
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

7 | P a g e

www.ijacsa.thesai.org

IoTCID: A Dynamic Detection Technology for

Command Injection Vulnerabilities in IoT Devices

Hao Chen1, Jinxin Ma2, Baojiang Cui3, Junsong Fu4

School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing, China1,3,4

China Information Technology Security Evaluation Center, Beijing, China2

Abstract—The pervasiveness of IoT devices has brought us

convenience as well as the risks of security vulnerabilities.

However, traditional device vulnerability detection methods

cannot efficiently detect command injection vulnerabilities due to

heavy execution overheads or false positives and false negatives.

Therefore, we propose a novel dynamic detection solution,

IoTCID. First, it generates constrained models by parsing the

front-end files of the IoT device, and a static binary analysis is

performed towards the back-end programs to locate the interface

processing function. Then, it utilizes a fuzzing method based on

the feedback from Distance Function, which selects high-quality

samples through various scheduling strategies. Finally, with the

help of the probe code, it compares the parameter of potential risk

functions with samples to confirm the command injection

vulnerabilities. We implement a prototype of IoTCID and evaluate

it on real-world IoT devices from three vendors and confirm six

vulnerabilities. It shows that IoTCID are effective in discovering

command injection vulnerabilities in IoT devices.

Keywords—Firmware vulnerability mining; command injection;

dynamic detection

I. INTRODUCTION

With the development of the Internet and information
technologies, IoT devices are extensively used in our life [1],
and attacks against IoT devices have been emerged in recent
years [2]. The reason is that web interfaces are usually exposed
to users to manage the devices, which contain exploitable
vulnerabilities.

There are some unique features of the threats caused by
vulnerabilities in IoT devices compared to which in PCs or in
servers. For example, most existing security mechanism or
antivirus products are not available in IoT devices due to the
limit of cost and power of IoT devices, which makes it easier to
perform further exploits towards certain vulnerabilities [3].
Moreover, one vulnerability may have huge influence on
thousands of devices, for the devices from the same vendor
usually have similar firmware [4].

Command Injection Vulnerability is one of the most
effective and commonest vulnerabilities in IoT devices [14].
Attackers can exploit the target IoT devices through this
vulnerability by injecting additional commands into the
program. Moreover, the system commands provided by
attackers are usually executed with the highest authority in IoT
devices.

However, due to the complexity and the specificity of the
IoT devices, existing tools cannot effectively detect Command

Injection Vulnerability. For example, Dynamic analysis tools,
like fuzzing [5, 7, 9], requires valid communication formats to
generate fuzzing samples and can only reach a small portion of
all the provided interfaces while static analysis tools, like
KARONTE [11] and SaTC [12], cannot efficiently generate
interaction paradigms between the front-end files and back-end
programs, leading to a lot of false positives which requires
further manual check.

Therefore, to ensure the safety and reliability of IoT
devices, it is urgent to develop security analysis technology
towards IoT devices. In this paper, focusing on Command
Injection Vulnerability, we propose a novel dynamic detection
technology, IoTCID, to effectively detect command injection
vulnerabilities in IoT devices.

Inspired by SaTC 12], in order to generate samples in valid
communication formats and to cover interfaces as many as we
can, IoTCID first performs a logic analysis to the front-end files
which interact with the back-end programs to generate
constrained models. It utilizes a novel scheduling strategies
based on Distance Function to improve the efficiency of
command injection vulnerability detection. We design and
implement a prototype of IoTCID and evaluate its efficacy
through a set of experiments based on real-world IoT devices
and confirm six command injection vulnerabilities. It shows
that IoTCID is effective in discovering command injection
vulnerabilities in IoT devices.

In summary, our major contributions are as follows:

1) We present a dynamic detection technique towards

Command Injection Vulnerabilities based on the logic analysis

to front-end files and intelligent feedbacks from the back-end

programs.

