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Abstract—In present scenario, the software companies are 

frequently involving software test effort estimation to allocate the 

resources efficiently during the software development process. 

Different machine learning models are developed to estimate the 

total effort that would be required before the software product 

could be delivered. These computational models are used to use 

the past data to estimate the efforts. In the current studies, test 

effort estimation for software is predicted using the Genetic 

algorithm and Neural Network. The attributes are selected using 

the Genetic algorithm and similarity measure between the 

attribute values has been computed using the Cosine Similarity 

measure. The simulation experiments were done using the 

PROMISE and Kaggle repository and implementation was done 

using the MATLAB software. The performance metrics namely, 

precision, recall, and accuracy are computed to evaluate against 

the existing techniques. The accuracy of the proposed model is 

91.3% and results are improved by 8.9% in comparison to existing 

technique and comparison has been made for superiority to 

predict the test effort for software development. 

Keywords—Test effort estimation; software testing; machine 

learning; computational intelligence; neural network 

I. INTRODUCTION 

The success of a software project mainly depends on the 
determination of effort for software development [1]. The cost 
of the software can be computed by determining the efforts for 
the development of software. Software engineering is the study 
of techniques, quantifiable approach, software maintenance, 
and quantifiable approach during the development phase: 
application of engineering for software testing. The software 
testing plays a very significant role and accounts almost 50% 
for the total development in effort estimation. 

Software testing allows the evaluation of attributes or 
system capability in determining the requirements to meet the 
desired results [2]. Software testing is mainly categorized as 
static and dynamic testing. In the former testing phase, testing 
has been done without executing the project and it is related to 
prevention of defects [3]. The documentation estimation is 
cheap and code assessment is provided in addition. Moreover, 
it also includes checklist, estimation of variety of errors, 
operated in the initial phase, and completion of 100% coverage 
of statement within less time. In the later testing phase, dynamic 
testing is very expensive, testing has been done during the 
execution of the project and it is related to fixing the defects [4]. 
The bugs estimation and assessment of bottleneck is provided 
whenever this phase is operated later or in the last phase of the 

project. Moreover, it also includes test cases, fixing the variety 
of errors, and completion of 50% coverage of statement. The 
primary motive of testing the software is to eliminate the bugs 
and improve the software security and other aspects such as 
performance, user satisfaction level, and experience. 
Furthermore, test effort estimation is necessary for the test 
process and plays a crucial role in the operation of software 
development life cycle. Software effort estimation allows the 
organization to provide or allocate the necessary resources 
accordingly. The best testing deal not only improves the overall 
quality but also enhances the customer satisfaction level. In a 
competitive market, there is a need to determine the highly 
reliable software effort estimates. In the software project 
development phase, the accurate estimation allows the success 
of the project [5]. Further, the cost of the software is estimated 
using the software effort required for the development of the 
software. In the literature, there were large number of 
techniques proposed to predict the software effort accurately. 
The estimation of software effort is helpful for the allocation of 
resources in a proper manner. The estimation of software effort 
in terms of month and day per person, duration of the project is 
very difficult to predict the project cost. It is crucial to negotiate 
with the customer by estimating the cost and effort in an 
accurate manner. 

A. Computational Intelligence Techniques for Software Effort 

Estimation 

Inaccurate prediction of software effort and cost usually 
results in huge financial loss and even in the failure of the 
project. However, there are number of techniques developed in 
the past such as expert judgement, machine learning techniques, 
fuzzy technique, and regression analysis [6]–[8] to minimize 
the instances of inaccurate prediction. Most of these techniques 
were based on the algorithmic models such as COCOMO and 
analogy-based estimation of effort techniques. The analogy 
techniques generally include the use of different characteristics 
such as size, interfaces, and effort of new project is estimated 
by determining the details of project of similar type. 
Furthermore, there are different techniques designed for 
different datasets as no single technique is applicable for all the 
datasets. In this process, programming language, development 
technique, programmer experience, tools etc. play a significant 
role in governing the software effort estimate. For instance, soft 
computing models are used to deal with computational 
problems and metaheuristic techniques are used to resolve the 
complex optimization issues [9], [10]. The evolution of neural 
network, fuzzy logic, support vector machine, optimization 
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technique, machine learning, chaotic theory, etc. fall under the 
category of computational intelligence models as shown in Fig. 
1 [11]. 

