
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

Grammatical Error Correction with Denoising
Autoencoder

Krzysztof Pajak1
LangMedia Sp. z o.o.,

Mariana Rapackiego 5, 53-021 Wrocław,
Poland

Adam Gonczarek2
Alphamoon Sp. z o.o.,

Grabarska 1, 50-079 Wrocław,
Poland

Abstract—A denoising autoencoder sequence-to-sequence
model based on transformer architecture proved to be useful for
underlying tasks such as summarization, machine translation,
or question answering. This paper investigates the possibilities
of using this model type for grammatical error correction and
introduces a novel method of remark-based model checkpoint
output combining. This approach was evaluated by the BEA 2019
shared task. It was able to achieve state-of-the-art F-score results
on the test set 73.90 and development set 56.58. This was done
without any GEC-specific pre-training, but only by fine-tuning
the autoencoder model and combining checkpoint outputs. This
proves that an efficient model solving GEC might be trained in
a matter of hours using a single GPU.
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I. INTRODUCTION

Grammatical Error Correction (GEC) is a language pro-
cessing task whose target is to detect and correct any mistake
that could be found in input data, without changing the
meaning intended by an author.

According to the British Council, English is spoken at a
useful level by more than a quarter of the world’s population
[1]. Most of English users are not native speakers and posses
different levels of proficiency. Therefore, all tools aimed for
improving language correctness and assisting learning process
would be of great importance.

There are two main approaches in solving Grammatical
Error Correction task by neural models. First is to treat GEC
as a form of Neural Machine Translation, where erroneous
source texts are “translated” into correct ones (for example,
[2] and [3]). The other way is to treat GEC as a sequence
classification task, where model provides probability distribu-
tion over available corrections for every token ([4] and [5]).

From many approaches to create a GEC-solving system,
so far the best results (BEA 2019 shared task [6] test set)
have been reported by GECToR [4]. They propose a sequence
tagging model that classifies input text tokens in a few itera-
tions to identify the errors. They use pre-trained transformer-
based encoders with dense layers on top that select one of
possible token-level transformations. This architecture aids fast
inference, since there is no need to sequentially decode output
tokens as in NMT-like solutions. The model training was done
in three phases, using a large amount of parallel synthetic data

at first and then tuning on smaller higher quality sets (NUCLE,
LANG8 [7], FCE, WI+LOCNESS).

In [2] was introduced the most recent sequence-to-sequence
approach that uses a transformer-based encoder model as
a base for sequence-to-sequence system. The base encoder
model is pre-trained BERT ([8]), which is then fine-tuned
on GEC data. This fine-tuning is perform on two tasks:
MLM (Masked Language Model objective from [8]) and GED
(Grammatical Error Detection). The encoder model adjusted
this way is used to generate additional features in a sequence-
to-sequence target model.

Problem of an inadequate amount of supervised training
data was addressed in [9] and approached by using confu-
sion sets to generate pseudo-data and pre-trains a sequence-
to-sequence transformer. In [3] pseudo-data generation was
performed via back-translation.

The main challenge of GEC is a very limited amount of
annotated training data. It is relatively easy to acquire parallel
texts for Machine Translation, while there are plenty of sources
that provide texts in different languages. Corrected text, on the
other hand, which are used for GEC, need to be proofread by
human annotators. Preferably, every text should be reviewed
multiple times, as in a test set for [6] and in [10].

Another aspect of this GEC task that might need closer
attention is making better use of quickly improving language
models. Both [2] and [4] include knowledge from models like
BERT or XLNet in their approaches, but they also require quite
complex pre-training phases with generated pseudo-data. The
main advantage of relying more on a general-purpose model
is that the target GEC system will get better together with
constantly improving language models.

This paper investigates the possibilities of applying pre-
trained sequence-to-sequence models for grammatical error
correction and proves that fine-tuning is sufficient for achieving
an efficient error correction model. This approach enables de-
veloping such models relatively quickly, with limited computa-
tional resources and limited data. Furthermore, after applying
remark combination, it is possible to improve state-of-the-art
results for GEC.