2) We design and implement a constrained model

generation technique based on the logic analysis to front-end

files, providing a valid format for the generation of fuzzing

samples.

3) We design and implement scheduling strategies based on

Distance Function feedback to concentrate resources on the

fuzzing samples that may cover risk functions in back-end

programs.

The rest of the paper is organized as follows. We first
summarize related work in recent years in Section II. We then
present an overview of IoTCID, and give a detailed description
on design and implementation of each component of IoTCID in
Section III. We demonstrate the efficacy of IoTCID through a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

8 | P a g e

www.ijacsa.thesai.org

set of experiments and present a vulnerability detection case in
Section IV. At last, Section V concludes this paper and show
the future work of IoTCID.

II. RELATED WORK

In recent security research on IoT devices, fuzzing is the
most discussed technique. The general process of fuzzing is to
detect the state of the testing program and guide the generation
of fuzzing samples with provided feedbacks.

Chen J et al. propose and implement a generation-based
firmware fuzzing method, IoTFuzzer[5], which detects
vulnerabilities related to memory in IoT devices by analyzing
the corresponding Android application. In view of the
shortcomings of IoTFuzzer, DIANE[6] proposed a new method
for generating fuzzing samples, which is based on the target
fuzzing points in the APP that are located before data
conversion and after input validation. However, both IoTFuzzer
and DIANE conduct black-box fuzzing directly on real devices,
limited to providing guidance and feedbacks based on the
testing samples.

Zhang Y et al. propose SRFuzzer[7], which mutates the
collected network traffic and detects the state of the fuzzing
process according to the response-based monitor, routing-based
monitor, and signal-based monitor. However, it would be
difficult for SRFuzzer to cover the corresponding interface
functions without the network traffic in advance.

FirmFuzz[8] runs the target firmware through simulation
and collects payloads of different vulnerabilities for fuzzing
tests. Zheng Y et al. propose FIRM-AFL[9] to enhance process
simulation to fuzz the IoT firmware. However, these methods
are all subject to valid inputs.

Although command injection is a common and powerful
threat, related detection is less discussed in IoT security
research.

Commix[10] is a tool that can automatically detect and
exploit command injection vulnerability towards web
applications. It sends a data packet attached with a command
injection attack vector, and compares the response of the web
application with the expected result to determine whether there
is a command injection vulnerability. However, Commix needs
to collect network traffic in advance, and it makes determine
according to the response of the target. When the network delay
cannot be guaranteed, there will be a certain false positive,
which cannot intuitively reflect the location of the command
injection vulnerability.

KARONTE[11], a static analysis framework for embedded
firmware, which can detect vulnerabilities caused by its
communication by modeling and tracking the interactions
between binary programs. However, KARONTE cannot
effectively detect command injection vulnerabilities because it
does not track the data flow from input entry points to system-
like functions. Aiming at the shortcomings of KARONTE,
Chen L et al. propose a novel static taint technique, SaTC[12],

to effectively detect security vulnerabilities in web services
provided by embedded devices. It mainly locates the
communication process between front-end files and back-end
programs based on the strings used in the front-end web
interface, and applies targeted data flow analysis to accurately
detect possible vulnerabilities. However, SaTC uses a
clustering algorithm to extract the strings interacting between
front-end files and back-end programs, and cannot generate an
effective input model for the web interface. Besides, it requires
additional manual analysis to comfirm the result and eliminate
false positives.

In a word, it remains problems in the use of the above
detection technologies towards IoT devices. For example, the
fuzzing detection technology mainly focuses on memory
corruption vulnerabilities, and are subject to the input of valid
format while static analysis tools may have low detection
efficiency due to excessive analysis. Therefore, aiming at the
command injection vulnerability of IoT devices, based on the
logic analysis to front-end files and intelligent feedbacks, we
propose a dynamic detection model IoTCID, which makes up
for the shortcomings of the current command injection
detection technology for IoT devices and improves the
efficiency and accuracy of command injection vulnerability
detection.

