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Abstract—The adoption of High-Performance Computing
(HPC) applications has gained an extensive interest in the Cloud
computing. Current cloud vendors utilize separate management
tools for HPC and non-HPC applications, missing out on the
consolidation benefits of virtualization. Non-HPC applications
executed in the cloud may interfere with resource-hungry HPC
applications, which is a key performance challenge. Furthermore,
correlations between application major performance indicators,
such as response time and throughput, with resource capaci-
ties reveal that conventional placement strategies are impacting
virtual machine efficiency, resulting in poor resource optimiza-
tion, increased operating expenses, and longer wait times. Since
applications often underutilized the hardware, smart execution
of HPC and Non-HPC applications on the same node can boost
system and energy efficiency. This research incorporates proactive
dynamic VM consolidation to enhance the resource usage and
performance while maintaining energy efficiency. The proposed
algorithm generates a workload-aware fine-grained classification
by employing machine learning techniques to generate compli-
mentary profiles that alleviate cross-application interference by
intelligently co-locating non-HPC and HPC applications. The
research used CloudSim to simulate real HPC workloads. The
results verified that the proposed algorithm outperforms all
heuristic methods with respect to the metrics in key areas.

Keywords—Cloud computing; HPC (High-Performance Com-
puting); virtual machine consolidation; placement; optimization

I. INTRODUCTION

Cloud computing [1] provides organizations with an af-
fordable, high-performance computing [2] infrastructure. HPC
programs have a repetitive and predictable nature and based
on the characteristics of the data that is utilized as input,
their resource consumption patterns (CPU and memory, I/O,
and network) are predictable. Strategies can be developed
to increase queue throughput and resource utilization while
reducing performance impacts on applications. HPC applica-
tions’ performance can be adversely affected by virtualized
layers, heterogeneous hardware, HPC-agnostic schedulers such
as MOAB [3] or Load Leveler [4], and resource sharing
policies. Currently, cloud providers for HPC either offer spe-
cialized clouds with dedicated nodes, lacking the consolida-
tion advantages of virtualization, or cloud scheduling that is
HPC-agnostic, resulting in inadequate performance. Although
modern systems have enormous compute power per node, HPC
applications seldom use all of the resources assigned to them.
Other applications, such as non-HPC applications, can make
use of this feature by utilizing underutilized resources.

Separate technologies have been used to manage the
resources and applications on dedicated systems for HPC
and Non-HPC applications. This isolation has become an
increasing burden, and hence there is an increased demand
for the adoption of a standardized shared platform. Execution
of both HPC/Non-HPC applications on the same cluster boosts
the system efficiency, allowing programs to take advantage
of all the available hardware resources. However, even with
these advantages, there is still a hindrance in using the full
potential of sharing the resources. It is vital that the researcher
must devise a method of bridging the gap between dedicated
infrastructures and standardized shared platforms by balanc-
ing the trade-off between resource utilization, performance,
and energy usage, by choosing a suitable VM to physical
machine placement methods, with the intention of exploring
the best physical machine (PM) that can be used to host the
virtual machines. Workload heterogeneity has become norm
in cloud computing [5]. Workload characterization is critical
since it can group various resource-intensive workloads based
on their defining qualities. Classifying workloads that have
common consumption patterns can enhance resource manage-
ment, which improves system performance while maintaining
Quality of Service. Clustering techniques are frequently used
to cluster workloads in the cloud data center to reduce energy
usage and SLA violations for resource allocation.

In terms of VM placement strategies, there are two types:
reactive and proactive/predictive strategies. Reactive strategies
enhance the initial VM after the system reaches a certain
undesired state. While proactive/predictive strategies attempt to
enhance VM placement results by projecting future workloads
or resource demands using prediction techniques. Identifying
proper co-allocated combinations of applications that can be
run on the common platform guarantees optimum utilization of
resources [6]. The optimum utilization of active resources will
allow the reduction of the number of operating servers, which
will lead to saving energy spent on computation [7]. Hence,
the total energy consumed by a data center will be reduced and
optimum utilization of hardware will maintain the performance
of applications. Most of the earlier well-established research
refers to VM consolidation as a key approach for data centers
to save energy and achieve a balance between utilization and
SLA violations. The goal behind this strategy is to carefully
consolidate VMs or workloads onto a smaller number of PMs
and then convert the unused (idle) PMs into a power-saving
state or shut them down when they are no longer needed.
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Available literature indicates that there have been only
a few attempts that proposed automatic workload clustering,
virtual machine placement and VM consolidation techniques
[8] to eliminate or at least reduce the impact of energy [9],
performance [10], and interference [11] in co-located HPC
and Non-HPC applications. Moreover, the HPC application
characteristics of the strongly coupled processes that perform
constant interprocess communication and synchronizations
have also rarely been studied.

This study aims to combine and execute both HPC and
non-HPC applications on cloud resources using a smart and
innovative technique which can balance the trade-off between
energy, performance, and resource utilization [12]. The re-
searchers have proposed proactive dynamic VM consolida-
tion for co-scheduling of HPC and non-HPC applications
that is based on utilization predictions and an application’s
profile employing machine learning techniques. Our approach
looks for applications that work well together and can be
deployed on the same hardware, and the execution profiles
for these applications do not compete with each other. This
will allow for more efficient usage of the hardware. As part
of the VM consolidation process, the proposed approach to
VM consolidation also examines the application’s resource
usage requirements across multiple dimensions, such as the
CPU, RAM, and the network. By co-locating suitable virtual
machines on hosts during consolidation, resource contention
and virtualization overhead can be reduced on application
performance without losing the benefits of VM consolidation.
Thus, the major contributions to this study can be stated as
follows:

1) Introduces and implements HPC and energy-aware,
efficient proactive dynamic virtual machine (VM)
consolidation technique in cloud datacenter that
makes cloud schedulers as well as VM placement
HPC-aware.