II. MODEL

In this section we describe our design decisions regarding
model architecture, training and processing model output.
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A. Architecture

In our approach we treat GEC as a sequence-to-sequence
text transformation task, similar to machine translation. We
choose the Transformer architecture ([11]) for our model
because of plenty of successful applications of this model
type in NLP problems (for example, machine translation [12],
summarization [13] or question answering [14]). The most
imporant transformer-based sequence-to-sequence models are
GPT-2 ([15], T5 ([16]) and BART ([17]). Therefore, we use
the pre-trained transfomer-based sequence-to-sequence model.
Unlike encoder-models like BERT, XLNet, etc. they were
pre-trained on full text-to-text tasks. We choose BART as
our base model because of text denoising as its pre-training
objective. This method makes it a natural candidate to solve
GEC which may be seen as reconstructing correct text from
some erroneous input. Our best results were achieved through
BART large, which contained 12 encoder and 12 decoder
layers and embedding dimension size equal to 1024.

B. Training

In contrast to other text generation tasks, in GEC difference
between input and output text is relatively small. That impacts
training and inference of the model. During training we try to
set up configuration that would lead model to copy an input to
the output with corrected language as the only adjustment. We
noticed that both the amount of training data and training time
need to be small and accurately selected to meet this goal. In
Section IV we will describe the impact of data set source and
size.

C. Inference

As for inference, an important distinction from other NLP
tasks is the type of a decoding method. For example, in
Machine Translation a common approach is to use Beam
Search heuristic or such methods as Sampling, Sampling with
Temperature ([18]) to aid diverse and human-like, natural
output. However, in our model, applying Beam Search or
Sampling led to very noisy output, and the best results required
greedy selection of elements in the generated sequence (so the
Beam parameter was set to 1).

D. Ensembling Method

The final output of the GEC task might be considered a set
of text remarks that transforms the original text into the target
one. It might be beneficial from the educational point of view,
but also might be used to achieve performance improvement by
combining remarks from multiple model instances. ERRANT
[19] grading and annotation tool enables one to extract atomic
remarks from parallel texts. Fig. 1 show examples of annotated
sentences. The lines starting with S contain original sentences,
following the lines starting with A which contain remarks.
Every remark describes the annotation span, type and value.
For example, in the sentence from Listing 1: I think that the
public transport will always be in the future the first remark
suggests removing the definite article, by defining the span
from the 3rd to 4th token and empty replacement text. The
second remark suggests replacing the infinitive be with exist.

We propose a simple and effective algorithm of combining
remarks. Every model returns remarks for input text. Same

TABLE I. TRAINING DATA SETS. SENTENCE COUNT BEFORE AND AFTER
FILTERING SENTENCES WITHOUT ERRORS

Name Sentences After filtering
WI+Locness 34308 34230
FCE 28350 28330
NUCLE 57113 21314
LANG-8 1041409 574180

remark may be produced by multiple models. Let us define
output of a model i as:

Mi = {r1, .., rN} (1)

where r is a single text remark. Then multi-set of model
ensemble output M is defined as a tuple:

M =

(⋃
i

Mi,m

)
(2)

where m is a function that gives every remark its number
of occurrences:

m :
⋃
i

Mi → N (3)

In practice, for simple texts, all sets of remarks are exactly
the same. For more ambiguous texts, different model check-
point outputs will differ. To combine different remark sets,
we define the parameter R, which stands for required remark
frequency, so the ensemble output Me will be:

Me = {r : r ∈M ∧m(r) ≥ R} (4)

Only the remark present in at least R model outputs will be
chosen to the combined output. For example, if R = 1, we take
all remarks from all models, and if R = N , where N equals
a number of model checkpoints, only the remarks present in
all model outputs are used in the target output. Increasing R
forces only highly probable remarks to be selected for the
target set; decreasing R results in selecting more remarks for
the target set (see Fig. 2 that displays impact of R on Precision
and Recall).

III. DATA

Four publicly available data sets were used for training
experiments (listed in Table I), all of them having been
described for the BEA 2019 Workshop shared tasks [6].

