
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

957 | P a g e

www.ijacsa.thesai.org

Address Pattern Recognition Flash Translation Layer

for Quadruple-level cell NAND-based Smart Devices

Se Jin Kwon1

Department of AI Software

Kangwon National University, Samcheok, South Korea

Abstract—The price of the solid-state drives has become a

major factor in the development of flash memory technology.

Major semiconductor companies are developing quadruple-level

cell NAND-based SSDs for smart devices. Unfortunately, SSDs

composed of quadruple-level cell (QLC) flash memory may suffer

from low performance. In addition, few studies on internal page

buffering mechanisms have been conducted. As a solution to these

problems, an address pattern recognition flash translation layer

(APR-FTL) is proposed in this study. APRA-FTL gathers the data

in a page unit and separates random data from sequential data.

Furthermore, APRA-FTL proposes address mapping algorithm

which is compatible to the page buffering algorithm. Experimental

results show that APRA-FTL generates a lower number of write

and erase operations compared to previous FTL algorithms.

Keywords—Memory management; nonvolatile memory; smart

devices

I. INTRODUCTION

Price has become an important factor in the development of
flash memory system, as many semiconductor manufacturing
companies are competing for dominance in the smart device
market [1]. Some semiconductor companies have recently
turned their attention to developing QLC flash memories for
smart devices as a means of providing large capacity at a low
price [2]. As a result, instead of applying high-performing
single-level cell (SLC) or multi-level cell (MLC) technology to
smart devices, major semiconductor companies are developing
QLC flash memory for smart devices. However, implementing
QLC flash memories on smart devices may drastically diminish
device performance and durability and even generate
inconsistent response times, as smart devices must generate
frequent updates from temporary files and metadata [3].

Furthermore, smart devices may execute unnecessary write
operations on QLC-based SSDs because of the large page size
of QLC flash memory. Although the page size of SLC or MLC
flash memory is only four to eight times larger than the data
sector of the file system [4], the page size of QLC flash memory
is predicted to be 64 to 512 sectors. Because of the large page
size of QLC flash memory, there is a considerable chance that
the file system may frequently command a page re-access in the
flash memory. However, the number of partial programming
(NOP) requirements within a page is limited to only one to
avoid program-disturbing errors [5]. Therefore, QLC flash
memory tends to use an internal register or page buffer to gather
data in a page unit.

Well-optimized flash translation layers (FTLs) are based on
SLC/MLC/TLC flash memory [6], and therefore they do not
give considerable attention to their own page buffering
mechanisms (PBMs). This is an issue that has yet to be fully
researched. In this study, the implementation of an address
pattern recognition flash translation layer is proposed. APRA-
FTL gathers the data sectors and rearranges them into the page
size of the QLC flash memory, instead of writing data on the
flash memory immediately. Furthermore, APRA-FTL proposes
address mapping algorithm which is compatible to the page
buffering algorithm. The efficient data collection of APRA-
FTL provides improved performance and consistent response
despite the use of low-performing QLC flash memories.

II. RELATED WORKS

Previous PBMs can be classified into fine- and coarse-level
PBMs. A fine-level PBM [7] gathers data sectors without a
logical address boundary. However, this method reveals every
corresponding physical sector number in DRAM. Therefore, it
requires approximately 8 GB per 1 TB of flash memory. By
contrast, a coarse-level PBM [8][9] gathers data using the same
logical page number (LPN). Fig. 1 shows an example of a
coarse-level PBM. Here, the extensive data from the write
command are broken down into a unit of file system data
sectors. A logical sector number (LSN) and its corresponding
data are shown as (LSN, data). For simplicity, the size of a
block is assumed to be four pages, where each page consists of
only four sectors. Because they all belong to LPN 0, (0, A), (1,
B), and (2, C) belong to a single page (= 0/4, = 1/4, = 2/4).
However, when (16, D) occurs, the data within the page buffer
are sealed as a page and written to flash memory because (16,
D) belongs to LPN 4 (= 16/4). Finally, the page buffer is
flushed, and data “D” are written to the emptied page buffer.
Similarly, other data are gathered as a page unit. The coarse-
level PBM generates six subpages, as shown in Fig. 1, although
the file system issues only nine data sectors. If each page is
filled with data, the coarse-level PBM generates only three
pages. In Fig. 1, it is assumed that a page consists of only four
subpages. However, we should note that the page size of QLC
flash memory ranges from 64 to 512 sectors. There is a
considerable chance that the space utilization of a QLC-NAND
SSD will decrease drastically because of the frequent
occurrence of subpages.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

958 | P a g e

www.ijacsa.thesai.org

Fig. 1. Coarse-level Page Buffering Mechanism.