III. METHODOLOGY

Generally, IoT devices provide user management
interfaces, which are mainly composed of front-end files and
back-end programs. Front-end files include HTML, Javascript
while back-end programs are generally executable binary files.
IoTCID is proposed based on the workflow of the front-end
files and back-end programs, as Fig. 1 provides the overview of
IoTCID. It first generates constrained models by parsing the
front-end files of the IoT device, and then performs binary static
analysis on the back-end programs to locate the interface
processing function. Then, IoTCID selects high-quality fuzzing
samples according to various scheduling strategies based on the
feedback from Distance Function. The selected samples are
given more mutation time slices and priorities, which makes
concentration on the interface process functions that may exist
command injection vulnerabilities. Finally, IoTCID confirms
the command injection vulnerabilities combined with the
fuzzing samples and the parameters of risk functions detected
by the probe code.

A. Constrained Model Generation

We propose a technology of constrained model generation
based on the logic analysis to front-end files. Through syntax
analysis, it generates a corresponding abstract syntax tree
according to the front-end file, and extracts the variable
reference chains of the abstract syntax tree as well as the
variables during the interaction process between the front-end
files and the back-end programs. The generated models are used
as the format of the fuzzing samples, mainly including the URL,
the request type, and the request keywords.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

9 | P a g e

www.ijacsa.thesai.org

Fig. 1. Structure of IoTCID.

Algorithm 1 shows the analysis process of the function call
and variable reference chain of the front-end files, where
funcNode is the result of syntax analysis and varName is the
parameter of the funcNode. During the analysis, there are two
types of function parameters: one of which is directly passed in
text value while the other is indirectly passed in variable name.
For the direct one, IoTCID uses the regular expression to match
and obtain the text value of the parameter. For the indirect one,
the text value can be extracted through a recursive method in
related function scope.

Algorithm 1: Analysis of Parameters during Interaction

Input: funcNode && varNames

Output: Constrained models

1. function GET_VALUE(funcNode, varName)

2. param ← []

3. if varName.type == “Literal” then

4. param.append(ANALYSIS(

funcNode.expression, varName));

5. return param

6. else

7. funcNode = FIND_PARENT(funcNode);

8. if funcNode == ‘’ then

9. return []

10. end if

11. GET_VALUE (funcNode, varName);

12. end if

13. end function

B. Static Instrumentation

IoTCID obtains the information that may trigger the
command injection vulnerability function in the back-end
programs through binary static analysis, and sets the probe code
to obtain the performing state of the fuzzing samples. We
implement a static analysis technique for back-end binary
programs. It obtains information about risk functions such as

execve and system which may trigger command injection
vulnerabilities. Therefore, we can record the performing paths
of fuzzing samples based on binary static instrumentation
technology and control flow analysis of the back-end programs.

1) Acquisition of risk function: The purpose of acquiring the

potential dangerous function is to locate the interface in the

back-end programs, which processes the requests from the front-

end files according to the URL extracted in Part A, Section III,

and construct its control. flow graph. We further obtain the

necessary data by analyzing the header of back-end binary

programs, the entry point and relevant segments. Finally, we use

Capstone [13] to disassemble the code to obtain the information

of the target function and related code blocks as well as building

a control flow graph.

2) Generation of probe code: The probe code collects the

performing state of fuzzing samples during the execution

process and provides feedbacks to the monitor system. Based on

the control flow graph of the risk functions, we set the probe

code to provide information feedback of the basic blocks,

including the address information and the parameters of the risk

functions. The trampoline mechanism is used during the

generation of probe code to make association between the set

point and the risk functions, and provides the necessary

environment preparation for the normal execution of the original

program.

