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Abstract—The pervasiveness of IoT devices has brought us 

convenience as well as the risks of security vulnerabilities. 

However, traditional device vulnerability detection methods 

cannot efficiently detect command injection vulnerabilities due to 

heavy execution overheads or false positives and false negatives. 

Therefore, we propose a novel dynamic detection solution, 

IoTCID. First, it generates constrained models by parsing the 

front-end files of the IoT device, and a static binary analysis is 

performed towards the back-end programs to locate the interface 

processing function. Then, it utilizes a fuzzing method based on 

the feedback from Distance Function, which selects high-quality 

samples through various scheduling strategies. Finally, with the 

help of the probe code, it compares the parameter of potential risk 

functions with samples to confirm the command injection 

vulnerabilities. We implement a prototype of IoTCID and evaluate 

it on real-world IoT devices from three vendors and confirm six 

vulnerabilities. It shows that IoTCID are effective in discovering 

command injection vulnerabilities in IoT devices. 

Keywords—Firmware vulnerability mining; command injection; 

dynamic detection 

I. INTRODUCTION 

With the development of the Internet and information 
technologies, IoT devices are extensively used in our life [1], 
and attacks against IoT devices have been emerged in recent 
years [2]. The reason is that web interfaces are usually exposed 
to users to manage the devices, which contain exploitable 
vulnerabilities. 

There are some unique features of the threats caused by 
vulnerabilities in IoT devices compared to which in PCs or in 
servers. For example, most existing security mechanism or 
antivirus products are not available in IoT devices due to the 
limit of cost and power of IoT devices, which makes it easier to 
perform further exploits towards certain vulnerabilities [3]. 
Moreover, one vulnerability may have huge influence on 
thousands of devices, for the devices from the same vendor 
usually have similar firmware [4]. 

Command Injection Vulnerability is one of the most 
effective and commonest vulnerabilities in IoT devices [14]. 
Attackers can exploit the target IoT devices through this 
vulnerability by injecting additional commands into the 
program. Moreover, the system commands provided by 
attackers are usually executed with the highest authority in IoT 
devices. 

However, due to the complexity and the specificity of the 
IoT devices, existing tools cannot effectively detect Command 

Injection Vulnerability. For example, Dynamic analysis tools, 
like fuzzing [5, 7, 9], requires valid communication formats to 
generate fuzzing samples and can only reach a small portion of 
all the provided interfaces while static analysis tools, like 
KARONTE [11] and SaTC [12], cannot efficiently generate 
interaction paradigms between the front-end files and back-end 
programs, leading to a lot of false positives which requires 
further manual check. 

Therefore, to ensure the safety and reliability of IoT 
devices, it is urgent to develop security analysis technology 
towards IoT devices. In this paper, focusing on Command 
Injection Vulnerability, we propose a novel dynamic detection 
technology, IoTCID, to effectively detect command injection 
vulnerabilities in IoT devices. 

Inspired by SaTC 12], in order to generate samples in valid 
communication formats and to cover interfaces as many as we 
can, IoTCID first performs a logic analysis to the front-end files 
which interact with the back-end programs to generate 
constrained models. It utilizes a novel scheduling strategies 
based on Distance Function to improve the efficiency of 
command injection vulnerability detection. We design and 
implement a prototype of IoTCID and evaluate its efficacy 
through a set of experiments based on real-world IoT devices 
and confirm six command injection vulnerabilities. It shows 
that IoTCID is effective in discovering command injection 
vulnerabilities in IoT devices. 

In summary, our major contributions are as follows: 

1) We present a dynamic detection technique towards 

Command Injection Vulnerabilities based on the logic analysis 

to front-end files and intelligent feedbacks from the back-end 

programs. 

2) We design and implement a constrained model 

generation technique based on the logic analysis to front-end 

files, providing a valid format for the generation of fuzzing 

samples. 

3) We design and implement scheduling strategies based on 

Distance Function feedback to concentrate resources on the 

fuzzing samples that may cover risk functions in back-end 

programs. 