2) Attempt to make VM consolidation application-
centric while considering the requirements of the
applications’ resource utilization (i.e., CPU, mem-
ory, and bandwidth). The paper explores automatic
clustering of workload and virtual machines using k-
mean cluster technique. It also aims to explore smart
VM placement strategies to intelligently schedule
HPC and non-HPC applications on a single pool
of resources to increase utilization of resources and
overcome the performance issues caused by resource
contention.

3) Explicitly examines the real-world HPC workload in
order to demonstrate the reliability of our numerical
analysis in terms of how well our proposed approach
is suited to both HPC and non-HPC applications.

This paper is structured as follows: Section II presents the
background and motivation for the study. Section III presents
the related work to gain knowledge of contemporary research
and discusses the importance of the proposed algorithm. while
Section IV demonstrates the proposed energy-efficient HPC
aware proactive dynamic VM consolidation (EAMDOBP).
Section V introduces the evaluation methodology. Section
VI discusses the simulation results and analysis. Lastly, the
conclusion and future work is discussed in Section VII.

II. BACKGROUND AND MOTIVATION

One of the primary goals of modern datacenter architecture
is to cut down on energy usage. Data center energy demands
are expected to rise to 752 TWh in 2030. This means that
data centers consume 2.13% of total global electricity demand
[13]. The inefficient utilization of hardware resources is the
root cause of high energy consumption. Idling servers might
use 60% of their maximum power [14]. Clustering of workload
[15] and Virtual machine consolidation are the most effective
and crucial approach for optimizing resource consumption and
improve energy efficiency in cloud datacenters. VM consoli-
dation can be implemented in two ways, static and dynamic.
Fig. 1(a) is static consolidation. When a job arrives, the size
and location of virtual machines on physical machines (VMs)
are explicitly pre-determined, and the placement does not
change during execution. Static VM placement resembles the
N-dimensional bin-packing issue where the bins symbolize
physical machines (PM). The items for packing represent the
VMs and the size of the bin depends on the volume, types and
nature of resources. Static VM consolidation is better suited
for small jobs spanning a few hours, where PMs resources for
various kinds of VMs can be defined explicitly [16]. Simple
heuristics or historical VM demand patterns are the basis of
energy minimization. However, during low-demand resource
periods, an increase in the cost of application providers is likely
to occur. Similarly, the available resources may be insufficient
in high utilization periods [17].

On the other hand Fig. 1(b) shows dynamic VM consoli-
dation. To improve the effectiveness of a placement, dynamic
VM consolidation allows relocation during execution. Mostly
virtual machine workloads are bursty in nature, dynamic VM
consolidation is highly beneficial in a cloud computing envi-
ronment, assuming that monitoring is in place to prevent any
violations of Service-Level Agreements (SLAs). Accordingly,
dynamic VM consolidation conserves energy and enhances the
consumption of resources by using the minimum resources
necessary to meet the workload requirements. Consequently,
if the workload requirement decreases, unused servers are shut
down or kept in low-power mode. Similarly, as consumption
grows, additional servers are brought online.

The VM migration and VM placement are considered
as the backbone of the VM consolidation technique. The
problems like scalability of resources, heterogeneity, migra-
tion cost, and unpredictable workloads cause that the VM
consolidation process becomes very challenging. The virtual
machines (VMs) placement to physical machines (known as
VM-Placement) can significantly impact performance. It is
very important to choose an appropriate host to enhance power
efficiency, better use of resources and support for QoS to attain
Resiliency in the Cloud [34].

Clustering is an unsupervised learning strategy for subdi-
viding a big group into multiple smaller groups. As a result,
it may be used to find patterns in massive datasets. In current
research, the advantages of this group building technique of
clustering have been applied to locate groupings in the jobs
(incoming request). The ability to locate groupings within jobs
based on the number of resources consumed is helpful since
this methodology allows to find groupings within jobs.

Cross application interference can occur when different
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Fig. 1. Inputs and Outputs of (a) Static VM Consolidation and (b) Dynamic VM Consolidation.

cloud workload compete for shared resources, resulting in
considerable performance degradation and, results in increase
Service Level Agreement violations. Despite this, state-of-the-
art VM scheduling still relies heavily on resource capacity, em-
ploying heuristics like bin-packing and ignoring the cross ap-
plication interference overhead. To the best of our knowledge,
only a few studies were made for VM scheduling algorithms
that consider the tightly connected processes that perform
frequent inter-process communication and synchronizations.
Improved resource efficiency, cost savings, and, ultimately,
broader acceptance of high-performance computing in clouds
can be achieved by the strategic placement of virtual machines
and the execution of HPC and non-HPC workloads in cloud
environments.

Hence, this study focused on a multi-objective challenge
that seeks to explore automatic online workload clustering
using machine learning, smart VM consolidation and place-
ment strategies to intelligently schedule or provision HPC and
non-HPC applications on cloud resources to overcome the
aforementioned gap and issues of rigorous consolidation.