C. Fuzzing Technology

We apply distance function to the fuzzing technology to
select high-quality fuzzing samples according to various
scheduling strategies. While IoTCID is sending fuzzing
samples to the back-end program for detecting command
injected vulnerability, it selects high-quality one and gives them

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

10 | P a g e

www.ijacsa.thesai.org

more mutation time and priorities based on the result of
measuring the feedbacks of fuzzing samples by distance
function, which concentrates resources on the fuzzing samples
that may cover risk functions in back-end programs, improving
the efficiency of command injection vulnerability detection.
Finally, combined with the parameters of risk functions and
fuzzing samples, IoTCID makes checks on whether there is a
suspicious point of command injection vulnerability.
Obviously, the distance function and the scheduling strategies
are the cores of the fuzzing technology.

1) Distance function: The weight of basic blocks, the edge

vector of basic blocks and the distance of samples are three

components of the distance function. The weight of basic blocks

and the edge vector of basic blocks are calculated in the process

of binary static analysis while the distance of samples

calculation is calculated in the fuzzing process. Table I lists the

variables and their meanings of the distance function.

We define the count of successors of Basic Block B which
contain the risk functions as the weight of basic block B, as
Equation (1) shows.

𝑊𝑒𝑖𝑔ℎ𝑡𝐵 = {
Sum(𝐵, 𝐹𝑢𝑛𝑐) , 𝐹𝑢𝑛𝑐 ∉ 𝐵

𝑊𝑀𝑎𝑥 , 𝐹𝑢𝑛𝑐 ∈ 𝐵
 (1)

In Equation (1), 𝑊𝑒𝑖𝑔ℎ𝑡𝐵 is the weight of Basic Block B
while Sum() is a function that calculates the count of
successors of basic block b which contain risk functions.
Moreover, if the risk function is in basic block B, 𝑊𝑒𝑖𝑔ℎ𝑡𝐵 is
recorded as 𝑊𝑀𝑎𝑥. After calculating the weight of related basic
blocks, we infer the edge from Basic Block A to Basic Block B
while Basic Block A is the predecessor of Basic Block B.

|𝐸𝑑𝑔𝑒𝑎,𝑏
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ | = 𝑊𝑒𝑖𝑔h𝑡𝑏 (2)

During the process of fuzzing, combined with the probe
code we set before, IoTCID obtains the execution path of the
fuzzing sample and calculates the function distance according
to the control flow graph to evaluate the fuzzing sample with
𝑆𝑐𝑜𝑟𝑒𝑡𝑒𝑠𝑡.

𝑆𝑐𝑜𝑟𝑒𝑡𝑒𝑠𝑡 =
∑|𝐸𝑑𝑔𝑒𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |

𝐶𝑜𝑢𝑛𝑡𝑡𝑒𝑠𝑡
 (3)

2) Scheduling strategy: Therefore, towards one specific

interface, we implement our scheduling strategy according to the

distance function. It can be inferred that a fuzzing sample with

higher 𝑆𝑐𝑜𝑟𝑒𝑡𝑒𝑠𝑡 is more likely to trigger the risk functions, so

that the mutation resources should be concentrated on these

high-quality fuzzing samples, improving the efficiency of

command injection vulnerability detection.

Moreover, the following situations should be paid more
attention on the basis of experience and practical situations.
Details are shown in the control flow graph in Fig. 2.

Case 1. Supposed there is a risk function called in the basic
block Target. The execution path of one fuzzing sample shows
like Start->Basic Block 5->Basic Block 5->…Target-> End,
where there is a loop in the path. Since the fuzzing sample can
eventually traverse the basic block Target, we should avoid

double counting when calculating 𝐶𝑜𝑢𝑛𝑡𝑡𝑒𝑠𝑡 and ∑|𝐸𝑑𝑔𝑒𝑎,𝑏
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |.

