
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

410 | P a g e

www.ijacsa.thesai.org

ACT on Monte Carlo FogRA for Time-Critical

Applications of IoT

A. S. Gowri, P. Shanthi Bala, Zion Ramdinthara, T. Siva Kumar

Department of Computer Science, School of Engineering and Technology

Pondicherry University, Puducherry, India

Abstract—The need for instantaneous processing for Internet

of Things (IoT) has led to the notion of fog computing where

computation is performed at the proximity of the data source.

Though fog computing reduces the latency and bandwidth

bottlenecks, the scarcity of fog nodes hampers its efficiency. Also,

due to the heterogeneity and stochastic behavior of IoT, traditional

resource allocation technique does not suffice the time-

sensitiveness of the applications. Therefore, adopting Artificial

Intelligence (AI) based Reinforcement Learning approach that

has the ability to self-learn and adapt to the dynamic environment

is sought. The purpose of the work is to propose an Auto Centric

Threshold (ACT) enabled Monte Carlo FogRA system that

maximizes the utilization of Fog’s limited resources with minimum

termination time for time-critical IoT requests. FogRA is devised

as a Reinforcement Learning (RL) problem, that obtains optimal

solutions through continuous interaction with the uncertain

environment. Experimental results show that the optimal value

achieved by the proposed system is increased by 41% more than

the baseline adaptive RA model. The efficiency of FogRA is

evaluated under different performance metrics.

Keywords—Cloud; edge; fog; Internet of Things (IoT);

Reinforcement Learning (RL)

I. INTRODUCTION

The evolution of smart devices has led to the proliferation
of the Internet of Things (IoT), thus making the world, a better-
connected place for wireless communication and high-speed
applications. The “Little Data, Big Stream” notion of IoT is
mostly about time-sensitive applications [1]. The number of
connected devices per capita is anticipated to be 01 trillion
devices by 2025. This massive usage of IoT will generate
mobile data services of 150 zettabytes by 2025 which
corresponds to 5-7 times of IP traffic today [2]. The immense
amount of mobile data can be processed instantaneously, only
if the computing facility is available near the data source.

Ultra-low latency, energy efficiency, distributed
processing, and storage are a few of the expectations of IoT
applications. So far, the cloud was tailored to tackle these
demands. But, in reality, the remotely located cloud causes
delay and hinders the QoS requirements of the IoT requests [3].
By the time the data from IoT is transmitted to the centralized
cloud, the inevitability to act on it might be gone, which cost
lives. Disastrous management, Industrial IoT, and real-time
aeronautical cum nuclear reactions are some of the time-critical
IoT applications where the response delay of even nanoseconds
makes a huge difference [4]. Hence, a fog computing paradigm
that addresses time-critical applications in its proximity is
recommended.

Fog computing is a distributed paradigm where the
processing nodes are dispersed geographically near the data
source. The proximal distribution of the processing elements
promises ultra-low latency for time-critical applications [5].
IoT requires a Resource Allocation (RA) mechanism that
prioritizes time-critical tasks over others. Also, a sufficient
amount of fog resources may not be available, as and when
required. Hence, allocation of compute nodes to the incoming
IoT requests, in a resource-constrained fog environment is
challenging [6]. The RA mechanism has to adopt an optimal
strategy to make a sequence of smart decisions [7]. Although
evolutionary algorithms, dynamic programming, and policy
gradient are commonly used to derive optimal policy, these
techniques require prior knowledge of the model [8]. But, the
proposed work FogRA is a sequential decision-making problem
in a model-free environment.

The environment involves IoT devices whose behaviour is
stochastic and hence the dynamics of the model are not known.
In such a case, Reinforcement Learning (RL) is sought to solve
the FogRA problem for two reasons. First, RL is a machine
learning, trial and error methodology that can self-learn and
adapt through continuous interaction in an uncertain
environment. Second, by its origin in Markov Decision Process
(MDP), RL is a sequential decision theory that generates high-
quality decisions in the long term [9].

Monte Carlo (MC), MC-Exploring Starts (MC-ES), and
On-Policy Monte Carlo Control (OMC) are variants of RL
algorithms that compute optimal policy. They are the
straightforward methods that do not bootstrap and eliminate the
curse of dimensionality problem [8]. They compute the optimal
value by averaging the samples obtained through various
iterations and derive the optimal policy from it.

Studies reveal that the existing RA works focused more on
the development of frameworks that reduced latency and
increased the quality of service [10]. The works carried out
using feed-forward NN, MINLP, and other optimization
techniques also obtained better outcomes [11]. But these
techniques were heuristic-based and time-consuming. Q-
learning algorithm of RL was mostly used to devise RA
strategy. The combination of RL algorithms with queuing
theory and neural networks too proved more efficient but
involved cost overhead.