Computational techniques proved fruitful results in 
predicting the attributes of software quality. In the past year, the 
computational models were developed and applied in software 
engineering to solve the different problems such as determining 
the prediction of change in software, prediction of stakeholder 
satisfaction, and estimation of reliability for component-based 
software projects. The estimation of test effort is generally 
performed by using the templates of Work Breakdown 
Structure (WBS) that fragments the project into sub-tasks. The 
analysis of each task during the testing phase allows the 
determination of defects and underlying errors. The project 
requirements are designed, and testing phase has been analyzed 
thoroughly to avoid any defect. This required a detailed 
overview of the project prototype and analyzing each task by 
coordinating with the stakeholders. This generally takes around 
1.5-2 weeks to perform test effort estimation. However, 
employing the machine learning techniques for effort 
estimation eases the process in a fast manner and it is generally 
computed by determining the overall time to the total inputs 
given for the completion of the project. The proposed technique 
introduces the novel method by integrating the machine 
learning with genetic algorithm for the effort estimation of 
software testing. The contributions of the proposed work are 
summarized as follows: - 

• Machine learning techniques are integrated for 
estimation of software effort. 

• A novel combination of Genetic algorithm with 
Machine Learning is used to predict the software effort. 

• Two datasets are employed to evaluate the 
computational strengths of the designed work. 

The rest of the paper is organized as Section II that 
illustrates the related work, Section III that describes the 
research methodology including the different datasets and 
discusses the technique used for software test effort estimation. 
Section IV illustrates the results and finally concluded in 
Section V. 

 

Fig. 1. Test Effort Estimation Models. 

II. RELATED WORK 

The estimation of effort involved in the software 
development is a crucial activity for monitoring the project 
cost, time, and quality as well as for the software development 
life cycle. As a result, proper estimating was crucial to the 
success of projects and to lowering risks. Software effort 
estimation has drawn a lot of research interest recently and has 
become a problem for the software industry. Many academics 
and industry professionals have suggested statistical and 
machine learning-based approaches for estimating software 
effort over the past 20 years. 

Saljoughinejad and Khatibi, 2018 had taken advantage of 
three metaheuristic techniques to enhance the effort accuracy 
estimations associated with the COCOMO model. The concept 
of metaheuristics mainly focused on the detailed analysis of the 
involved cost derivers involved in the effort estimation. The 
study had reflected that the integration of techniques such as 
PSO, Invasive Weed Optimization and GA had significantly 
improved the accuracy measures associated with estimations. 
However, despite of better performance, the work was unable 
to meet the desired level due to instability issues [12]. 

Nassif et al. 2019 compared the three different fuzzy models 
to estimate the software effort. The authors designed the models 
and conduct the regression analysis to evaluate the performance 
of the proposed system. The evaluation of the proposed 
regression fuzzy logic was measured by measuring the criteria 
such as standardized accuracy, effect size, and relative error. 
The authors used the ISBSG dataset, and it was estimated that 
different projects have similar size with better productivity 
ratio. The mean for effort dataset 1 was 883.5 and effort dataset 
4 was 706 with a standard deviation of about 1194 with a 
skewness of about 5.8. Further, Scott Knott test was performed 
to determine the validity and best performance achieved using 
the Suzzeno fuzzy model [7]. 

Ghatasheh et al. 2019, evolutionary algorithms called the 
Firefly Algorithm was presented for optimising the parameters 
of three COCOMO-based models. The authors used the NASA 
dataset in which 30% data was tested and 60% data was trained 
to acquire the adequate objectives. The proposed model and 
two additional models that was suggested in the literature as 
expansions of the fundamental COCOMO model. The 
evaluation results using the Firefly algorithm show better 
accuracy. The limitation of the study was instability issues, 
prediction model; dataset type was affected by size [13]. 

Chhabra and Singh 2020 had proposed integration of non-
algorithmic modelling for software effort estimation based on 
soft computing approaches. In the process, they had integrated 
genetic algorithm followed by fuzzy logic and utilized the 
COCOMO dataset for the evaluation of the designed work 
architecture. It has been observed that due to improved 
selection owing to the GA fitness function a 25% reduction has 
been observed in Mean Magnitude of Relative Error. This high 
improvement was mainly due to increased stability of GA in 
optimizing the fuzzy model that improved the overall prediction 
accuracy for the effort estimation [14]. 
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Öztürk et al. 2021, a feed forward DNN algorithm 
(FFDNN) was put forth in this article. Finding hyperparameter 
was done using a binary-search-based technique in the 
algorithm. In the experiment using two performance 
parameters, FFDNN performs better than five comparative 
algorithms. The study’s findings indicate that: 1) Using 
conventional techniques like grid and random search 
significantly lengthens tuning time. Instead, sophisticated 
parameter search techniques that was compatible with the 
structure of regression methods should be developed; 2) SEE 
performance was improved when the associated 
hyperparameter search technique was designed in accordance 
with the key principles of selected deep learning approach; and 
3) Deep learning models outperform tree-based regression 
techniques like CART DE8 in terms of CPU time. The 
drawback of the study was that tuning time need to plan along 
with pruning of network [11]. 