III. RELATED WORK

Primarily due to the enhanced efficiency, a significant
number of heuristic algorithms have already been suggested
for handling VM consolidation challenges in recent years.
Among them, Mosa et al. [18] suggest the solution to vir-
tual machine placement that dynamically reallocates virtual
machines depending on their actual request for the individ-
ual VMs. The suggested approach evaluates various resource
categories (particularly CPU and memory) to minimize under-
and over-utilization in cloud-based data centers. The conducted
experiments highlighted the significance of incorporating a
variety of resource types. Finally, they concluded for dynamic
VM placement, the genetic algorithm outperforms the Best-Fit
algorithm. However, the paper neither takes into account the
HPC workload nor discusses the issues of cross-application
interference. Kraemer et al. [19] developed a job migration
mechanism for transferring jobs from the cloud environment
to the high-performance computing environment. The primary
goal is to reduce the amount of response time violations
associated with cloud jobs while not interfering with the
execution of HPC jobs.

V. Antonenko [20] developed a strategy for migrating
jobs from the cloud environment to the high-performance
computing environment. The major objective is to reduce
cloud job response time violations without conflicting HPC

task execution. The author’s study discusses the suggested job
scheduling methods using the SimGrid simulator in various
execution scenarios, and recorded findings revealed no reaction
time violations. However, the authors did not incorporate
support for parallel jobs and did not run experiments with
higher rates of incoming cloud jobs.

Alves et al. [11] describes the Interference-aware Vir-
tual Machine Placement Issue (IVMPP) in small-scale High-
Performance Computing (HPC) applications executing in
Clouds. When applications run on a common physical ma-
chine, cross-interference is likely to happen, which harms
the application′s performance. This problem is very com-
mon in HPC that is executed in clouds. The iterated local
search framework is proposed as a new solution to prevent
the Interference-aware Virtual Machine Placement Problem
(IVMP) from happening in HPC applications in clouds. In
this study, they limited the interference that happens to HPC
applications when sharing common physical machines. The
results indicated that the proposed method limited interference
by more than 40% in contrast to the most commonly applied
heuristics to address the issue. However, the energy and the
effect of consolidation are not taken into consideration.

A. Souza [12] proposed a hybrid resource management sys-
tem for both DI (Data-Intensive) workload systems and HPC
systems that will allow combining both of them on the same
platform. The most significant feature between HPC systems
and DI (Data-Intensive) systems is the fixed set of resources
allocated completely to an application in HPC systems. Con-
trary to the DI (Data-Intensive) systems, in which allocation
of resources and control are dependent on application needs. It
also describes the design of a hybrid framework which helps
for dual-level scheduling of DI jobs on the HPC infrastructure.
The core benefit of this hybrid system is that it relies on real-
time resource utilization monitoring that could successfully
co-schedule high-performance computing (HPC) and data-
intensive workloads. It can easily be adapted and extended
to different types of workloads. For HPC and DI workloads,
the architecture is based on the resource managers Slurm and
Mesos. In a particular cluster, the hybrid architecture raises
resource consumption by 20%, allowing it to meet all the
constraints for HPC jobs, with a 12% reduction in queue
makespan. Nevertheless, the paper does not explore ways to
reduce the interference and co-location effects on energy as
well as resource utilization.

Gupta et al. [21] presented scheduler for cloud platforms
that is HPC-aware and incorporates topological needs for
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HPC applications. Their scheduler uses benchmarking data
to classify the application’s network requirements and how
resource sharing affects performance. Using three apps and
NAS benchmarks, their scheduler outperformed the HPC-
agnostic scheduler. Despite all the benefits, Gupta et al. [21]
ignored SLA and energy breaches in their study. Furthermore,
the trade-off among optimal HPC performance and ideal
resource usage is primarily discussed in terms of throughput.
Static VM consolidation techniques and Off-line applications
profiling were used for classification. Hence, it is necessary
to investigate the trade-off in terms of other dimensions as
well. As part of earlier research, the researchers investigated
CloudSim’s default VM placement technique for energy con-
sumption in contrast to the VM placement technique pro-
posed by Gupta, which uses Multi-Dimensional Online Bin
Packing (MDOBP). Fig. 2 illustrates that MDOBP uses more
energy than CloudSim’s default VM placement technique. The
findings show an increase in energy consumption due to the
possible restrictions of static VM placement. The findings
of this experiment served as the foundation for the current
research.

Fig. 2. Energy Comparison of Default vs MDOBP.

Cluster analysis is critical for detecting workloads with
similar resource usage patterns. Several approaches for clus-
tering workloads using K-Means have been proposed. Di,
Sheng at al. [22] characterize a one-month Google cluster
trace by CPU and memory utilization using the Forgy approach
for centroid initialization. A merge ratio threshold is used to
calculate the optimal number of clusters. Moreno et al. [23]
employ K-Means clustering to group workloads based on user
behavior and task characteristics. The number of clusters is
obtained by comparing the variability of all items within a
cluster to a threshold value.

In a previous project [24], the authors studied and im-
plemented the Hybrid Local Regression Host Overload De-
tection algorithm (HLRHOD). An innovative energy efficient
VM consolidation method that uses hybrid factors for host
overload detection in cloud datacenters. We concluded that
using hybrid factors (CPU, Memory, Bandwidth) can provide a
more accurate indication of host utilization and outperform the
techniques based on single factors. Thus, using the HLRHOD,
the server in operation can be optimally minimized and, hence

helps in the reduction of energy utilization. Nevertheless, the
paper does not explore ways to reduce the interference and
co-location effects of the HPC and non-HPC applications on
resource utilization as well as energy.

In this study, Gupta et al. [21] heuristics for initial VM
placement for high-performance computing (HPC) applica-
tions were followed and expanded. Additionally, this study
expands VM consolidation work [24] by making VM con-
solidation application-centric while simultaneously taking into
account the requirements of the application’s resource con-
sumption (i.e., CPU, memory, and bandwidth). We also explore
smart VM consolidation and placement strategies to intelli-
gently schedule or provision HPC and non-HPC applications
on cloud resources to increase utilization of resources and
overcome the aforementioned issues of consolidation. Further-
more, automatic and dynamic classification of the application
workload using k-mean is implemented.