TABLE I. VARIABLES AND MEANINGS IN DISTANCE FUNCTION

Symbol Name Meaning

𝑊𝑒𝑖𝑔ℎ𝑡𝐵
The weight of a

basic block

The importance of Basic Block B in

the control flow

𝐸𝑑𝑔𝑒𝑎,𝑏
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

The edge vector of

basic blocks

The edge vector from Basic Block A

to Basic Block B while Basic Block A

is the predecessor of Baisc Block B.

𝐶𝑜𝑢𝑛𝑡𝑡𝑒𝑠𝑡 The count of edges

The count of edges traversed by the

sample before triggering the target

basic block

𝑆𝑐𝑜𝑟𝑒𝑡𝑒𝑠𝑡
The score of a

sample

The count of valid edges traversed by

the sample

Fig. 2. The Control Flow Graph.

Case 2. Another case is that there are two fuzzing samples
respectively travel through basic block 3 and basic block, and
both eventually reach the basic block Target. We will find the
scores of the two fuzzing samples are the same based on the
above theory. However, we find there is a string concatenation
functions such as sprintf and strcat, and the fuzzing sample
which reaches basic block 4 should be given a higher priority
under this circumstance. The reason is that the cause of
command injection vulnerabilities generally originate from the
back-end program that concatenates the user's input into a string
which further directly works as a parameter of the risk function
[14].

Considering the above situations, we propose Algorithm 2
to evaluate the quality of fuzzing samples where sampleInfo is
the fuzzing samples and funcGraph is the control flow graph of
function. It first traverses the basic blocks of the interfaces in
the back-end program in deep first search (DFS), gathering
necessary information, and then calculates 𝑆𝑐𝑜𝑟𝑒𝑡𝑒𝑠𝑡 of fuzzing
samples based on their feedbacks.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

11 | P a g e

www.ijacsa.thesai.org

Algorithm 2: Accessment of Fuzzing Samples

Input: sampleInfo && funcGraph

Output: Scores of Fuzzing Samples

1. function ACCESSMENT(sampleInfo, funcGraph)

2. infoGraph ← DFSTraverse(funcGraph)

3. totalEdges← makeEdges(

sampleInfo.executionBlocks)

4. edgeCount ← 0

5. edgeTotal ← 0

6. for edge in totalEdges do

7. if infoGraph.edge.|Edge⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗| != 0 and

 sampleInfo.edge.flag != 1 then

8. edgeTotal += infoGraph.edge.|Edge⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗|;
9. edgeCount += 1;

10. sampleInfo.edge.flag = 1;

11. end if

12. end for

13. if edgeTotal >= MAX and

 IMPORTANT_BLOCKS(

sampleInfo.executionBlocks) then

14. SET_PRIORITY(sampleInfo)

15. end if

16. Score ← CALCULATE(

sampleInfo, edgeTotal, edgeCount)

17. return Score

18. end function

Finally, according to 𝑆𝑐𝑜𝑟𝑒𝑡𝑒𝑠𝑡 of fuzzing samples, we
select high-quality fuzzing samples, given higher priority and
more mutation time. We further select the samples which have
reached the basic block Target and confirm whether there is a
command injection vulnerability by comparing its data to the
parameter of risk function.

IV. RESULTS AND DISCUSSION

The prototype system of IoTCID consists of three
subsystems including the constrained model generation
subsystem, the binary static analysis subsystem, and the fuzzing
subsystem. The constrained model generation subsystem
implemented based on the standard HTML parsing library
BeautifulSoap [15] and the standard Javascript parsing library
Esprima [16] uses Algorithm 1 to extract the variables during
the interaction between front-end files and back-end programs
and generate the constrained models of fuzzing samples. The
binary static analysis subsystem implemented based on
Capstone [13] first obtains the disassembly code of back-end
programs, and then establishes the control flow graph as well
as sets the probe code using the trampoline mechanism. On the
basis of the above two subsystems, the fuzzing subsystem
initializes the fuzzing samples by LibFuzzer [17], and performs
fuzzing test according to our scheduling strategies.