The rest of the paper is organized as follows. We first 
summarize related work in recent years in Section II. We then 
present an overview of IoTCID, and give a detailed description 
on design and implementation of each component of IoTCID in 
Section III. We demonstrate the efficacy of IoTCID through a 
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set of experiments and present a vulnerability detection case in 
Section IV. At last, Section V concludes this paper and show 
the future work of IoTCID. 

II. RELATED WORK 

In recent security research on IoT devices, fuzzing is the 
most discussed technique. The general process of fuzzing is to 
detect the state of the testing program and guide the generation 
of fuzzing samples with provided feedbacks. 

Chen J et al. propose and implement a generation-based 
firmware fuzzing method, IoTFuzzer[5], which detects 
vulnerabilities related to memory in IoT devices by analyzing 
the corresponding Android application. In view of the 
shortcomings of IoTFuzzer, DIANE[6] proposed a new method 
for generating fuzzing samples, which is based on the target 
fuzzing points in the APP that are located before data 
conversion and after input validation. However, both IoTFuzzer 
and DIANE conduct black-box fuzzing directly on real devices, 
limited to providing guidance and feedbacks based on the 
testing samples. 

Zhang Y et al. propose SRFuzzer[7], which mutates the 
collected network traffic and detects the state of the fuzzing 
process according to the response-based monitor, routing-based 
monitor, and signal-based monitor. However, it would be 
difficult for SRFuzzer to cover the corresponding interface 
functions without the network traffic in advance. 

FirmFuzz[8] runs the target firmware through simulation 
and collects payloads of different vulnerabilities for fuzzing 
tests. Zheng Y et al. propose FIRM-AFL[9] to enhance process 
simulation to fuzz the IoT firmware. However, these methods 
are all subject to valid inputs. 

Although command injection is a common and powerful 
threat, related detection is less discussed in IoT security 
research. 

Commix[10] is a tool that can automatically detect and 
exploit command injection vulnerability towards web 
applications. It sends a data packet attached with a command 
injection attack vector, and compares the response of the web 
application with the expected result to determine whether there 
is a command injection vulnerability. However, Commix needs 
to collect network traffic in advance, and it makes determine 
according to the response of the target. When the network delay 
cannot be guaranteed, there will be a certain false positive, 
which cannot intuitively reflect the location of the command 
injection vulnerability. 

KARONTE[11], a static analysis framework for embedded 
firmware, which can detect vulnerabilities caused by its 
communication by modeling and tracking the interactions 
between binary programs. However, KARONTE cannot 
effectively detect command injection vulnerabilities because it 
does not track the data flow from input entry points to system-
like functions. Aiming at the shortcomings of KARONTE, 
Chen L et al. propose a novel static taint technique, SaTC[12], 

to effectively detect security vulnerabilities in web services 
provided by embedded devices. It mainly locates the 
communication process between front-end files and back-end 
programs based on the strings used in the front-end web 
interface, and applies targeted data flow analysis to accurately 
detect possible vulnerabilities. However, SaTC uses a 
clustering algorithm to extract the strings interacting between 
front-end files and back-end programs, and cannot generate an 
effective input model for the web interface. Besides, it requires 
additional manual analysis to comfirm the result and eliminate 
false positives. 

In a word, it remains problems in the use of the above 
detection technologies towards IoT devices. For example, the 
fuzzing detection technology mainly focuses on memory 
corruption vulnerabilities, and are subject to the input of valid 
format while static analysis tools may have low detection 
efficiency due to excessive analysis. Therefore, aiming at the 
command injection vulnerability of IoT devices, based on the 
logic analysis to front-end files and intelligent feedbacks, we 
propose a dynamic detection model IoTCID, which makes up 
for the shortcomings of the current command injection 
detection technology for IoT devices and improves the 
efficiency and accuracy of command injection vulnerability 
detection. 