III. ADDRESS PATTERN RECOGNITION FLASH TRANSLATION

LAYER

A. Address Pattern Recognition Algorithm

Address pattern recognition algorithm (APRA) modifies
previous adaptation layer [10] and provides compatible address
mapping algorithm according to the experiments in Section
III.B. In other words, the address pattern recognition FTL is
composed of address pattern recognition algorithm and address
mapping algorithm.

The QLC flash memory cannot access to a page for an
additional write operation because of the restricted NOP.
Therefore, the QLC flash memory requires an efficient PBM.
Unfortunately, the coarse-level PBM generates five page write
operations, as previously explained in Section II. We should
note that the QLC flash memory consists of 8 to 16 sectors per
page. Because the amount of random data tends to fill the space
of only one to four sectors, it is likely that the scenario will
frequently occur. As a solution for the unnecessary write
operations, the address pattern recognition algorithm (APRA)
has been proposed [10].

APRA is shown as Algorithm I. The main objective of
APRA is to segregate the random data from the sequential data
and to allow the address mapping algorithm in FTL to
separately manage them [10]. When the file system issues a
write command along with the LSN, APRA first checks
whether (LSN, data) is sequential to the sequential buffer
(Algorithm 1 line 1). If (LSN, data) is sequential to the
sequential page buffer, it is considered as the sequential data,
and therefore it is inserted into the sequential page buffer
(Algorithm 1 line 2). On the other hand, if the incoming data’s
LSN already exists in the page buffers (Algorithm 1 line 3),
APRA consider (LSN, data) as an update, and therefore it is
inserted into the random page buffer (Algorithm 1 line 4).
Finally (LSN, data) is included in the undefined buffer if (LSN,
data) is not sequential pattern nor an update.

ALGORITHM I: Address Pattern Recognition

Input: logical sector number (LSN), data (data)

Procedure: write_page_buffer (LSN, data)

1: if (LSN, data) is sequential then

2: data_insert(sequential_buffer, LSN, data);

3: else if (LSN, data) is update then

4: data_insert(random_buffer, LSN, data);

5: else

6: data_insert(undefined_buffer, LSN, data);

13 end if

Input: page buffer (PB), LSN, data

Procedure: data_insert (PB, LSN, data)

14: if PB is full then

15: Write PB to flash memory;

16: Flush PB;

17: Insert (LSN, data) into PB;

18: else

19: Insert (LSN, data) to PB;

20: end if

B. Address Mapping Algorithm

The page buffering layer reorganizes the data sectors at the
page unit, and the address mapping layer determines the
physical address of the data to be written onto the flash
memory. To evaluate the performance of the PBM and APRA,
previous log-block algorithms were implemented in the address
mapping layer.

Log blocks are temporary buffers for physical blocks. Of
previous address mapping algorithms, log-block algorithms are
well known to be the most optimized FTL algorithms with
respect to their DRAM requirements and performance.
Previous log-block algorithms made use of variations in the
associativity between the blocks and log blocks, which can be
classified into block-level associativity, full associativity, and
superblock-level associativity. In this study, address mapping
algorithms based on block-level associativity, full associativity,
and superblock-level associativity are referred to as BAST,
FAST, and SAST, respectively.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

For this study’s experiment, an FTL simulator was
developed, and trace-driven simulations were conducted. The
traces were retrieved from smartphones running various
multimedia services and applications. The developed FTL
simulator consisted of two layers: a page buffering layer and an
address mapping layer. The previous PBM and APRA were
implemented in the page buffering layer, and the number of
pages generated by both algorithms were then monitored. It is
also assumed that each page and block consist of 64 sectors and
256 pages, respectively, and that the performances of the read,
write, and erase operations are 100 μs, 1,500 μs, and 6 ms,
respectively. Furthermore, ARPA-FTL is analyzed by
implementing block-level, full, superblock-level associative
address mapping algorithms.