A. Preparation

We evaluate IoTCID on real-world IoT devices from three
vendors, including six routers on two architectures, which are
commonly used in our daily life. The target firmware can be
obtained from the official website or extracted from the device
based on binwalk [18].

In this paper, we design two experiments to prove the
efficiency of IoTCID, one of which is the assessment of front-
end files analysis while the other is the assessment of fuzzing
test. Besides, we compared our tool with SaTC, the state-of-the-
art static bug-hunter for IoT devices, which locates the strings

between front-end files and back-end programs based on the
interaction and applies data flow analysis to detect
vulnerabilities. We perform our experiments on Ubuntu
18.04LTS 64-bit operating system, with Intel Core i5-6300HQ
@ 2.30GHz and 16.0 GB RAM.

B. Result and Discussion

Table II lists the result of the instrumentation information
of target IoT devices, where T1 represents the average response
time of IoT devices under normal working state while T2
represents the average response time after the static
instrumentation. We get the final result after performing
multiple tests to reduce the impact of fluctuations caused by the
test environment. It shows that the setting of the probe codes
only increases the response time by about 25%, which is an
acceptable expense for the next fuzzing test.

Table III lists the analysis result of front-end files towards
our target IoT devices. Among them, tURL means the total
number of URL interfaces that have data interaction between
the front-end files and the back-end programs. eURL means the
total number of URL interfaces extracted from the front-end file
by the tools. gMod means the total number of the generated
constrained models. g% means the accuracy rate of the
generated constrained models.

According to Table III, it can be seen according to vURL.
We define TP rate (True Positive rate) and FP rate (False
Positive rate) for further explanation.The TP rate means the
ratio of the correct results to the actual total, which can be
inferred by vURL/tURL while the FP rate means the ratio of the
incorrect results to the actual total, which can be inferred by
(eURL-vURL)/tURL.

As shown in the left side of Fig. 3, it can be found that,
except for the X12 series, the TP rates of IoTCID and SaTC are
achieving an appreciable rate, which means that both IoTCID
and SaTC have correctly extracted most of the URL interfaces
provided by the target IoT devices and IoTCID does a better
job.

However, the FP rates are various as shown in the right side
of Fig. 3. Besides a few identification errors, the main reason of
the difference is that IoTCID extracts URLs in the front-end
files by analyzing the calling procedures which have data
interaction with the back-end programs, while SaTC extracts
URLs through regular expressions and clustering algorithms
directly, which causes a higher FP rate. For instance, certain
URL interfaces that only provide the status of devices should
not be presumed to be risks and will not by extracted by
IoTCID.

TABLE II. RESULT OF STATIC INSTRUMENTATION

Vendor Device Series T1(ms) T2(ms)

Tenda
AC9 3.87 4.66

AX12 3.47 4.28

D-Link
D605L 3.94 4.64

D816 3.81 4.68

L-Blink
X12 4.32 5.53

X22 4.38 5.49

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

12 | P a g e

www.ijacsa.thesai.org

TABLE III. ANALYSIS RESULT OF FRONT-END FILES

Vendor Series tURL
IoTCID SaTC

eURL vURL gMod g% eURL vURL

Tenda
AC9 106 94 88 100 87.00 123 86

AX12 98 102 72 108 87.04 130 71

D-Link
D605L 64 58 53 60 95.00 60 52

D816 66 57 47 60 91.67 50 40

L-Blink
X12 114 117 101 127 74.80 25 16

X22 114 117 101 127 74.80 25 16

Fig. 3. TP Rates and FP Rates Comparison.

Moreover, IoTCID generates constrained models related to
the extracted URLs based on the abstract syntax tree, and has a
high accuracy rate in g%. In this experiment, it shows that
IoTCID has a better performance in the analysis of the
interactions between the front-end files and the back-end
programs providing a foundation for the following command
injection vulnerability detection.