III. METHODOLOGY 

Generally, IoT devices provide user management 
interfaces, which are mainly composed of front-end files and 
back-end programs. Front-end files include HTML, Javascript 
while back-end programs are generally executable binary files. 
IoTCID is proposed based on the workflow of the front-end 
files and back-end programs, as Fig. 1 provides the overview of 
IoTCID. It first generates constrained models by parsing the 
front-end files of the IoT device, and then performs binary static 
analysis on the back-end programs to locate the interface 
processing function. Then, IoTCID selects high-quality fuzzing 
samples according to various scheduling strategies based on the 
feedback from Distance Function. The selected samples are 
given more mutation time slices and priorities, which makes 
concentration on the interface process functions that may exist 
command injection vulnerabilities. Finally, IoTCID confirms 
the command injection vulnerabilities combined with the 
fuzzing samples and the parameters of risk functions detected 
by the probe code. 

A. Constrained Model Generation 

We propose a technology of constrained model generation 
based on the logic analysis to front-end files. Through syntax 
analysis, it generates a corresponding abstract syntax tree 
according to the front-end file, and extracts the variable 
reference chains of the abstract syntax tree as well as the 
variables during the interaction process between the front-end 
files and the back-end programs. The generated models are used 
as the format of the fuzzing samples, mainly including the URL, 
the request type, and the request keywords. 
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Fig. 1. Structure of IoTCID. 

Algorithm 1 shows the analysis process of the function call 
and variable reference chain of the front-end files, where 
funcNode is the result of syntax analysis and varName is the 
parameter of the funcNode. During the analysis, there are two 
types of function parameters: one of which is directly passed in 
text value while the other is indirectly passed in variable name. 
For the direct one, IoTCID uses the regular expression to match 
and obtain the text value of the parameter. For the indirect one, 
the text value can be extracted through a recursive method in 
related function scope. 

Algorithm 1: Analysis of Parameters during Interaction 

Input: funcNode && varNames 

Output: Constrained models 

1. function GET_VALUE(funcNode, varName) 

2.     param ← [] 

3.     if varName.type == “Literal” then 

4.         param.append(ANALYSIS( 

funcNode.expression, varName)); 

5.         return param 

6.     else 

7.         funcNode = FIND_PARENT(funcNode); 

8.         if funcNode == ‘’ then 

9.             return [] 

10.       end if 

11.       GET_VALUE (funcNode, varName); 

12.    end if 

13. end function 

B. Static Instrumentation 

IoTCID obtains the information that may trigger the 
command injection vulnerability function in the back-end 
programs through binary static analysis, and sets the probe code 
to obtain the performing state of the fuzzing samples. We 
implement a static analysis technique for back-end binary 
programs. It obtains information about risk functions such as 

execve and system which may trigger command injection 
vulnerabilities. Therefore, we can record the performing paths 
of fuzzing samples based on binary static instrumentation 
technology and control flow analysis of the back-end programs. 

1) Acquisition of risk function: The purpose of acquiring the 

potential dangerous function is to locate the interface in the 

back-end programs, which processes the requests from the front-

end files according to the URL extracted in Part A, Section III, 

and construct its control. flow graph. We further obtain the 

necessary data by analyzing the header of back-end binary 

programs, the entry point and relevant segments. Finally, we use 

Capstone [13] to disassemble the code to obtain the information 

of the target function and related code blocks as well as building 

a control flow graph. 

2) Generation of probe code: The probe code collects the 

performing state of fuzzing samples during the execution 

process and provides feedbacks to the monitor system. Based on 

the control flow graph of the risk functions, we set the probe 

code to provide information feedback of the basic blocks, 

including the address information and the parameters of the risk 

functions. The trampoline mechanism is used during the 

generation of probe code to make association between the set 

point and the risk functions, and provides the necessary 

environment preparation for the normal execution of the original 

program. 