IV. ENERGY-AWARE MULTI-DIMENSIONAL ONLINE BIN
PACKING (EAMDOBP)

HPC applications are often constructed to operate in a
homogenous as well as dedicated environment to eliminate un-
wanted interference by apps that are located concurrently. This
is due to the fact that the performance of high-performance
computing applications are significantly dependent on the
slowest node. In contrast, cloud infrastructure is changing from
homogeneous to heterogeneous. Heterogeneity dramatically
lowers performance in parallel applications, especially in repet-
itive and bulk concurrent workloads. VM scheduling for HPC
is challenging because of the trade-off between better HPC
performance and improved resource consumption. A technique
for intelligently optimizing the placement and execution of
virtual machines (VMs) for HPC and non-HPC applications
can improve resource usage, improve energy efficiency, and
hence promote HPC cloud acceptance.

Sharing resources typically causes critical interference.
Contention of shared resources has poor impact on applications
performance. Caches are small stores of temporary memory.
Cache memory has an impact on the program execution
because its access time is less than the access time of the
other memories. It is the fastest component in the memory
hierarchy and approaches the speed of CPU components. They
can degrade system performance if they become too large.
System performance is a decreasing function of the cache miss
rate, the cache access time, and the number of processor cycles
taken to service a miss. They also can consume memory that
other applications might need, negatively impacting applica-
tion performance. Cache, memory, I/O channels, and network
access are all shared resources, but cache are one of the most
significant applications performance degradation factors [25].
It is advantageous to have cache-intensive applications; endure
more LLC misses per second; co-located with applications
that use little or no cache on the same node. Cache-sensitivity
awareness assists in the avoidance of interference.

Most of the studies reviewed recently, a static classification
of the behavior of different workloads/applications is created to
examine their studies in order to find solutions for interference
scheduling issues in cloud environments. EAMDOBP algo-
rithm presents an automatic workload clustering using machine
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learning techniques. The EAMDOBP classifier initially cluster
the workload based on memory utilization and workload length
then VMs are grouped based on their processing capacity.
Afterwards the individual cloudlets in each cluster is scheduled
to the appropriate VM in the VM groups. The flowchart in
Fig. 3 depicts the execution flow of the proposed algorithm
EAMDOBP, which is detailed in the following subsections.

A. Clustering of Workload and VM

A workload can be defined as a certain amount of work
operated inside the data center while consuming specific
limited resources. In the current context, cloud computing
data centers are defined as computer resource pools that can
bear variable workloads whether long scientific jobs (HPC)
or transactional operations (non-HPC). Normally, workloads
are different in heterogeneous environments because of the
placement constraints they have and the number of resources
they consume [26]. In fact, the amount of resources a job
consume is defined as job resource requirements, while the
type and characteristics of resources are defined as job place-
ment constraints. Therefore, these main elements must be
addressed for intelligent and efficient scheduling. The proposed
EAMDOBP initially classifies incoming requests according
to job characteristics. This classification further is used to
make crucial scheduling decisions, such as scheduling jobs
from various clusters based on the amount of resources they
consume.

1) Clustering Jobs using K-Means and Silhouette Method:
The EAMDOBP classifier divides workload into specified
classes by using the k-means algorithm [35] and the silhouette
approach [36]. K in k-means algorithm denotes the quantity of
pre-defined clusters that must be produced during the process.
It is a centroid-based technique, with each cluster having its
own centroid. The algorithm’s main goal is to minimize the
sum of distances between data points and their respective
clusters. As input, the EAMDOBP classifier takes memory
utilization and its length from METACENTRUM-02.swf logs
of the parallel workload archive, separates it into k = 4 clusters,
and then continues the procedure until the centroids don’t
change. The technique for creating job clusters using the K-
Means clustering algorithm is summarized in Algorithm-1.
Once the clustering process is completed, the average memory
utilization for each cluster is calculated.

Algorithm 1 Basic K-Means Algorithm

1: Select k points as initial centroid
2: repeat
3: Form k clusters by assigning each point to its closest

centroid
4: Re-compute the centroid of each cluster
5: until the centroids don’t change

Clusters presented in Table I are obtained applying
k-means algorithm in cloudSim on the first 250 logs
from METACENTRUM-02.swf logs of the parallel workload
archive [27]. K-means algorithm clusters data into four clus-
ters. From the cluster centroid analysis, four different types
of workloads can be outlined. These have been labeled as
“IntenseHPC”, “ConcurrentHPC”, “DiscreteHPC”, and non-
HPC.

Table II displays the input (memory use and length) clas-
sified into each cluster using k-means algorithm. The number
of objects by cluster represents the total number of objects per
cluster. Within-cluster variance is the sum of squared distance
between the average point (centroid) and every point of the
cluster. The smaller the within-cluster variance value the better
is the clustering. The average distance between observations
and the cluster centroid is a measure of observation diversity
within each cluster. A cluster with a smaller average distance
is generally more compact than one with a bigger average
distance. Clusters with higher values show more variation in
the observations within the cluster. A larger maximum value
of maximum distance to centroid, especially when compared
to the average distance, suggests a cluster observation that is
located further away from the cluster centroid.