Karimi and Gandomani 2021 This research introduces a 
new fuzzy inference technique and the differential evolution 
(DE) algorithm. To estimate software development labor, more 
precisely, this approach is capable of providing a more accurate 
estimate for software projects than earlier efforts using the 
COCOMO model. The suggested approach outperformed 
existing optimization algorithms derived from genetic, 
stochastic, conceptual, and Neuro-fuzzy technique, and could 
increase accuracy using the proposed technique up to 7%. The 
limitation of the study was assessment criteria and convergence 
rate, still a challenge for the accurate software effort estimation 
[15]. 

Zakaria et al. 2021 had integrated PSO as a swarm 
intelligence technique to optimize the existing COCOMO II. 
The optimized set was then fed to different machine learning 
techniques to evaluate their strength for the prediction of effort 
using NASA dataset. The machine learning techniques 
integrated were, Linear Regression (LR), SVM and Random 
Forest (RF). The simulation analysis had shown that SVM had 
outperformed the other machine learning techniques in terms of 
MMRE, accuracy and p-value computed for each of the 
implemented combination [16]. 

López-Martín 2022 proposed software testing effort 
estimation using the machine learning models. The authors 
investigate the effort of software testing using the datasets 
stored in the repository. The project selection was entirely 
based on the rating of data quality, development type, platform, 
programming language, sizing method, and level of resources 
for projects. Further, the authors investigate the performance of 
five machine learning models for software effort estimation 
using the COCOMO model. The prediction accuracy was 
computed for different ML techniques such as Neural Network, 
Decision Tree, Genetic algorithm, SVM and Case based 
reasoning. The limitation of the study was that software effort 
estimation depends upon the certain factors such as quality 
expectations, developer experience, tools and many other that 
are not sufficient to consider for accurate prediction of software 
effort estimation [6]. 

III. RESEARCH METHODOLOGY 

The proposed methodology is divided into two parts in 
which first part Implementation using the Genetic algorithm has 

been done and Machine Learning model such as Neural 
Network toolbox in MATLAB was used for the classification 
of test effort estimation. The dataset used in this study for 
implementation are illustrated in the later sections. 

A. Dataset 

There are several free datasets that were used in the 
literature such as Kaggle, COCOMO NASA-I, COCOMO 
NASA-II, Kaggle, and PROMISE [17], [18]. Out of these, 
Kaggle and Promise datasets have been used in this study. 
These are further divided into five datasets namely KC1, PC3, 
PC4, MW1, and CM1 that support these datasets [19]. The 
PROMISE repository was used to extract the attributes. The 
dataset is an open source data set and is freely available online 
[20]. The dataset contains the attributes that are extracted after 
the operations performed through Object Oriented 
Programming Architecture (OOPA). As for example, RELY is 
an attribute that illustrates the reliability of a software and in the 
similar fashion, RES represents the reusability of the software 
component. Based on these attribute values, the overall 
computation effort is also provided. The dataset does not have 
independent attribute as they have been computed via OOPA. 
The data retrieval was estimated using the KC1 classes and 
further defect was analyzed. This study incorporates the Kaggle 
and PROMISE database datasets that includes different 
attributes such as KC1, CM1, MW1, PC3, and PC4. The 
datasets was stored and further assisted for implementation in 
the MATLAB software. Although, Kaggle and Promise data 
repository includes the different data, but extraction of revenant 
data is particularly important before the implementation. 
Therefore, Cosine similarity technique was applied to extract 
the data as per requirement for test effort estimation during the 
software development life cycle. 

B. Genetic Algorithm for the Selection of Relevant Attributes 

In this study, the relevant attributes have been selected using 
the Genetic Algorithm which is a heuristic technique employed 
to avoid the challenges of modelling and optimization 
techniques. The main features of the GA are to utilize the 
features of crossover operator and execute the operations to 
obtain the candidate solutions. The operation steps are 
graphically illustrated using Fig. 2. The Genetic Algorithm has 
been applied by considering the following steps: - 

1) Start: The random population is generated considering 

the n-chromosomes for best solution of the problem. The 

random population is generated which is of n chromosomes. 