During the pre-processing, all sentences whose byte-pair
representation was longer than 400 were removed from the
training set (it was no more than 0.5
% of all data), which allow for using bigger batches during
the training. This, in turn, sped up model convergence. Fur-
thermore, we tried the approach introduced in [2] and removed
sentence pairs without any corrections. We achieved the best
results after all the correct sentence pairs were removed from
the NUCLE and LANG-8 datasets.
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Fig. 1. Examples of Sentences Annotated by ERRANT. Every Annotation Line (Starting with A) Describes Source Text Adjustment (Starting with S). Every
Annotation Defines the Span, Remark Type and Replacement Text.

Multiple evaluation sets is an important criterion to prevent
domain overfitting. The model is evaluated on Write and
Improve development and test datasets introduced in [6], the
CONLL2014 test set introduced in [10] and the FCE test
dataset adjusted for the BEA workshop.

Evaluation on WI+Locness was performed by ERRANT
[19]. The FCE and CONLL dataset results were measured by
the M2 scorer [20]. However, except Table VI, all the results
were reported by the ERRANT score. The M2 scorer was used
only to allow for comparison with other reported results.

ERRANT and M2 evaluation method is based on text
edits comparison. For every input sentence, measured system
outputs some hypothesis. This hypothesis might be considered
as a set of text edits E.

E = {e1, .., en} (5)

Every sentence has some gold standard edits G.

G = {g1, .., gn} (6)

[20] defines precision and recall of system hypothesis as:

P =

∑n
i=1 |ei

⋂
gi|∑n

i=1 |ei|
(7)

R =

∑n
i=1 |ei

⋂
gi|∑n

i=1 |gi|
(8)

ERRANT and M2 display system edits and the gold stan-
dard in a format defined in Section II-D. ERRANT additionally
generates results indicating specific error categories (such as
M:PUNCT, which stands for missing punctuation).

IV. EXPERIMENTS

During our experiments we measured the impact of dif-
ferent factors on model performance on GEC task. In Section
II we emphasise the specifics of GEC. We noticed that our
model setup was very sensitive for the quality and type of
training data. On the other hand, a small amount of training

TABLE II. TRAINING CONFIGURATIONS

Model size base large
Number of epochs 2 2
Max sentences in batch 256 16
Max tokens 512 512
Max updates 8216 8772
Warm-up 411 414
Learning rate 7e-05 3e-05
Dropout 0.05 0.05

data required precise selection of training time and learning
rate to prevent overfitting. We reduced a dropout to 0.05 -
higher values slowed down the model convergence and did
not give any long-running benefits.

The model was trained using the Fairseq toolkit [21],
adopting the general configuration designed for translation
tasks. This setting requires providing dictionaries, which in our
case were the same for both the source and target language.
The baseline model was BART in two versions: base (140M
parameters) and large (400M parameters). BART requires text
pre-processed by the byte-pair encoder, introduced in [15].

All experiments were performed on single GPU (Geforce
RTX 2080 11GB), on Python version 3.7.6.

A. Configuration

An optimizer used for training was Adam [22] with label-
smooth cross-entropy loss function [23]; the learning rate
was set according to a polynomial schedule. All the training
and learning rate schedule parameters, except those listed in
Table II, were left unchanged from their default values. The
polynomial schedule in its default configuration (a polynomial
degree equals 1) basically increases the learning rate from 0
to the max value during warm-up phase and then linearly
decreases. Token and sentence limits were set to facilitate a
single batch fit into the available GPU memory.

B. Data Set Impact

In our approach, the base model is already trained on
reconstructing noisy text. During the fine-tuning phase, we
show pairs of correct/incorrect text, which alters model be-
havior to precisely fix a specific set of text modifications. We
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investigated the impact of including different data sets into
the training set. Table III shows detailed results achieved on
three development sets, while adding data to the training set.
It proved to be important that a training data includes high-
quality corrected texts (WI , FCE), and adding texts from
other sources may degrade model performance.