Furthermore, silhouette score is utilized to determine the
quality of clusters formed by using K-means clustering al-
gorithms. The silhouette approach analyzes the quality of
clustering by determining how well each point fits into its
cluster. Using Eq. 1, the silhouette score is calculated for each
cluster data (i.e. memory utilization and its length). where (a)
is mean intra-cluster distance and (b) is the mean nearest-
cluster distance. Fig. 4 depicts the mean silhouette score of
each cluster. When the silhouette score equals 1, it means
that the clusters are very dense and well separated. When the
silhouette score equals 0, it means that clusters are overlapping.
If the score is less than 0, this indicates that the data could be
incorrect.

SilhouetteScore = (b− a)/max(a, b). (1)

Subsequent workload clustering, the processing capability
of each virtual machine is determined based on its MIPS,
size, bandwidth, and RAM. The virtual machines are then
grouped into four clusters Extreme High (EHVMs), High
(HVMs), Medium (MVMs) and Low (LVMs), using the mod-
ified K-means clustering algorithm. Afterwords, all cloudlet
clusters are mapped to Virtual Machine (VM) clusters. The
cloudlet with the high memory consumption is assigned to high
processing capability. For example, IntenseHPC applications
are assigned to Extreme High (EHVMS). Fig. 5 shows the
simulation time with kmeans and without kmeans. As depicted
in the Fig. 5 the simultaion time has shown improved result.

B. Virtual Machine Placement

EAMDOBP selects the PM that will host the VM based
on the VM’s class. The EAMDOBP begins the process with
the target that IntenseHPC applications VMs can be assigned
to the same host and rack as much as possible to reduce
cross-interference for HPC/ Non-HPC applications. When ap-
plications share a physical machine, cross-interference can
occur, negatively impacting their performance. EAMDOBP
VM request contains the application’s cluster name, as well
as any existing parameters, unlike traditional VM requests.
Based on the VM provisioning request, VM and cloudlets
are generated depending on the Application type, capacity
(number of CPU, RAM, and bandwidth), and instance type.
VMs are allocated to a host and the cloudlet is allocated
to VM. The algorithm then calculates the current host and
rack free capacity, which is the number of extra VMs of the
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Fig. 3. Energy-Aware Multi-Dimensional Online Bin Packing (EAMDOBP).

TABLE I. POPULATION AND DESCRIPTION OF CLUSTERS RESULTING FROM CLUSTERING FIRST 250 DATA OF METACENTRUM-02.SWF LOGS OF THE
PARALLEL WORKLOAD ARCHIVE

Cluster Population Memory usage Clustering description
IntenseHPC (Cluster-4) 2 26749856.000 This cluster shows high memory consumption

DiscreteHPC (Cluster-3) 15 326042.000 This cluster shows moderate memory consumption

ConcurrentHPC (Cluster-1) 17 4732608.750 This cluster shows memory consumption is lower then DiscreteHPC.

non-HPC (Cluster-2) 215 86285.953 This cluster shows low memory consumption

TABLE II. K-MEAN CLUSTERS RESULT

Cluster 1 2 3 4
Number of objects by cluster 17 215 15 2

Sum of weights 17 215 15 2
Within-cluster variance -0.223 -0.582 1.472 -0.667

Minimum distance to centroid 1.397 -0.540 -0.870 0.013
Average distance to centroid 0.276 -0.711 1.296 -0.860

Maximum distance to centroid -0.384 0.713 0.906 -1.234

requested specification which can be deployed on a specific
host and rack. To assure that IntenseHPC is only run on
dedicated nodes, it sets all hosts with a active VM to zero,

if the required VM category is IntenseHPC. The scheduler
then prepares a initial plan, which is a list of hosts sorted by
rackCapacity and hostCapacity for hosts in the same rack, if
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Fig. 4. Mean Silhouette Score of Clusters.

Fig. 5. Simulation Time with Kmeans and Without Kmeans

the required VM cluster is IntenseHPC or DiscreteHPC. The
idea is to keep as many VMs on the same host and rack as
possible to avoid inter or cross-VM communication overhead
for these application types. This initialPlan is used for VM
provisioning in IntenseHPC, whereas for the other classes
(DiscreteHPC, ConcurrentHPC, and NonHPC), the method
does multi-dimensional online bin packing to gruop VMs with
variety of attributes on the same host.

C. Virtual Machine Consolidation

Since changing workloads modify VM resource utilization
over time, initial VM placement should be complemented by
a regular VM consolidation procedure. Status is examined for
every scheduled interval by using the EAMDOBP proactive
dynamic consolidation technique. Notably, the detection of
host overload/underload is the initial stage in virtual machine
consolidation whose main target is energy reduction. The de-
fault underload detection algorithm is applied every scheduled
interval, and underutilized hosts are deactivated after moving
all VM to other active PM. Afterward, Hybrid Local Regres-
sion Host Overload Detection algorithm (HLRHOD) [24] is
applied to detect the overloaded hosts. VM is chosen from
the overloaded hosts to migrate to available hosts. HLRHOD
calculates host utilization based on hybrid factors by utilizing
a metric which measures the combined CPU-network-memory
load of physical and virtual servers. Following the calculation
of host utilization, the program employs local regression. The
basic concept behind the process of local regression is that it
involves fitting simple models to confined subsets of data in
order to construct a curve that approximates the original data.
To identify whether the host is overloaded or underloaded,

HLRHOD estimates the host utilization based on a hybrid
factor. VM consolidation requires two more phases after the
overloaded hosts are identified. The first phase is to identify
the virtual machines (VMs) that will be migrated from the
overloaded hosts to other hosts (known as VM migration), and
the second phase is to replace the VMs that were selected for
migration on new hosts (known as VM placement).