2) Fitness: The fitness function f (a) is evaluated that 

corresponds to the chromosome (a) in the generated population. 

3) New Population: The new population is initialized by 

repeating the following steps until the optimal solution is 

attained. 

• Selection: The selection has been done by considering 
the fitness function of two chromosomes and then higher 
fitness leads to the selection of chromosomes with more 
possibility. 

• Crossover: When the probability of crossover crosses 
then new offspring attained. If there is no crossover, 
then offspring is a duplicate of parent. 
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• Mutation: The mutation probability is attained when the 
new offspring mutates at each position in the population. 

• Accepting: The new offspring has been placed with 
respect to new population. 

4) Replace: The generated population is utilized 

considering the aim to execute the new solution. 

5) Test: The best solution has been returned after the 

current population attained. 

6) Loop: Return to second step. 

 

Fig. 2. Operation of GA. 

After the operation of GA, further cosine similarity 
technique has been applied for the selection of similar 
attributes. 

C. Cosine Similarity 

Cosine similarity is a technique in which similarity of two 
documents computed to determine the correlation between the 
vectors. The information is represented in the vector form that 
makes the process easier to eliminate the irrelevant data. 
Furthermore, the angle between the vectors is determined as the 
cosine angles between the attributes. Cosine similarity is one of 
the most important similarity measures used for different 
applications such as clustering, effort estimation, etc. and also 
used to retrieve essential information. The cosine similarity 

between two attribute vectors 𝑉𝑚⃗⃗ ⃗⃗   and 𝑉𝑛⃗⃗  ⃗ is given by; 

𝐶𝑜𝑠𝑆𝑖𝑚(𝑉𝑚⃗⃗ ⃗⃗   and 𝑉𝑛⃗⃗  ⃗) =
𝑉𝑚⃗⃗⃗⃗⃗⃗  .𝑉𝑛⃗⃗ ⃗⃗  

|𝑉𝑚⃗⃗⃗⃗⃗⃗  |×|𝑉𝑛⃗⃗ ⃗⃗  |
            (1) 

Here, 𝑉𝑚⃗⃗ ⃗⃗   and 𝑉𝑛⃗⃗  ⃗ are the n number of dimensional vectors in 
each term set of  𝑉 = {𝑉1, 𝑉2, 𝑉3 ……………………… . 𝑉𝑛}. 
Every dimension in the term set includes weight, which is 
positive, and therefore, the cosine similarity is positive and can 
be bounded between {0,1}. 

A significant feature of cosine similarity is that it is the 
independent of its attribute for different set efforts in days or 
months. For example, integrating two effort values of different 
days require to obtain a novel attribute value, the cosine 
similarity between 𝐴𝑡𝑡′ 𝑎𝑛𝑑 𝐴𝑡𝑡 is 1, which indicates that the 
test effort attributes can be considered identical and can be 
stored for further processing. 

ALGORITHM 2: Cosine Similarity for effort estimation  

Input: 𝑑𝑎𝑡𝑎𝑓𝑖𝑙𝑒𝑠 

Output: 𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑑𝑎𝑡𝑎𝑠𝑒𝑡 

1. 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑑𝑎𝑡𝑎𝑠𝑒𝑡

= 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑑𝑎𝑡𝑎𝑠𝑒𝑡(𝑑𝑎𝑡𝑎𝑟𝑒𝑐𝑜𝑟𝑑𝑠) 

2.//𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

= [ ];/
/𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑢𝑠𝑖𝑛𝑔 𝑒𝑚𝑝𝑡𝑦 𝑎𝑟𝑟𝑎𝑦 

3.// 𝑆𝑖𝑚𝑐𝑜𝑢𝑛𝑡 = 0;//𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝐶𝑜𝑢𝑛𝑡 

4. 𝐹𝑜𝑟𝑠 = 0 𝑡𝑜𝑑𝑎𝑡𝑎𝑟𝑒𝑐𝑜𝑟𝑑𝑠. 𝑐𝑜𝑢𝑛𝑡 /
/ 𝑇𝑜𝑡𝑎𝑙𝑛𝑜. 𝑜𝑓𝑑𝑎𝑡𝑎𝑟𝑒𝑐𝑜𝑟𝑑𝑠 

5. 𝑃𝑟𝑒𝑠𝑒𝑛𝑡𝑑𝑎𝑡𝑎𝑠𝑒𝑡 = 𝑑𝑎𝑡𝑎𝑟𝑒𝑐𝑜𝑟𝑑(𝑠); 