C. Fuzzing Technology 

We apply distance function to the fuzzing technology to 
select high-quality fuzzing samples according to various 
scheduling strategies. While IoTCID is sending fuzzing 
samples to the back-end program for detecting command 
injected vulnerability, it selects high-quality one and gives them 
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more mutation time and priorities based on the result of 
measuring the feedbacks of fuzzing samples by distance 
function, which concentrates resources on the fuzzing samples 
that may cover risk functions in back-end programs, improving 
the efficiency of command injection vulnerability detection. 
Finally, combined with the parameters of risk functions and 
fuzzing samples, IoTCID makes checks on whether there is a 
suspicious point of command injection vulnerability. 
Obviously, the distance function and the scheduling strategies 
are the cores of the fuzzing technology. 

1) Distance function: The weight of basic blocks, the edge 

vector of basic blocks and the distance of samples are three 

components of the distance function. The weight of basic blocks 

and the edge vector of basic blocks are calculated in the process 

of binary static analysis while the distance of samples 

calculation is calculated in the fuzzing process. Table I lists the 

variables and their meanings of the distance function. 

We define the count of successors of Basic Block B which 
contain the risk functions as the weight of basic block B, as 
Equation (1) shows. 

𝑊𝑒𝑖𝑔ℎ𝑡𝐵 = {
Sum(𝐵, 𝐹𝑢𝑛𝑐) ,  𝐹𝑢𝑛𝑐 ∉ 𝐵 

𝑊𝑀𝑎𝑥         ,  𝐹𝑢𝑛𝑐 ∈ 𝐵
           (1) 

In Equation (1), 𝑊𝑒𝑖𝑔ℎ𝑡𝐵 is the weight of Basic Block B 
while Sum() is a function that calculates the count of 
successors of basic block b which contain risk functions. 
Moreover, if the risk function is in basic block B, 𝑊𝑒𝑖𝑔ℎ𝑡𝐵 is 
recorded as 𝑊𝑀𝑎𝑥. After calculating the weight of related basic 
blocks, we infer the edge from Basic Block A to Basic Block B 
while Basic Block A is the predecessor of Basic Block B. 

|𝐸𝑑𝑔𝑒𝑎,𝑏
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  | = 𝑊𝑒𝑖𝑔h𝑡𝑏             (2) 

During the process of fuzzing, combined with the probe 
code we set before, IoTCID obtains the execution path of the 
fuzzing sample and calculates the function distance according 
to the control flow graph to evaluate the fuzzing sample with 
𝑆𝑐𝑜𝑟𝑒𝑡𝑒𝑠𝑡. 

𝑆𝑐𝑜𝑟𝑒𝑡𝑒𝑠𝑡 =
∑|𝐸𝑑𝑔𝑒𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |

𝐶𝑜𝑢𝑛𝑡𝑡𝑒𝑠𝑡
             (3) 

2) Scheduling strategy: Therefore, towards one specific 

interface, we implement our scheduling strategy according to the 

distance function. It can be inferred that a fuzzing sample with 

higher 𝑆𝑐𝑜𝑟𝑒𝑡𝑒𝑠𝑡 is more likely to trigger the risk functions, so 

that the mutation resources should be concentrated on these 

high-quality fuzzing samples, improving the efficiency of 

command injection vulnerability detection. 

Moreover, the following situations should be paid more 
attention on the basis of experience and practical situations. 
Details are shown in the control flow graph in Fig. 2. 

Case 1. Supposed there is a risk function called in the basic 
block Target. The execution path of one fuzzing sample shows 
like Start->Basic Block 5->Basic Block 5->…Target-> End, 
where there is a loop in the path. Since the fuzzing sample can 
eventually traverse the basic block Target, we should avoid 

double counting when calculating 𝐶𝑜𝑢𝑛𝑡𝑡𝑒𝑠𝑡 and ∑|𝐸𝑑𝑔𝑒𝑎,𝑏
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |. 

TABLE I. VARIABLES AND MEANINGS IN DISTANCE FUNCTION 

Symbol Name Meaning 

𝑊𝑒𝑖𝑔ℎ𝑡𝐵 
The weight of a 

basic block 

The importance of Basic Block B in 

the control flow 

𝐸𝑑𝑔𝑒𝑎,𝑏
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

The edge vector of 

basic blocks 

The edge vector from Basic Block A 

to Basic Block B while Basic Block A 

is the predecessor of Baisc Block B. 