0, A

1, B

2, C

① w 0 A

② w 1 B

③ w 2 C

⑥ w 9 F

④ w 9 D 9, D

LPN 0

(0/4, 1/4, 2/4)
LPN 2

(9/4)

LPN 0

(3/4)

LPN 2

(9/4)
LPN 6

(24/4)

LPN 1

(4/4, 5/4)

⑤ w 3 E

3, E

9, F ⑦ w 24 G

24, G
⑧ w 16 H

⑨ w 17 I

16, H

17, I

total number of page writes: 5, current data in buffer: H, I

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

959 | P a g e

www.ijacsa.thesai.org

B. Performance Analysis

After PBM and APRA generates the data in the unit of a
page, the address mapping layer determines the physical
address within the flash memory. Fig. 2 shows the number of
write and erase operations executed on BAST, FAST, and
SAST. In the case of Trace A, the PBM generated
approximately 1,575,200, 1,571,900, and 1,569,800 write and
358, 347, and 321 erase operations in BAST, FAST, and SAST,
respectively. By contrast, APRA-FTL it executed
approximately 1,546,700, 1,547,300, and 1,543,900 write and
271, 269, and 261 erase operations in BAST, FAST, and SAST,

respectively. Similarly, APRA-FTL executed fewer write and
erase operations in the overall traces, as shown in Fig. 2.

As previously indicated, the number of pages transferred
from the page buffering layer considerably affects the number
of write and erase operations. A close observation reveals that
APRA-FTL avoids numerous operations in the address
mapping layer because it collects small-sized random data at
the page unit. We should note that the number of write
operations executed on the flash memory is higher than that of
the pages themselves.

(a) Trace A (b) Trace B

(c) Trace C (d) Trace D

(e) Trace E (f) Trace F

(g) Trace G (h) Trace H

Fig. 2. Number of Write and Erase Operations.

157.52 157.19 156.98

154.67 154.73 154.39
152

154

156

158

BAST FAST SAST

w
ri

te
 o

p
er

a
ti

o
n

s

(t
en

 t
h

o
u

sa
n

d
)

358 347 321

271
269 261

200

250

300

350

400

BAST FAST SAST

er
a
se

 o
p

er
a
ti

o
n

s

196.18 195.81 195.15

192.18 191.63 191.55
188

190

192

194

196

198

BAST FAST SAST

447 399 421

407
362 377

200

300

400

500

BAST FAST SAST

w
ri

te
 o

p
er

a
ti

o
n

s

(t
en

 t
h

o
u

sa
n

d
)

er
a

se
 o

p
er

a
ti

o
n

s

37,938 34,661 33,287

30,481 29,772 29,347

20000

25000

30000

35000

40000

BAST FAST SAST

22.24 22.09 22.01

18.58 18.53 18.44

10

15

20

25

BAST FAST SAST

w
ri

te
 o

p
er

a
ti

o
n

s

(m
il

li
o
n

)
er

a
se

 o
p

er
a
ti

o
n

s

27.49 27.15 27.08

22.63 22.41 22.43

10

15

20

25

30

BAST FAST SAST

47,008 44,112 42,801

37,389 36,227 35,931

20,000

30,000

40,000

50,000

BAST FAST SAST

w
ri

te
 o

p
er

a
ti

o
n

s

(t
en

 t
h

o
u

sa
n

d
)

er
a
se

 o
p

er
a
ti

o
n

s

28

20 1717

8 8
0

10

20

30

BAST FAST SAST

23.21 22.28 21.75

9.23 8.17 7.95
0

10

20

30

BAST FAST SASTw
ri

te
 o

p
er

a
ti

o
n

s

(h
u

n
d

re
d

)

er
a

se
 o

p
er

a
ti

o
n

s

19.96 19.61 18.90

6.32 5.28 5.52

0

10

20

30

BAST FAST SAST

26 24
18

20
12 13

0

10

20

30

BAST FAST SAST

w
ri

te
 o

p
er

a
ti

o
n

s

(h
u

n
d

re
d

)
er

a
se

 o
p

er
a

ti
o

n
s

30 27 27
18 15 15

0

10

20

30

40

BAST FAST SAST

7.83 7.52 7.60

5.38 5.31 5.31

0

5

10

BAST FAST SASTw
ri

te
 o

p
er

a
ti

o
n

s

(t
h

o
u

sa
n

d
)