6. 𝐹𝑜𝑟𝑧 = 𝐼 + 1 𝑡𝑜𝑡𝑎𝑙𝑑𝑎𝑡𝑎𝑟𝑒𝑐𝑜𝑟𝑑𝑠. 𝑐𝑜𝑢𝑛𝑡// 𝑁𝑒𝑥𝑡𝑠𝑒𝑟𝑖𝑒𝑠 

7. 𝑃 =  |𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑑𝑎𝑡𝑎𝑠𝑒𝑡(𝑃𝑟𝑒𝑠𝑒𝑛𝑡𝑐𝑎𝑡𝑎𝑙𝑜𝑔𝑢𝑒)

− cos (𝑑𝑎𝑡𝑎𝑟𝑒𝑐𝑜𝑟𝑑𝑠(𝑧))|; 

8. 𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑑𝑎𝑡𝑎𝑠𝑒𝑡[𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑐𝑜𝑢𝑛𝑡, 0] =
𝑝𝑟𝑒𝑠𝑒𝑛𝑡_𝑐𝑎𝑡𝑎𝑙𝑜𝑔𝑢𝑒;  

9. 𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑑𝑎𝑡𝑎𝑠𝑒𝑡[𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑐𝑜𝑢𝑛𝑡, 1] =
𝑑𝑎𝑡𝑎𝑟𝑒𝑐𝑜𝑟𝑑𝑠(𝑧); 10. 𝐶𝑜𝑠𝑐𝑎𝑡𝑎𝑙𝑜𝑔𝑢𝑒𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

[𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑐𝑜𝑢𝑛𝑡, 2] =

𝑃; The similarity value 

11. 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑐𝑜𝑢𝑛𝑡 = 𝑆𝑖𝑚𝑐𝑜𝑢𝑛𝑡 + 1; Count is incremented 

12. 𝐸𝑛𝑑𝑓𝑜𝑟; 

13. 𝐸𝑛𝑑𝑓𝑜𝑟; 

14. 𝐸𝑛𝑑𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛; 

After the extraction of data for software test effort 
estimation, the data is processed to select the attribute values 
using the Genetic Algorithm and classification was done later 
using the Neural Network. 

D. Effort Estimation using the Computational Intelligence 

Models 

After the extraction of similar attributes, Neural Network 
has been applied that contain processing elements that are 
connected using some weights. It attempts to depict the 
biological nervous system as per both architectures including 
information processing logics. This network needs to train first 
by applying an appropriate learning algorithm for the prediction 
of weights which are interconnected. After training of weight 
test signals are classified. The neural network’s class used 
basically for task of classification is called the multilayer 
perceptron network. The ordinal measures of Neural Networks 
are as follows (Table I). 
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TABLE I. ORDINAL MEASURES OF NEURAL NETWORKS 

Propagation Architecture  Software test effort estimation 

Neuron Count  5-25 

Nature of propagation  Progressive  

Propagation behaviour model Levenberg  

Root node validation Mean Squared Error (MSE) 

Validation parameters  

a) Total number of epochs  

b) Gradient 

c) Count of fails in the 

validation  

Cross validation  Linear Regression  

Regression equation  

𝑧 = 𝑎𝑥 + 𝑏 (eq hh) 

Where x is a multi-objective fitness 

function defined by sigmoid function 

of neural networks  

The neural network propagation is designed using Neural 
Network toolbox of MATLAB and it is a propagation-based 
model and hence the number of hidden layers has been varied 
to check the performance of the network. 

ALGORITHM 6: Test effort estimation using the Neural 

Network (NN) 

Input: Optimized feature (T)  

Output: Test Effort Estimation Results 

1) Initialization of NN parameters  

𝐸 → Simulation or Epochs for NN 

𝑁 → Neurons Count 

Performance Measure→ Accuracy, Precision, Recall, and F-

measure 

Techniques →Levenberg Marquardt 

Data Division→ Random 

2) For I = 1 → T 

3) If (T matcheswith 1st feature category)  

4)    Group (1) = Features of training data according to the 1st 

category  

5) Else if (T matcheswith 2ndfeature category) 

6)    Group (2) = Features of training data according to the 2nd 

category 

7) Else 

8)    Group (3) = Extra properties of training data 

9) End-if 

10) End-for  

11) Initialize the NN using Training data and Group 

12) Net = patternet (𝑇, 𝐺𝑟𝑜𝑢𝑝, 𝑁) 

13) Set the training parameters and train the system 

14) Net = Train (Net, Training data, Group) 

Testing Phase: 

15) Current Data = Feature of current efforts in dataset 

16) Output = simulate (Net, Current Data) 

17) If Output is valid) 

18) 𝑇𝑒𝑠𝑡 𝐸𝑓𝑓𝑜𝑟𝑡 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 →  𝐴𝑐𝑐𝑢𝑟𝑎𝑡𝑒 

19) Else 

20)  𝑇𝑒𝑠𝑡 𝐸𝑓𝑓𝑜𝑟𝑡 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 →  𝐼𝑛𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒 

21) End-if 

22) Return: Prediction as an output 

Since the NN architecture used multiple hidden layers, 
therefore the input data is filtered many times and hence 
chances of providing better results are increased. In this 
research, the performance of NN is examined and cross-
validation outcomes are evaluated. 