As Table IV shows, the IoTCID completes all the command
injection vulnerability detections towards the target IoT devices
and confirms six command injection vulnerabilities, while
SaTC only completes a few of them. The reason is that the
implementation of SaTC is developed based on angr [19],
which is limited in supporting MIPS architecture programs, and
prone to cause crash during data flow analysis while IoTCID is
designed based on the generation of the constrained models,
and confirms whether there is a command injection
vulnerability by comparing the fuzzing samples to the
feedbacks of the probe code, representing a high degree of
support for the detection of multi-architecture programs.
Moreover, SaTC only raises alerts after completing the
detection and requires further manual analysis to confirm
whether the alert is reliable and the command injection
vulnerability is controllable, existing certain false positives and
costing additional manual analysis time. However, the
detection result of IoTCID is based on the feedbacks of the
executing program sent by the probe code, so it requires no
more manual analysis and the accuracy of the results is
guaranteed.

From the above experiments, compared with the existing
command injection vulnerability detection tool SaTC towards
IoT devices, IoTCID can effectively extract the constrained

models based on the analysis of the interaction between the
front-end files and the back-end programs, and improve the
accuracy and efficiency of detecting the command injection
vulnerabilities through various scheduling strategies.

C. Case Analysis

Taking CVE-2018-14558 as an example, when a user
manages an external device, the related front-end file will
generate a request (Line 5 in status_usb.js, up side of Fig. 4)
combined with the device name and send it to the back-end
programs for parsing. The back-end program processes the
request through the function "formsetUsbUnload", and
generates a string containing the device name as the parameter
of the system call. (Line 5 and 6 in httpd, low side of Fig. 4).
Because the function "formsetUsbUnload" does not verify the
validity of the parameter "deviceName", there exists a typical
command injection vulnerability in the function
"doSystemCmd", which can be exploited by attackers to
execute arbitrary commands.

TABLE IV. RESULT OF VULNERABILITY DETECTION

Vendor Series IDs
Time（min）

IoTCID SaTC

Tenda
AC9 CVE-2018-14558 4:40h -

AC* CNNVD-202109-1174 4:26h 3:52h

D-Link

D605L CVE-2018-20057 3:55h -

D816
CVE-2021-39510

CVE-2018-17066
3:31h -

L-BLink X* CNNVD-202011-1320 3:10h 3:40h

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

13 | P a g e

www.ijacsa.thesai.org

Fig. 4. Interaction between the Front-end Files and the Back-end Programs.

First, IoTCID generates a constrained model by analyzing
the interactions between the front-end files and the back-end
program, as shown in Fig. 5.

Fig. 5. A Constrained Model.

Fig. 6. Probe Code Set.

Then, IoTCID sets up the probe code that records the
execution path of the fuzzing samples in the located interface
functions and provides with feedbacks by performing binary
static analysis on the back-end program, as shown in Fig. 6.

Finally, IoTCID confirms whether there is a command
injection vulnerability in the back-end program by comparing
the fuzzing samples and the parameters of the risk function,
which are provided by the probe code we set before.

V. CONCLUSION

In this paper, we propose and implement a state-of-the-art
dynamic detection tool towards command injection
vulnerabilities in IoT devices, IoTCID, which generates
constrained models based on the logic analysis to front-end
files, and selects high-quality fuzzing samples by various
scheduling strategies based on the Distance Function. IoTCID
has successfully detected seven command injection
vulnerabilities in six real-world IoT devices, two of which are
previously unknown vulnerabilities and assigned IDs by

CNNVD-202109-1174、CNNVD-202011-1320 after being

confirmed by CNNVD.

However, there still remains shortcomings in our tool, such
as the limit of the constrained model generation when facing
with complex variable references in front-end files and the limit
of the throughput of IoTCID for the experiments are currently
performing on the devices. Therefore, our future work is as
follows:

1) Optimization is needed to improve the capability of the

constrained model generation in complex variable references in

the front-end file.