𝐶𝑜𝑢𝑛𝑡𝑡𝑒𝑠𝑡 The count of edges 

The count of edges traversed by the 

sample before triggering the target 

basic block 

𝑆𝑐𝑜𝑟𝑒𝑡𝑒𝑠𝑡 
The score of a 

sample 

The count of valid edges traversed by 

the sample 

 

Fig. 2. The Control Flow Graph. 

Case 2. Another case is that there are two fuzzing samples 
respectively travel through basic block 3 and basic block, and 
both eventually reach the basic block Target. We will find the 
scores of the two fuzzing samples are the same based on the 
above theory. However, we find there is a string concatenation 
functions such as sprintf and strcat, and the fuzzing sample 
which reaches basic block 4 should be given a higher priority 
under this circumstance. The reason is that the cause of 
command injection vulnerabilities generally originate from the 
back-end program that concatenates the user's input into a string 
which further directly works as a parameter of the risk function 
[14]. 

Considering the above situations, we propose Algorithm 2 
to evaluate the quality of fuzzing samples where sampleInfo is 
the fuzzing samples and funcGraph is the control flow graph of 
function. It first traverses the basic blocks of the interfaces in 
the back-end program in deep first search (DFS), gathering 
necessary information, and then calculates 𝑆𝑐𝑜𝑟𝑒𝑡𝑒𝑠𝑡 of fuzzing 
samples based on their feedbacks. 
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Algorithm 2: Accessment of Fuzzing Samples 

Input: sampleInfo && funcGraph 

Output: Scores of Fuzzing Samples 

1. function ACCESSMENT(sampleInfo, funcGraph) 

2.      infoGraph ← DFSTraverse(funcGraph) 

3.      totalEdges← makeEdges( 

sampleInfo.executionBlocks) 

4.      edgeCount ← 0 

5.      edgeTotal ← 0 

6.      for edge in totalEdges do 

7.          if infoGraph.edge.|Edge⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗| != 0 and 

                sampleInfo.edge.flag != 1 then 

8.             edgeTotal += infoGraph.edge.|Edge⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|; 
9.             edgeCount += 1; 

10.           sampleInfo.edge.flag = 1; 

11.         end if 

12.     end for 

13.     if edgeTotal >= MAX and 

               IMPORTANT_BLOCKS( 

sampleInfo.executionBlocks) then 

14.         SET_PRIORITY(sampleInfo) 

15.     end if 

16.     Score ← CALCULATE( 

sampleInfo, edgeTotal, edgeCount) 

17.     return Score 

18. end function 

Finally, according to 𝑆𝑐𝑜𝑟𝑒𝑡𝑒𝑠𝑡 of fuzzing samples, we 
select high-quality fuzzing samples, given higher priority and 
more mutation time. We further select the samples which have 
reached the basic block Target and confirm whether there is a 
command injection vulnerability by comparing its data to the 
parameter of risk function. 

IV. RESULTS AND DISCUSSION 

The prototype system of IoTCID consists of three 
subsystems including the constrained model generation 
subsystem, the binary static analysis subsystem, and the fuzzing 
subsystem. The constrained model generation subsystem 
implemented based on the standard HTML parsing library 
BeautifulSoap [15] and the standard Javascript parsing library 
Esprima [16] uses Algorithm 1 to extract the variables during 
the interaction between front-end files and back-end programs 
and generate the constrained models of fuzzing samples. The 
binary static analysis subsystem implemented based on 
Capstone [13] first obtains the disassembly code of back-end 
programs, and then establishes the control flow graph as well 
as sets the probe code using the trampoline mechanism. On the 
basis of the above two subsystems, the fuzzing subsystem 
initializes the fuzzing samples by LibFuzzer [17], and performs 
fuzzing test according to our scheduling strategies. 

A. Preparation 

We evaluate IoTCID on real-world IoT devices from three 
vendors, including six routers on two architectures, which are 
commonly used in our daily life. The target firmware can be 
obtained from the official website or extracted from the device 
based on binwalk [18]. 