IV. RESULTS AND DISCUSSION 

The performance is evaluated by dividing the total dataset 
using the separation mechanism of training dataset to testing 
dataset ratio. 

A. Statistical Analysis 

The results have been computed using the 70:30, 80:20, and 
90:10 ratio analysis. The results obtained using the 
implemented methodology in which four different performance 
metrics has been computed as illustrated below: - 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒

𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒

𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒
 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

=
𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒  + 𝑇𝑟𝑢𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

The evaluation has been done to determine the superiority 
of the proposed approach and labelled dataset has been used 
which is pre-defined and specific to determine the required 
outcomes. 

Table II shows the Recall, Precision, F-measure, and 
Accuracy computed using the 70:30 dataset distribution ratio. 
It is generalized that with increase in the number of projects the 
recall of the proposed model also gets improved. The proposed 
model shows a recall of about 0.90% for 80 projects. It is seen 
that Precision and Recall show 0.9% and 0.91% respectively 
for 20 projects and 0.90% and 90% for F-measure and 
Accuracy respectively using the GA and NN. The proposed 
results for 70:30 analyses are robust and improvised using the 
Genetic Algorithm in conjunction with NN. 

Table III shows the analysis of performance metric 
computed using the 80:20 ratios. It is generalized that with 
increase in the number of projects the performance of the 
proposed model also gets enhanced. The proposed model shows 
a recall of about 0.93 for 300 projects and F-measure of about 
0.92. It is seen that average Precision and Recall show 0.9% and 
0.91% respectively and 0.91% and 91% for F-measure and 
Accuracy respectively using the GA and NN. The proposed 
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results for 80:20 analyses are robust and improvised using the 
Genetic Algorithm in conjunction with NN. 