2) Optimization is needed to improve the throughput of

IoTCID by building a simulation framework environment.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions. The research was
supported by the National Natural Science Foundation of China
(Grant No. 61872386, 62001055).

REFERENCES

[1] State of IoT 2022: Number of connected IoT devices growing 18% to 14.4
billion globall. https://iot-analytics.com/number-connected-iot-devices/.

[2] Common IoT Attacks that Compromise Security.
https://socradar.io/common-iot-attacks-that-compromise-security/.

[3] Governments Must Promote Network-Level IoT Security at Scale.
https://www.paloaltonetworks.com/blog/2021/12/network-level-iot-
security/.

[4] Tackle IoT application security threats and vulnerabilities.
https://www.techtarget.com/iotagenda/tip/Tackle-IoT-application-
security-threats-and-vulnerabilities.

[5] Chen J, Diao W, Zhao Q, et al. IoTFuzzer: Discovering Memory
Corruptions in IoT Through App-based Fuzzing[C]//NDSS. 2018.

[6] Redini N, Continella A, Das D, et al. Diane: Identifying fuzzing triggers
in apps to generate under-constrained inputs for iot devices[C]//2021
IEEE Symposium on Security and Privacy (SP). IEEE, 2021: 484-500.

[7] Zhang Y, Huo W, Jian K, et al. SRFuzzer: an automatic fuzzing
framework for physical SOHO router devices to discover multi-type
vulnerabilities[C]//Proceedings of the 35th Annual Computer Security
Applications Conference. 2019: 544-556.

[8] Srivastava P, Peng H, Li J, et al. Firmfuzz: Automated iot firmware
introspection and analysis[C]//Proceedings of the 2nd International ACM
Workshop on Security and Privacy for the Internet-of-Things. 2019: 15-
21.

[9] Zheng Y, Davanian A, Yin H, et al. FIRM-AFL:High-Throughput
Greybox Fuzzing of IoT Firmware via Augmented Process
Emulation[C]//28th USENIX Security Symposium (USENIX Security
19). 2019: 1099-1114.

[10] Stasinopoulos A, Ntantogian C, Xenakis C. Commix: Automating
evaluation and exploitation of command injection vulnerabilities in web
applications[J]. International Journal of Information Security, 2019,
18(1): 49-72.

[11] Redini N, Machiry A, Wang R, et al. Karonte: Detecting insecure multi-
binary interactions in embedded firmware[C]//2020 IEEE Symposium on
Security and Privacy (SP). IEEE, 2020: 1544-1561.

[12] Chen L, Wang Y, Cai Q, et al. Sharing more and checking less:
Leveraging common input keywords to detect bugs in embedded
systems[C]//30th USENIX Security Symposium (USENIX Security 21).
2021: 303-319.

[13] Quynh N A. Capstone: Next-gen disassembly framework[J]. Black Hat
USA, 2014, 5(2): 3-8.

[14] Command Injection. https://owasp.org/www-community/attacks/
Command_Injection.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

14 | P a g e

www.ijacsa.thesai.org

[15] Richardson L. Beautiful soup documentation[J].
Dosegljivo:https://www.crummy. com/software/BeautifulSoup/bs4/doc/.
[Dostopano: 7. 7. 2018], 2007.

[16] Hidayat A. Esprima: Ecmascript parsing infrastructure for multipurpose
analysis[J]. 2017.

[17] libFuzzer. https://llvm.org/docs/LibFuzzer.html.

[18] C. Heffner, “Binwalk - firmware analysis tool designed to assist in the
analysis, extraction, and reverse engineering of firmware images,”
https://github.com/ReFirmLabs/binwalk, 201 Shoshitaishvili Y, Wang R,
Salls C, et al. Sok:(state of) the art of war: Offensive techniques in binary
analysis[C]//2016 IEEE Symposium on Security and Privacy (SP). IEEE,
2016: 138-157.