er
a
se

 o
p

er
a
ti

o
n

s

4.35 4.11 4.17

2.18 1.98 2.07
0

2

4

6

BAST FAST SAST

32 29 28

17 12 13

0

10

20

30

40

BAST FAST SAST

w
ri

te
 o

p
er

a
ti

o
n

s

(t
h

o
u

sa
n

d
)

er
a
se

 o
p

er
a
ti

o
n

s

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

960 | P a g e

www.ijacsa.thesai.org

The cause of the deviation between the number of pages and
write operations might be of interest, as the page buffering layer
issues a write operation to the address mapping layer whenever
it gathers the data into a page unit. This is because the address
mapping layer executes additional write operations internally to
copy the data from an old to a new block. When a block is
determined to be erased in the address mapping layer, BAST,
FAST, and SAST copy the valid data from the old block to a
new block and then execute an erase operation on the old data
block. Therefore, the number of additional write operations for
copying the data is considerably influenced by the number of
erase operations. Because APRA-FTL reduces the number of
erase operations by gathering random data and avoiding
unnecessary write commands, it reduces the overall number of
write operations as well.

V. CONCLUSION

Major semiconductor companies are using QLC flash
memory in smart devices to lower the prices of smart devices.
Unfortunately, previous page buffering algorithms do not
segregate random data, thus generating many unnecessary write
commands in the QLC flash memory. This results in a drastic
performance degradation in smart devices. Furthermore, there
has not been any experiment that considers the compatibility
between page buffering algorithm and address mapping
algorithm. As a solution, an APRA-FTL was proposed in this
study. The APRA-FTL may require additional DRAM or the
use of an internal buffer. However, we showed that it accurately
identifies random data and thus considerably reduces the
number of write operations. From experiments conducted in
this study, APRA-FTL reduced the overall number of
operations. In a future study, APRA-FTL will be implemented
in various wear-leveling algorithms, and additional

experiments will be conducted on the durability and power-off
recovery of smart devices.

REFERENCES

[1] MICRON Electronics, “Cache Programming Operations,” MICRON
Electronics Technical Notes, 2022.

[2] S. Kumar, P. K. Singh, S. Gupta, “A Survey of Erase Operation in NAND
Flash Memory,” 2022 1st International Conference on Informatics (ICI),
Noida, India, 2022, pp. 186-190.

[3] Z. Du et al., “A Novel Program Suspend Scheme for Improving the
Reliability of 3D NAND Flash Memory,” IEEE Journal of the Electron
Devices Society, vol. 10, pp. 98-103, 2022.

[4] Y. Luo, M. Lin, Y. Pan and Z. Xu, “Dual Locality-Based Flash
Translation Layer for NAND Flash-Based Consumer Electronics,” IEEE
Transactions on Consumer Electronics, vol. 68, no. 3, pp. 281-290, 2022.

[5] W. Zhou et al., “Temporal Correlation Detection Based on 3D NAND
Flash In-Memory Computing,” IEEE Electron Device Letters, vol. 43, no.
6, pp. 874-877, 2022.

[6] H. Chen, Y. Dang, H. Wang, X. Xu, J. Zhang and Y. Huang, “Process
Optimization and Yield Improvement for Erase Failure in Embedded
Flash Memory,” 2022 China Semiconductor Technology International
Conference (CSTIC), 2022, pp. 1-3.

[7] P. Jin, C. Yang, X. Wang, L. Yue and D. Zhang, “SAL-Hashing: A Self-
Adaptive Linear Hashing Index for SSDs,” IEEE Transactions on
Knowledge and Data Engineering, vol. 32, no. 3, pp. 519-532, 2020.

[8] R. Mativenga, J.-Y. Paik, J. Lee, T. S. Chung, and Y. Kim, “RFTL:
Improving performance of selective caching-based page-level FTL
through replication,” Cluster Comput., vol. 22, no. 1, pp. 1–17, 2019.

[9] D. Lee, D. Hong, W. Choi and J. Kim, “MQSim-E: An Enterprise SSD
Simulator,” IEEE Computer Architecture Letters, vol. 21, no. 1, pp. 13-
16, 2022.

[10] S. J. Kwon, “An Adaptation Layer for Hardware Restrictions of
Quadruple-Level Cell Flash Memories” International Journal of
Advanced Computer Science and Applications (IJACSA), vol. 13, no. 8,
2022.