Training only on the WI dataset yields average results of
53.65 for WI and 54.38. These results are almost as good
as achieved by bigger training sets, but on FCE it gets only
48.49, which is significantly worse than further results. Adding
the FCE training set improves score on the FCE test set to
53.22, without degrading results on other test sets. After adding
NUCLE, average results on FCE increases slightly to 53.73
and on CONLL-14, to 55.75. However, the models trained
only on WI and FCE, without NUCLE, achieve better
result when multiple model output is combined. Data from the
LANG-8 dataset caused quite a significant drop on all the test
sets, which might be caused by difference in annotation quality
between the training and test data. The LANG-8 annotations
were created by native speakers - collaborative users of the
LANG-8 learning service. The WI test set was created from
selected Write and Improve service submissions, mixed with
parts of the LOCNESS essay corpus and annotated 5 times by
Write and Improve annotators.

C. Model Size Impact

For comparison, Table IV shows results for a smaller
version of pre-trained BART containing 140M parameters.
Both model types were trained from 10 different random
initialization points. Results reported in the table are: the
best checkpoint result, an average of all 10 checkpoints, an
ensemble containing 3 models (an average of 10 random
combinations of size 3) and an ensemble containing all 10
models. A detailed description of the ensembling method is
provided in Section IV-D.

The smaller model achieves an average of 41.96 F-score,
which, comparing to the LARGE version score of 53.36, is
significantly worse, but its inference time is 2 times better,
which might be an important quality when considering the
production use.

D. Combining Output

Table V shows a change of F0.5 on BEA-Dev dataset
while changing values of R and N (parameters of the output
combination algorithm, see Section II), and Fig. 2 showcases
a trade-off between precision and recall for an ensemble of 10
checkpoints and a changing value of R.

The different model checkpoints are trained using the same
train sets and configuration, but are initialized with different
random values. Adding models to an ensemble allows for
better overall correction-quality but requires longer inference
time.

Thanks to the method described in Section II, the overall
reported performance for BEA19 can increase by almost 4%,
where a single model achieves 69.80, and after ensambling, it
reaches 73.90.

Fig. 2. Impact of Changing Remark Frequency R (see Section II-D) for
Ensemble of 10 Models. Measurements were Performed on BEA-dev. For

Detailed Results on Different Ensembles see Table V.

E. Results Summary

Single models were selected by comparing results from
development sets, so the value reported on the BEA19 test
comes from the checkpoint that achieved the best result on
the BEA19 development set. In the case of CONLL14, where
there is no development set available, the reported value is
an average of 10 randomly initialized checkpoints. Table VI
comprises results reported in current research papers and those
achieved by our model. We report the best score on the BEA19
test and development sets. The scores on CONLL2014 and
FCE are not far from the best reported results. These results,
achieved by relatively low-resource fine-tuning, suggest that
the GEC models might greatly benefit from a pre-trained
model. A sequence-to-sequence denoising pre-training objec-
tive uses similar text transformations, as commonly required in
GEC. [17] uses token masking, token deletion, token infilling,
sentence permutation and document rotation. After fine-tuning,
the model identifies a subset of these transformations specific
to GEC. Remark-based ensambling proved to be a reasonable
method to increase the correction precision, which improves
the overall score, but it is also important for further model
applications, where false positive remarks might be very mis-
leading, especially in educational systems.

V. CONCLUSION AND FUTURE WORK

A fine-tuned sequence-to-sequence transformer model is
very effective in solving the GEC task. It was able to achieve
state-of-the-art results on the BEA19 test set 73.90 and de-
velopment set 56.58. It proves that an efficient model solving
GEC might be trained in a matter of hours using a single GPU.
Only a limited amount of human-annotated data was required.