D. Virtual Machine Placement

Multi-dimensional online bin packing (MDOBP) algorithm
is used for VM placement and it allows VMs with diverse
characteristics to be placed on the same host to reduce energy
and enhances the consumption of resources. MDOBP treats
hosts as bins, and virtual machines as objects that must be
packed into the bins. A host is represented as a d-dimensional
vector, which is referred to as the host’s vector of capacities.
Each dimension indicates the host’s capacity corresponding
to a specific resource, such as CPU utilization, memory uti-
lization, or disk bandwidth. Similarly, each virtual machine is
represented by a vector of requirements. The aim is to place
all of the VMs on as few hosts as appropriate, while ensuring
that, across all dimensions, the total demand of VMs placed
on a host does not exceed the capacity of the host.

Additionally, each job is assigned a cache score from (0-
30) The cache score represents the amount of pressure being
placed on the both memory controller subsystem as well as
shared cache. The chosen host is furthermore verified for
compliance with the interference requirements i.e estimated
demand for contested resources from the physical hosts. If
the sum of cache scores for the requested VM and all other
VMs running on the host exceeds a certain threshold alpha α
(Total cache threshold for any application), the request will be
denied. which needs to be determined through experimental
analysis. A different threshold β (Total cache threshold for
DiscreteHPC) is used when a requested virtual machine (VM)
or one or more virtual machines operating on that host are
of the class DiscreteHPC, because applications of this type
can tolerate less interference compared to IntenseHPC. When
the cache threshold β is too high, the efficiency is decreased
as cache-intensive applications on the same node are aggres-
sively packaged. Furthermore, very low thresholds lead to an
excessive waste of certain CPU cores if very small cache
scores do not exist. A record of interference indices is saved to
examine interference between the applications that face a big
performance penalty when being executed on the same host.
Having this information is beneficial in avoiding co-locations,
which are detrimental to the performance of high-performance
computing (HPC) applications. Following that, a FinalPlan is
established, which contains a list of hosts on which the virtual
machines should be provisioned. After each repetition, a log is
also created, which can be used to track energy consumption
and quality of service.

V. EVALUATION METHODOLOGY

A. Experimental Setup

As it is very challenging to conduct repeatable large-
scale experiments on a real infrastructure [28], simulations
are recommended to show the improvement of our suggested
algorithms. The CloudSim toolkit facilitates the modeling of
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cloud system resources from both a system and a behavior
perspectives specifically virtual machines, data centers, and
resource management policies. It incorporates common ap-
plication delivery techniques that can be extended quickly
and with minimal effort. Therefore, the experiments were
conducted with the CloudSim 3.0 simulation toolkit [29]using
four VM types and two PM types. Cloudsim is extended with
energy-aware simulations, originally not present in the core
framework [29].
Furthermore, while implementing our scheduling and migra-
tion techniques the researchers identified multiple limitations
in the CloudSim 3.0, that need to be addressed. They include
that CloudSim is designed and implemented for the cloud, and
primarily operates for tasks involving just one processor while
HPC machines require quite a huge number of processors. In
this research work, the researchers extended CloudSim 3.0 to
provision the simulation of HPC in the cloud. Hence, the key
change performed to enhance the execution of multi-core jobs
to simulate HPC in a cloud thus the PowerDatacenter class
that empowers simulation of power-aware data centers in the
cloud environment.

In order to efficiently map jobs to virtual machines (VM),
a predetermined number of virtual machines (of various types)
will be constructed at the beginning of the simulation, and jobs
(cloudlets) will be submitted to the DatacenterBrokerEAM-
DOBP broker. The cloudlets class is also modified, in addition
to existing parameters, it includes the application class and
name for VM provisioning. Furthermore, for cache-awareness,
used a uniform distribution random number generator by
giving a cache value from 0 to 30 to each job.

Further, DatacenterBroker class was also extended to Dat-
acenterBrokerEAMDOBP , with two additional features: i) it
allocates a cloudlet to VM after determining the characteristics
of both VM and Cloudlets, to assign lengthy cloudlets (jobs)
to the more efficient VMs so that the VM is not idle in a
data center and the cloudlet execution time will be reduced.
This does not only results in the efficient and improved
utilization of the system but also helps to overcomes the draw
backs of the defaults cloudSim 3.0 DatacenterBroker policy.
ii) Furthermore, cache-awareness is also added to Datacenter-
BrokerEAMDOBP policy to efficiently address the issue of
cross-interference. The cross-interference problem arises at a
high scale when high-performance applications are executed
in clouds. The proportion of additional time spent by one
program when it runs simultaneously with another is known as
the slowdown of that application.Thus the accurate forecasting
of the slowdown due to interference in each application has
many advantages: for example, it can help to enhance efficient
shared resource utilization to avoid unreasonable application
slowdowns from consolidation. DatacenterBrokerEAMDOBP
policy will allocate cloudlets to VM that do not surpass the
criteria of interference. Similar approached as Gupta [21],
the interference is calculated based on following criteria: The
sum of cache value of the VM requested does not exceed
a threshold for any VM running on a host. The value of
the threshold value is set to 60 after careful and thorough
experimentation. If the threshold is set to a large value, it will
decrease efficiency as a result of aggressive cache-intense ap-
plications packaged on the same node. On the other hand, too
small value of threshold will result in an unreasonable waste of
certain CPU cores if few applications are having insignificant

cache values. Interference indices maintained to record and
save interference between applications that experience high-
performance penalties when hosts are shared. While Data-
centerBrokerEAMDOBP policy assigns suitable cloudlet(job)
to VM, the knowledge of recorded interference indices is
used to prevent co-locations of HPC/non-HPC applications that
consumed more resources.

