

NB 0.91 0.94 0.96 0.95 

RF 0.99 0.99 1.00 1.00 

LR 0.93 0.94 0.99 0.96 

TABLE VIII. PERFORMANCE MEASURES OF THE PROPOSED MODELS OVER 
KC1 DATASET 

proposed model 
Performance measures 

Accuracy Precision Recall F1-score 

DT 0.99 0.99 1.00 0.99 

NB 0.85 0.88 0.96 0.92 

RF 0.99 0.99 1.00 0.99 

LR 0.85 0.87 0.96 0.92 

TABLE IX. PERFORMANCE MEASURES OF THE PROPOSED MODELS OVER 
KC2 DATASET 

proposed model 
Performance measures 

Accuracy Precision Recall F1-score 

DT 0.98 0.98 1.00 0.99 

NB 0.83 0.83 0.98 0.90 

RF 0.98 0.98 1.00 0.99 

LR 0.84 0.86 0.96 0.91 

 
Fig. 5. Average of Accuracy Measure of Models across the JM1 and PC1 

Dataset. 

 
Fig. 6. Average of Accuracy Measure of Models across the KC1 and KC2 

Dataset. 

732 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 12, No. 8, 2021 

 
Fig. 7. Comparison of ROC Curves for Models across the JM1 Dataset. 

 
Fig. 8. Comparison of ROC Curves for Models across the PC1 Dataset. 

 
Fig. 9. Comparison of ROC Curves for Models across the KC1 Dataset. 

 
Fig. 10. Comparison of ROC Curves for Models across the KC2 Dataset. 
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TABLE X. COMPARING THE RESULTS OF OUR STUDY WITH THE RESULTS 
OF STUDIES WHICH  USES THE SAME DATASET AND ALGORITHMS ACROSS THE 

JM1 AND PC1 DATASET 

JM1 dataset 

Performance 
measure 

ML 
models 

Studies 

First 
Study 

Second 
Study 

Third 
Study 

Our 
study 

Accuracy 

DT - - 0.81 0.99 

NB - - 0.81 0.80 

RF - - 0.82 0.99 

F1-score 

DT - - 0.90 0.99 

NB 0.75 - 0.89 0.89 

RF 0.76 - 0.90 0.99 

LR 0.74 - - 0.89 

pc1 dataset 

Accuracy 

DT - - 0.93 0.99 

NB - - 0.88 0.91 

RF - - 0.93 0.99 

F1-score 

DT - - 0.97 1.00 

NB 0.89 - 0.94 0.95 

RF 0.91 - 0.97 1.00 

LR 0.91 - - 0.96 

TABLE XI. COMPARING THE RESULTS OF OUR STUDY WITH THE RESULTS 
OF STUDIES WHICH USES THE SAME DATASET AND ALGORITHMS ACROSS THE 

KC1 AND KC2 DATASET 

kc1 dataset 

Performance 
measure 

ML 
models 

Studies 

First 
Study 

Second 
Study 

Third 
Study 

Our 
study 

Accuracy 

DT - - 0.84 0.99 

NB - 0.82 0.82 0.85 

RF - - 0.85 0.99 

Precision NB - 0.80 - 0.88 

Recall NB - 0.83 - 0.96 

F1-score 

DT - - 0.92 0.99 

NB 0.82 0.81 0.90 0.92 

RF 0.82 - 0.92 0.99 

LR 0.81 - - 0.92 

kc2 dataset 

Accuracy 

DT - - 0.82 0.98 

NB - - 0.84 0.83 

RF - - 0.82 0.98 

F1-score 

DT - - 0.89 0.99 

NB 0.80 - 0.90 0.90 

RF 0.76 - 0.89 0.99 

LR 0.79 - - 0.91 

X. CONCLUSION 
Software bug prediction is very important field in static 

code analysis to improve software quality and reliability. It is 
an approach, in which a prediction model is constructed for 
the purpose of predicting future software defects based on 
historical data using some software metrics. Many approaches 
have been presented using various datasets, various metrics, 
and various performance measures. The aims of this study are 
successfully achieved. The aims are evaluate and present 
comprehensive study on machine learning techniques have 
been used for software bug prediction in recent years and 
apply the best techniques for software bug prediction in this 
study. To compare and evaluate the performance of the 
proposed models, we used different performance measures. 
The results concluded that ML techniques are gaining interest 
in software bug prediction, to improve the efficiency of bug 
detection. Four NASA public datasets were chosen for this 
experiment and analyze the performance of models. The 
experimental results revealed that the DT and RF classifiers 
are better than others classifiers. Static code analysis requires 
further research to identify and detect of software bugs and 
several machine learning techniques can be used to improve 
results. As a future work, we plan to introduce other machine 
learning techniques with data balancing techniques to improve 
the accuracy for predicting software bugs. 
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