What is also beneficial in our approach is that it facili-
tates leveraging future progress in general-purpose language
models. Single language models followed by multi-lingual
systems will enable solving GEC for languages other than
English. Constantly expanding transformer-based models ex-
tend the limits of text comprehension and may improve GEC
performance without costly data annotation and only with low-
resource and fast fine-tuning.
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TABLE III. RESULTS ACHIEVED FOR TRAINING SETS CONTAINING DATA FROM DIFFERENT SOURCES. COLUMN MAX DISPLAYS BEST CHECKPOINT, AVG
AVERAGE RESULT, ENS 10 RESULT AFTER COMBINING CHECKPOINTS FROM ALL REMARKS

Train data Sentence count BEA-dev (ERRANT)
max avg ens 10

W&I 34K 53.65 53.34 56.74
W&I, FCE 63K 54.07 53.36 56.58
W&I, FCE, NUCLE 84K 53.29 52.73 55.42
W&I, FCE, NUCLE, LANG8 658K 48.87 35.79 41.03
Train data Sentence count FCE-test (ERRANT)

max avg ens 10
W&I 34K 49.35 48.49 51.61
W&I, FCE 63K 53.72 53.22 57.48
W&I, FCE, NUCLE 84K 54.5 53.73 57.94
W&I, FCE, NUCLE, LANG8 658K 52.58 52.18 56.46
Train data Sentence count CoNLL-14 (ERRANT)

max avg ens 10
W&I 34K 54.95 54.38 58.82
W&I, FCE 63K 55.48 54.68 58.81
W&I, FCE, NUCLE 84K 56.28 55.75 57.94
W&I, FCE, NUCLE, LANG8 658K 55.58 54.63 57.04

TABLE IV. RESULTS FOR DIFFERENT MODEL SIZES

Model size parameters BEA-dev (ERRANT)
max avg ens 3 ens 10

BASE 140M 44.34 41.96 43.32 45.66
LARGE 400M 54.07 53.36 56.19 56.58
Model size parameters FCE-test (ERRANT)

max avg ens 3 ens 10
BASE 140M 45.29 42.20 45.97 47.08
LARGE 400M 53.72 53.22 57.04 57.48
Model size parameters CoNLL-14 (ERRANT)

max avg ens 3 ens 10
BASE 140M 48.23 46.30 48.36 50.13
LARGE 400M 55.48 54.68 58.70 58.81

TABLE V. BEA-DEV RESULTS FOR ENSEMBLES CONTAINING DIFFERENT MODEL COUNT (PARAMETER N ON HORIZONTAL AXIS) AND CHANGING
REMARKS FREQUENCY PARAMETER R (VERTICAL AXIS, SEE SECTION II-D)

R/N 2 3 4 5 6 7 8 9 10
1 52.83 51.72 51.03 50.12 49.59 48.99 48.60 48.22 47.85
2 55.87 55.46 54.76 54.18 53.74 53.21 52.79 52.42 52.07
3 56.19 56.09 55.82 55.37 55.04 54.66 54.28 53.95
4 56.15 56.47 56.25 56.02 55.67 55.39 55.10
5 56.10 56.49 56.44 56.30 56.05 55.85
6 56.04 56.62 56.57 56.50 56.27
7 55.94 56.60 56.56 56.66
8 55.86 56.57 56.52
9 55.73 56.58

10 55.62

TABLE VI. RESULTS SUMMARY (MEASURED BY ERRANT EXCEPT TWO COLUMNS FOR CONLL14 AND FCE-TEST LABELED ACCORDINGLY AS
MEASURED BY M2 SCORER)

Results
BEA-test BEA-dev CoNLL14

(M2)
CoNLL14 FCE-Test

(M2)
Single model result
GECToR [4] 72.40 55.50 65.30 - -
Transformer + Pseudo data[3] 64.20 45.90 61.30 56.00 -
BERT-fuse[2] - - - - 61.20
Model ensembles
GECToR [4] 73.63 - 66.50 - -
Combined systems [24] 73.18 - - - -
Transformer + Pseudo data[3] 70.20 - 65.00 60.90 -
BERT-fuse[2] 69.80 - 65.20 - 59.40
Transformer + Pseudo data based on
confusion sets[9]

69.47 53.00 64.16 - 55.81

Sequential transfer learning [25] 69.06 52.79 - - -
Ours – single model 69.80 54.36 61.92 55.27 59.11
Ours – 3 models 73.13 56.19 62.48 58.70 59.32
Ours – 10 models 73.90 56.58 62.48 58.81 59.54
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