TABLE II. PERFORMANCE METRIC OF THE PROPOSED TECHNIQUE USING 

THE 70:30 RATIO ANALYSIS 

Total 

Number  

of Projects 

Recall  Precision  F-measure  
Accurac

y  

10 0.852212 0.896543345 
0.87381576

8 
88.73637 

20 0.8604666 0.897088945 
0.87839622

1 
88.9276 

30 0.8687212 0.897634545 
0.88294123

2 
89.11883 

40 0.8769758 0.898180145 
0.88745132

9 
89.31007 

50 0.8852304 0.898725745 
0.89192702

7 
89.5013 

60 0.893485 0.899271345 
0.89636883

4 
89.69253 

70 0.9017396 0.899816945 
0.90077724

7 
89.88376 

80 0.9099942 0.900362545 
0.90515275

1 
90.075 

90 0.9182488 0.900908145 
0.90949582

5 
90.26623 

100 0.9195034 0.901453745 
0.91038911

7 
90.45746 

200 0.920758 0.907999345 
0.91433416

6 
90.64869 

300 0.9220126 0.914544945 0.91826359 90.83992 

400 0.9232672 0.921090545 
0.92217758

8 
91.03116 

500 0.9245218 0.927636145 
0.92607635

4 
91.22239 

700 0.9257764 0.934181745 0.92996008 91.41362 

1000 0.927031 0.940727345 
0.93382895

5 
91.60485 

TABLE III.  PERFORMANCE METRIC OF THE PROPOSED TECHNIQUE USING 

THE 80:20 RATIO ANALYSIS 

Total  

Number of 

Projects 

Recall 

Proposed 

Precision 

Proposed 

F-

measure  
Accuracy  

10 0.862212 0.899543 0.880482 88.93637 

20 0.870467 0.900089 0.88503 89.1276 

30 0.878721 0.900635 0.889543 89.31883 

40 0.886976 0.90118 0.894022 89.51007 

50 0.89523 0.901726 0.898466 89.7013 

60 0.903485 0.902271 0.902878 89.89253 

70 0.91174 0.902817 0.907256 90.08376 

80 0.919994 0.903363 0.911603 90.275 

90 0.928249 0.903908 0.915917 90.46623 

100 0.929503 0.904454 0.916807 90.65746 

200 0.930758 0.910999 0.920773 90.84869 

300 0.932013 0.917545 0.924722 91.03992 

400 0.933267 0.924091 0.928656 91.23116 

500 0.934522 0.930636 0.932575 91.42239 

700 0.935776 0.937182 0.936479 91.61362 

1000 0.937031 0.943727 0.940367 91.80485 

TABLE IV. PERFORMANCE METRIC OF THE PROPOSED TECHNIQUE USING 

THE 90:10 RATIO ANALYSIS 

Number of 

Projects 

Recall 

Proposed 

Precision 

Proposed 
F-measure  Accuracy  

10 0.875412 0.909543 0.892151 89.93637 

20 0.883667 0.910089 0.896683 90.1276 

30 0.891921 0.910635 0.901181 90.31883 

40 0.900176 0.91118 0.905645 90.51007 

50 0.90843 0.911726 0.910075 90.7013 

60 0.916685 0.912271 0.914473 90.89253 

70 0.92494 0.912817 0.918838 91.08376 

80 0.933194 0.913363 0.923172 91.275 

90 0.941449 0.913908 0.927474 91.46623 

100 0.942703 0.914454 0.928364 91.65746 

200 0.943958 0.920999 0.932337 91.84869 

300 0.945213 0.927545 0.936295 92.03992 

400 0.946467 0.934091 0.940238 92.23116 

500 0.947722 0.940636 0.944166 92.42239 

700 0.948976 0.947182 0.948078 92.61362 

1000 0.950231 0.953727 0.951976 92.80485 

Table IV shows the analysis of performance metric 
computed using the 90:10 ratio. It is generalized that with 
increase in the number of projects the performance of the 
proposed model also gets improved. The proposed model 
shows a recall of about 0.94 for 300 projects precision is 0.92 
with F-measure of about 0.94. It is seen that average Precision 
and Recall show 0.92% and 0.91% respectively and 0.91% and 
91.3% for F-measure and Accuracy respectively using the GA 
and NN. The proposed results for 90:10 analysis are robust and 
improvised using the Genetic Algorithm in conjunction with 
NN. 

Table V shows the comparison of recall analysis with the 
existing techniques. It is seen that recall for Attri et al. 2019 and 
without GA show 0.81 and 0.77 respectively for 20 projects. 
The proposed model exhibited a recall of 0.94 when analysed 
for 200 projects. Similarly, recall for 1000 projects increases to 
0.95 and using Attri et al. work and GA is 0.93 and 0.82 
respectively. The overall recall using the proposed approach is 
0.92 and 0.86 using the Attri et al. 2019. Thus, the proposed 
outperformed the existing techniques due to the use of Genetic 
algorithm and Neural Network. 
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TABLE V. COMPARATIVE ANALYSIS OF RECALL AGAINST ATTRI ET AL. 
WORK 

Number of 

Projects 

Recall 

Proposed 

Recall 

Without GA 

Recall Attri et al. 