Furthermore, the default CloudSim VmAllocationPoli-
cySimple class extended to PowerVmAllocationPolicyMigra-
tionEAMDOBP which manages a user request encompasses
multiple types of VM. Two methods findHostForVm (for initial
VM allocation) and optimizeAllocation (for VM consolidation)
in the PowerVmAllocationPolicyMigrationEAMDOBP class
carries out proposed Energy-aware multi-dimensional online
bin packing scheduling. When HLRHOD [24] detects a host
overload, certain VMs will be chosen to be migrated from the
overloaded host to other hosts.

Furthermore, the researchers compare the proposed
Energy-Aware Multi-Dimensional Online Bin Packing (EAM-
DOBP) algorithm against the following algorithms from the
literature:

• The Power-Aware-Best-Fit Decreasing algorithm
(PABFD) algorithm [28].

• The Modified- Worst-Fit Decreasing algorithm
(MWFD) algorithm [30].

B. Power Model

The CPU, disk storage, memory, and cooling systems
utilize the majority of the power in cloud data centers [28].
Establishing exact analytical models for modern multicore
CPUs is a difficult research problem due to the complex power
model of modern multicore CPUs. Hence, we employ real data
on power rate obtained from the results of the SPECpower
benchmark [28] as an alternative to the use of an analytical
model of a host’s power consumption. The host overload
is evaluated on a regular basis according to the scheduling
interval, which is set at 300 seconds. The host types are: HP
ProLiant ML110 G4 (Intel Xeon 3040, 2 cores 1860 MHz, 4
GB), and HP ProLiant ML110G5 (Intel Xeon 3075, 2 cores
2660 MHz, 4 GB). The power consumption features of the
chosen hosts are presented in Table III.

C. Performance metrics

To conduct in-depth analysis of the suggested algorithm
and to evaluate and contrast the algorithm’s performance,
several number of experiments were carried out and examined
in the current research using the following metrics:

Simulation Time (ST): It is defined as the amount of
time spent conducting an experiment in seconds, commonly
known as the makespan. Based on the number of applications
that were processed, the total time required to generate the
simulation was calculated. The simulation time (MakeSpan) is
used to determine the efficiency of the algorithm.

Throughput: In computing, it is the quantity of work that
a computer or a system of computers is able to perform in
a given period of time. Increasing throughput is an ongoing
challenge that IT managers, researchers, and scientists must
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TABLE III. POWER CONSUMED BY THE CHOSEN HOSTS AT VARIOUS LOAD LEVELS IN WATTS [28]

SERVER 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
HP PROLIANT G4 86 89.4 92.6 96 99.5 102 106 108 112 114 117
HP PROLIANT G5 93.7 97 101 105 110 116 121 125 129 133 135

meet and exceed. The throughput of a system is used to
evaluate its overall performance.

Efficient Resource Utilization (ERU): It is used determine
how much CPU, memory and network bandwidth are needed
for HPC and non-HPC workloads deployed in cloud-based data
centers

Power Usage Effectiveness (PUE): The Power Usage
Effectiveness (PUE) is used as indices for measurement of
datacenter performance. PUE is considered the most used
datacenter metric. The PUE is calculated using Eq. 2, where
PCS is the cooling power, and PC is the computing power of
the host. This calculation is iterated over each host.

PUE =
PCS + PC

PC
(2)

Table IV shows the PUE values based on several
experiments which were performed in a small datacenter
[31].Low PUE indicates higher efficiency as a significant
amount of the power has been consumed by computing power
[32].

TABLE IV. PUE EFFICIENCY VALUES [31]

PUE Level of effi-
ciency

3.0 Very
inefficient

2.5 Inefficiency
2.0 Average
1.5 Efficient
1.2 very Efficient
1.1 Standard

The number of VM migrations: For dynamic VM con-
solidation, when the overloaded or under-loaded hosts are
detected, the VMs are then chosen to move. Reducing the VM
migration time is the most significant obstacle in the migration
step and the default method to achieve that is by reducing the
total number of VM migrations.

Energy and SLA Violations (ESV): There is an adverse
relation between the energy consumed by physical hosts and
SLAV because energy can be frequently reduced by allowing
more SLA violations. The objective of the host management
framework is to decrease both energy consumption and service
level agreement violations. Thus, a mixed metric denoted by
Energy and SLA Violations (ESV) is proposed in [28] and is
shown in Eq. 3. For the ESV metric lower is better.

ESV = E × SLAV (3)

D. Workloads

The workload contains several months of accounting
records from the national grid of the Czech Republic, called
Metacentrum. This grid is composed of 14 clusters (called
nodes), each with several multiprocessor machines, for a total
of 806 processors [27]. The workload data contains CPU and
memory usage [33]. Standard workload format (SWF) includes
the log. METACENTRUM-2013-1.swf. is used while relying
on accounting data collected by the scheduler. three utilization
models rebuilt to examine the CPU and RAM, and calculate
the BW, respectively, from the workload and send it to the
cloudlets.

VI. SIMULATION RESULTS AND ANALYSIS

Memory utilization, workload length and number of VMs
are crucial parameters that are used to configure the algorithms
implemented besides the performance metrics presented in
Section V

A. Sensitivity Analysis

The effect of changing the number of VMs on the per-
formance of the proposed algorithms in terms of metrics is
provided in Section 5.3.

1) Number of VMs:

Our sensitivity analysis is based on changing the number
of virtual machines while fixing the number of hosts to 800
and scheduling interval to 300 sec. The effect of varying the
number of VMs using Metacentrum workload traces on the
energy consumption and other system and performance metrics
for different algorithms are examined.