In this paper, we design two experiments to prove the 
efficiency of IoTCID, one of which is the assessment of front-
end files analysis while the other is the assessment of fuzzing 
test. Besides, we compared our tool with SaTC, the state-of-the-
art static bug-hunter for IoT devices, which locates the strings 

between front-end files and back-end programs based on the 
interaction and applies data flow analysis to detect 
vulnerabilities. We perform our experiments on Ubuntu 
18.04LTS 64-bit operating system, with Intel Core i5-6300HQ 
@ 2.30GHz and 16.0 GB RAM. 

B. Result and Discussion 

Table II lists the result of the instrumentation information 
of target IoT devices, where T1 represents the average response 
time of IoT devices under normal working state while T2 
represents the average response time after the static 
instrumentation. We get the final result after performing 
multiple tests to reduce the impact of fluctuations caused by the 
test environment. It shows that the setting of the probe codes 
only increases the response time by about 25%, which is an 
acceptable expense for the next fuzzing test. 

Table III lists the analysis result of front-end files towards 
our target IoT devices. Among them, tURL means the total 
number of URL interfaces that have data interaction between 
the front-end files and the back-end programs. eURL means the 
total number of URL interfaces extracted from the front-end file 
by the tools. gMod means the total number of the generated 
constrained models. g% means the accuracy rate of the 
generated constrained models. 

According to Table III, it can be seen according to vURL. 
We define TP rate (True Positive rate) and FP rate (False 
Positive rate) for further explanation.The TP rate means the 
ratio of the correct results to the actual total, which can be 
inferred by vURL/tURL while the FP rate means the ratio of the 
incorrect results to the actual total, which can be inferred by 
(eURL-vURL)/tURL. 

As shown in the left side of Fig. 3, it can be found that, 
except for the X12 series, the TP rates of IoTCID and SaTC are 
achieving an appreciable rate, which means that both IoTCID 
and SaTC have correctly extracted most of the URL interfaces 
provided by the target IoT devices and IoTCID does a better 
job. 

However, the FP rates are various as shown in the right side 
of Fig. 3. Besides a few identification errors, the main reason of 
the difference is that IoTCID extracts URLs in the front-end 
files by analyzing the calling procedures which have data 
interaction with the back-end programs, while SaTC extracts 
URLs through regular expressions and clustering algorithms 
directly, which causes a higher FP rate. For instance, certain 
URL interfaces that only provide the status of devices should 
not be presumed to be risks and will not by extracted by 
IoTCID. 

TABLE II. RESULT OF STATIC INSTRUMENTATION 

Vendor Device Series T1(ms) T2(ms) 

Tenda 
AC9 3.87 4.66 

AX12 3.47 4.28 

D-Link 
D605L 3.94 4.64 

D816 3.81 4.68 

L-Blink 
X12 4.32 5.53 

X22 4.38 5.49 
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TABLE III. ANALYSIS RESULT OF FRONT-END FILES 

Vendor Series tURL 
IoTCID SaTC 

eURL vURL gMod g% eURL vURL 

Tenda 
AC9 106 94 88 100 87.00 123 86 

AX12   98 102 72 108 87.04 130 71 

D-Link 
D605L 64 58 53 60 95.00 60 52 

D816 66 57 47 60 91.67 50 40 

L-Blink 
X12 114 117 101 127 74.80 25 16 

X22 114 117 101 127 74.80 25 16 

 

Fig. 3. TP Rates and FP Rates Comparison. 

Moreover, IoTCID generates constrained models related to 
the extracted URLs based on the abstract syntax tree, and has a 
high accuracy rate in g%. In this experiment, it shows that 
IoTCID has a better performance in the analysis of the 
interactions between the front-end files and the back-end 
programs providing a foundation for the following command 
injection vulnerability detection. 