2019 

10 0.875412 0.77543345 0.81661566 

20 0.8836666 0.77597905 0.81902469 

30 0.8919212 0.77652465 0.82130693 

40 0.9001758 0.78707025 0.82374494 

50 0.9084304 0.78761585 0.82596965 

60 0.916685 0.78816145 0.82841232 

70 0.9249396 0.78870705 0.83274246 

80 0.9331942 0.78925265 0.83457478 

90 0.9414488 0.78979825 0.83755162 

100 0.9427034 0.79034385 0.86264824 

200 0.943958 0.79688945 0.88751949 

300 0.9452126 0.80343505 0.90388464 

400 0.9464672 0.80998065 0.91401356 

500 0.9477218 0.81652625 0.92611913 

700 0.9489764 0.82307185 0.92945552 

1000 0.950231 0.82961745 0.93788335 

TABLE VI. COMPARATIVE ANALYSIS OF PRECISION AGAINST ATTRI ET 

AL. WORK 

Number of 

Projects 

Precision 

Proposed 

Precision 

without GA 

Precision Attri et 

al. 2019 

10 0.909543 0.824474 0.8453636 

20 0.910089 0.8320093 0.8518202 

30 0.910635 0.8395446 0.8582768 

40 0.91118 0.8470799 0.8647334 

50 0.911726 0.8546152 0.87119 

60 0.912271 0.8621505 0.8776466 

70 0.912817 0.8696858 0.8841032 

80 0.913363 0.8772211 0.8905598 

90 0.913908 0.8847564 0.8970164 

100 0.914454 0.8922917 0.897473 

200 0.920999 0.892827 0.9039296 

300 0.927545 0.9003623 0.9103862 

400 0.934091 0.9078976 0.9168428 

500 0.940636 0.9154329 0.9232994 

700 0.947182 0.9229682 0.929756 

1000 0.953727 0.9305035 0.9362126 

Table VI shows the comparison of precision analysis with 
the existing techniques. The precision for Attri et al. 2019 and 
without GA 0.86 and 0.84 for 40 projects. Similarly, precision 
for 1000 projects the recall value increases to 0.95 for proposed 
work and Atri et al. work and GA is 0.93. The overall precision 
using the proposed estimation model is 0.92 and using Attri et 
al. is 0.89. Thus, an improved performance is exhibited by the 
proposed work using Genetic algorithm and Neural Network. 

TABLE VII. COMPARATIVE ANALYSIS OF F-MEASURE AGAINST ATTRI ET 

AL. WORK 

Number of 

Projects 

F-measure 

Proposed 

F-measure 

without GA 

F-measure Attri 

et al. 2019 

10 0.892151182 0.799202127 0.830740998 

20 0.896683196 0.80301799 0.835100588 

30 0.901180958 0.806805868 0.839384987 

40 0.905644474 0.815973231 0.843741665 

50 0.910075216 0.819748813 0.847977383 

60 0.914472674 0.823497386 0.852319047 

70 0.918838317 0.827219343 0.857654582 

80 0.923172111 0.830915072 0.861658862 

90 0.927473993 0.834584952 0.866264719 

100 0.928363848 0.838229357 0.879716109 

200 0.932337179 0.842134687 0.895649385 

300 0.936295462 0.84914163 0.907123771 

400 0.940238375 0.856148552 0.915425994 

500 0.944165606 0.863155454 0.924707115 

700 0.948078351 0.870162335 0.929605736 

1000 0.95197579 0.877169198 0.93704723 

Table VII shows the comparison of F-measure analysis with 
the existing techniques. The analysis results show that there is 
an increase in F-measure with increase in project count. It is 
seen that F-measure for Attri et al. 2019 and without GA is 0.87 
and 0.83 for 100 projects. Further, it is observed that the F-
measure for 1000 projects shows a rise and increases to 0.95 
and Attri et al. and GA is 0.87. The overall average F-measure 
using the proposed approach is 0.92 and 0.88 using the Attri et 
al. 2019 which shows that the proposed work outperformed the 
Attri et al work. 

 

Fig. 3. Improvement Analysis of the Proposed Work over Attri et al. Work. 

The observed performance in terms of precision, recall and 
f-measure values of both proposed and the existing work of 
Attri et al. are further analyzed to identify the extent of 
improvement exhibited by the proposed work. The individual 
% improvement for each of the parameters is individually 
computed and plotted in Fig. 3 for graphical illustration. It is 
concluded that despite of the variable % improvement observed 
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in each of the case, the overall analysis depicts the 
outperformance of the proposed work. 

 

Fig. 4. Comparative Analysis for Accuracy. 

Fig. 4 shows the comparison analysis for Accuracy analysis 
using the proposed and existing techniques. The analysis results 
show that there is an increase in Accuracy with increase in 
project count. It is seen that average Accuracy for Attri et al. 
2019 and without GA is 84% and 81%. However, the proposed 
model shows Accuracy of about 91.3. The proposed technique 
has been improved by 8.9% in comparison to without GA and 
Attri et al. 2019. Thus, the proposed outperforms the existing 
work due to the integration of Genetic algorithm and Neural 
Network. 

V. CONCLUSION 

In the present work, machine learning based algorithms 
such as Neural Network, Genetic Algorithm and their attributes 
selection have been analyzed for the prediction of software 
effort. Software testing allows the evaluation of attributes or 
system capability in determining the requirements to meet the 
desired results. The primary motive of testing the software is to 
eliminate the bugs and improve the software security and other 
aspects such as performance, user satisfaction level, and 
experience. The study is based on the development of 
computational intelligence models to deal with the different 
complex problems. The implementation using the PROMISE 
and Kaggle dataset has been done and machine learning models 
such as Genetic algorithm and Neural Network used for 
implementation. The results of the proposed technique are 
promising. The accuracy of the proposed model is 91.3% and 
results are improved by 8.9% in comparison to existing 
technique. In future, an attempt has been made to improve the 
accuracy using the other computational techniques such as 
Fuzzy logic. 
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