Algorithms comparison are performed on (CPU, RAM, and
Network) traces using Metacentrum HPC workload. Measure-
ment of simulation time is one of the most critical indicators
for measuring performance in a dynamic system. Observe in
Fig. 6(a), EAMDOBP algorithm reduces the execution times
better than the other algorithms. This proofs that application
awareness results in fewer contentions for resources as only the
most compatible VMs are consolidated. The new EAMDOBP
algorithm results in the lowest simulation time compared to
PABFD and MWFD regardless of the number of VM. The
simulation time is the highest in the case of PABFD when the
number of VM is high. Besides, the simulation time is always
less in the case of MWFD when compared to PABFD.

The HPC framework involves the co-scheduling of tasks
with the same nature to make some synchronous development.
In the present virtualized environment, all VMs progress
independently of each other, so that the need that all VMs
of the same HPC function must be arranged together using
EAMDOBP algorithm. Results are shown in Fig. 6(b) indicate

www.ijacsa.thesai.org 866 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 10, 2022

(a) Simulation Time (b) Throughput Metric

(c) CPU Utilization Metric

(d) Energy Consumption (e) Number of VM Migration

(f) PUE Metric (g) ESV Metric

Fig. 6. Algorithms Comparison for Metacentrum HPC workload, where the various metrics are depicted in log-scale

that the throughput levels are the highest when the EAMDOBP
algorithm is used. While throughput levels are almost equal
when using PABFD and MWFD algorithms.

It is important to address the issue of machine utilization
or “busy” time that is commonly used to evaluate throughput
effectiveness. It is often only moderately correlated with a
hardware measure such as utilization. The prediction method
of the resource utilization based on HLRHOD is used, Fig.
6(c) indicates better CPU utilization. The use of HLRHOD
prediction technique improves CPU utilization as well as
increase the effectiveness of HPC-application execution

B. Algorithms Comparative Analysis

The EAMDOBP forehand has the expertise to forecast
the best node for VM allocation without venturing with the

energy consumption. While the energy and interference-aware
co-location of the VMs is used for all the workload allocations
to the VMs running on the system nodes. The need for rising
VM migrations is therefore low and it helps to reduce energy
depletion. The same is shown through Fig. 6(d) and (e). The
graph in Fig. 6(d) indicates how energy usage increases with
the increase in the number of VM when no consolidation is
allowed. Significantly, energy consumption is fixed regardless
of the increase in the number of VMs when consolidation
is allowed, meaning that the VMs are allowed to migrate
to run on fewer physical servers. Thus, VM consolidation
helps reduce energy consumption. As observed in Fig. 6(e)
VM migrations are the lowest when using the EAMDOBP
algorithm compared to PABFD and MWFD. VM migration
is the highest when using MWFD. Each host’s cooling and
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processing power, as well as its power utilization efficiency
(PUE), are measured after each migration, and the impacts are
averaged. Results depicted in Fig. 6(f) indicate that PUE is
the lowest in the case of EAMDOBP compared to PABFD
and MWFD. It is worth mentioning that low PUE indicates
better efficiency. This is because a considerable part of the
power is consumed by computing power. However, PUE is the
highest in the case of PABFD. Results revealed in Fig. 6(g)
indicate that ESV is the lowest when using the EAMDOBP
algorithms compared to PABFD and MWFD. ESV levels
increase significantly with the increase in the number of VM
when using PABFD and MWFD algorithms.

VII. CONCLUSION

Cloud computing has become a popular solution for the
exponential growth in the demand for high-performance com-
puting. Huge data centers use a considerable amount of energy,
which leads to an increase in operating costs. Therefore,
virtual machine consolidation is a perfect solution as it allows
VM live migration to run on fewer physical servers to save
energy consumption. Many studies have tried to investigate
the currently available cloud service architectures for running
HPC applications in the most effective approach. The major
obstacles are cross-application interference, energy concerns,
and guaranteeing SLAs in different metrics, e.g. response time
(web application) vs. execution time (HPC application). How-
ever, for a successful VM consolidation host overload detection
is necessary to predicts if a physical server will be overloaded
with VMs. This paper proposes new algorithm named Energy-
Aware Multi-Dimensional Online Bin Packing (EAMDOBP)
algorithm that will provide better results. Specifically, In
comparison to PABFD and MWFD, experiments reveal that
the Energy Aware Multi-Dimensional Online Bin Packing
(EAMDOBP) has improved CPU, RAM, and bandwidth con-
sumption by a relative improvement of 77%, 84%, and 70%,
respectively. The Energy Aware Multi-Dimensional Online Bin
Packing (EAMDOBP), according to experiments, improves
CPU usage, lowers PUE, and rationalizes energy consump-
tion. Additionally, EAMDOBP achieves faster throughput, less
VM migration, and lower ESV when compared to PABFD
and MWFD. According to the results analysis, the EAMDOBP
algorithm outperforms PABFD and MWFD in terms of all
the parameters employed. In current paper the researcher
has focused on bridging the HPC-cloud gap by enhancing
application performance and resource and energy efficiency
however, there are two important limitations in this study that
could be addressed in future investigations. First, the only
information provided by current performance analysis tools is
the application’s performance. They don’t go into depth about
the additional tasks that could have used up other parameters
such the network and I/O. Also, the work should be extended
to be run on a real cloud system not simulation. In future,
we plan to run our algorithm on a real cloud system; also
we will consider other factors such as I/O which can affect
performance of VMs. We can apply other machine learning
techniques such as Naive Bayesian classifiers for classification
of VMs.
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