As Table IV shows, the IoTCID completes all the command 
injection vulnerability detections towards the target IoT devices 
and confirms six command injection vulnerabilities, while 
SaTC only completes a few of them. The reason is that the 
implementation of SaTC is developed based on angr [19], 
which is limited in supporting MIPS architecture programs, and 
prone to cause crash during data flow analysis while IoTCID is 
designed based on the generation of the constrained models, 
and confirms whether there is a command injection 
vulnerability by comparing the fuzzing samples to the 
feedbacks of the probe code, representing a high degree of 
support for the detection of multi-architecture programs. 
Moreover, SaTC only raises alerts after completing the 
detection and requires further manual analysis to confirm 
whether the alert is reliable and the command injection 
vulnerability is controllable, existing certain false positives and 
costing additional manual analysis time. However, the 
detection result of IoTCID is based on the feedbacks of the 
executing program sent by the probe code, so it requires no 
more manual analysis and the accuracy of the results is 
guaranteed. 

From the above experiments, compared with the existing 
command injection vulnerability detection tool SaTC towards 
IoT devices, IoTCID can effectively extract the constrained 

models based on the analysis of the interaction between the 
front-end files and the back-end programs, and improve the 
accuracy and efficiency of detecting the command injection 
vulnerabilities through various scheduling strategies. 

C. Case Analysis 

Taking CVE-2018-14558 as an example, when a user 
manages an external device, the related front-end file will 
generate a request (Line 5 in status_usb.js, up side of Fig. 4) 
combined with the device name and send it to the back-end 
programs for parsing. The back-end program processes the 
request through the function "formsetUsbUnload", and 
generates a string containing the device name as the parameter 
of the system call. (Line 5 and 6 in httpd, low side of Fig. 4). 
Because the function "formsetUsbUnload" does not verify the 
validity of the parameter "deviceName", there exists a typical 
command injection vulnerability in the function 
"doSystemCmd", which can be exploited by attackers to 
execute arbitrary commands. 

TABLE IV. RESULT OF VULNERABILITY DETECTION 

Vendor Series IDs 
Time（min） 

IoTCID SaTC 

Tenda 
AC9 CVE-2018-14558 4:40h - 

AC* CNNVD-202109-1174 4:26h 3:52h 

D-Link 

D605L CVE-2018-20057 3:55h - 

D816 
CVE-2021-39510 

CVE-2018-17066 
3:31h - 

L-BLink X* CNNVD-202011-1320 3:10h 3:40h 
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Fig. 4. Interaction between the Front-end Files and the Back-end Programs. 

First, IoTCID generates a constrained model by analyzing 
the interactions between the front-end files and the back-end 
program, as shown in Fig. 5. 

 

Fig. 5. A Constrained Model. 

 

Fig. 6. Probe Code Set. 

Then, IoTCID sets up the probe code that records the 
execution path of the fuzzing samples in the located interface 
functions and provides with feedbacks by performing binary 
static analysis on the back-end program, as shown in Fig. 6. 

Finally, IoTCID confirms whether there is a command 
injection vulnerability in the back-end program by comparing 
the fuzzing samples and the parameters of the risk function, 
which are provided by the probe code we set before. 

V. CONCLUSION 

In this paper, we propose and implement a state-of-the-art 
dynamic detection tool towards command injection 
vulnerabilities in IoT devices, IoTCID, which generates 
constrained models based on the logic analysis to front-end 
files, and selects high-quality fuzzing samples by various 
scheduling strategies based on the Distance Function. IoTCID 
has successfully detected seven command injection 
vulnerabilities in six real-world IoT devices, two of which are 
previously unknown vulnerabilities and assigned IDs by 

CNNVD-202109-1174、CNNVD-202011-1320 after being 

confirmed by CNNVD. 

However, there still remains shortcomings in our tool, such 
as the limit of the constrained model generation when facing 
with complex variable references in front-end files and the limit 
of the throughput of IoTCID for the experiments are currently 
performing on the devices. Therefore, our future work is as 
follows: 

1) Optimization is needed to improve the capability of the 

constrained model generation in complex variable references in 

the front-end file. 

2) Optimization is needed to improve the throughput of 

IoTCID by building a simulation framework environment. 
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