Moreover, the earlier works addressed intra-dependent and
parallel tasks, while focus on time-critical applications was
hardly found. Further, the earlier RL-based RA works were
mostly proactive, in the sense that they depend on history for

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

411 | P a g e

www.ijacsa.thesai.org

prediction and hence mostly model-based [12]. But, the
proposed work allocates the fog resources on demand. The
reactive technique does not require any dynamics of the model.
The availability of the scarce fog resources, and the
heterogenous latency requirement of IoT describes the
uncertain behavior of the environment. Allocation of fog’s
limited resources and prioritizing the time-critical requests are
highly challenging that need attention. The proposed work is
about designing an efficient FogRA system that handles the
challenges of model-free stochastic environment at ease.

 The proposed work employs ACT enabled MC approach to
construct the FogRA system for time-critical IoT applications.
The FogRA system involves a smart agent that finds the optimal
policy to allocate the fog’s limited resources to the time-critical
requests. The significance of the work is perceived by its usage
in the modern network environment and its potential for the fog
computing paradigm. The main contribution of the intended
work is summarized as follows:

• A Reinforcement Learning (RL) based FogRA system is
developed in which the Fog nodes are used as
computing resources, to process incoming requests.

• In the pursuit of maximizing fog utilization, the Fog
Controller Agent (FCA) undergoes learning to allocate
its resources to time-critical application requests.

• The ACT-enabled FogRA system is proposed using
Monte Carlo (MC), MC-Exploring Starts (MC-ES), and
On-Policy Monte Carlo Control (OMC).

• The proposed system is compared with an existing
Adaptive RA system to evaluate its performance.

• Result demonstrates that the optimal long-term reward
achieved by ACT-enabled FogRA is 41% more than the
existing RA model.

The rest of the article is structured as follows: Section II
discusses the background knowledge that substantiates FogRA
as an RL problem. An overview of the RL approach and the
formulation of FogRA as an MDP are briefly discussed in this
section. The system model of the proposed work is elaborated
in Section III. The experimental results are evaluated and
analyzed in Section IV, and Section V concludes the paper with
prospects for the future.

II. REINFORCEMENT LEARNING BACKGROUND

A. Resource Allocation as RL Problem

As mobile apps go more and more 24/7, online solutions
that deliver instantaneous decisions are highly sought. The
time-critical IoT requests demand response with almost
negligible delay [13]. To achieve delay-less response, fog nodes
that reside near the edge devices are used as computing
elements. But the distributed nature of fog creates a scarcity of
its resources. This makes the allocation of fog resources
tedious, hence is considered an essential problem to be dealt
with [14]. Due to the limited resources, not all the requests are
served in the fog layer. It has to be constantly monitored
whether the incoming request is time-critical or not. Prioritizing
the time-critical applications to be served in the fog delivers
prompt service with negligible and tolerable delay [15].

The FogRA comprises a Fog Controller Agent (FCA) that
allocates the available fog resources to the most time-critical
tasks. Through continuous interaction with the environment,
the agent derives the optimal policy through which it decides
whether to allocate the fog resource or not. The problem that
involves learning and decision-making as a continuous process
is defined as the RL problem [16]. As the allocation of fog
resources to IoT requests need constant learning, and decision
making, FogRA is considered an RL problem.

RL problem consists of the agent and the environment as
the two main components as shown in Fig. 1. An agent is a
learner and decision-maker. The environment is the entity with
which the agent interacts [17]. Markov Decision Process
(MDP) is used to articulate the interaction between the agent
and the environment in terms of states, actions, and rewards,
MDP is the mathematical framework to define how the
environment behaves in response to the agent’s action. The
Markov process is a memoryless random process [8]. It states
that the future is independent of the past given its present. Any
environment in which the current state is sufficient to determine
the next state, irrespective of its previous states (history) is said
to possess the Markov property. Thus, MDP eliminates the need
to preserve the value of past states thereby reducing the memory
cost considerably.

Fig. 1. Agent-Environment Interaction in RL [8].

The agent observes the environment's state (𝑠𝑡 ∈ S) and

performs one of the actions (𝑎𝑡 ∈A(s)) at each time step (t) of

the interaction. The agent's activity results in a reward

(𝑟𝑡+1 ∈R) and a transition to the following state (𝑠𝑡+1). Hence

a sequence of trajectory

𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1, 𝑟2, 𝑠2, 𝑎2𝑟3 … … … .. is observed [18].

The crucial constraint on the agent is that it operates in an
uncertain environment.

In most problems, the agent is not guided about the action
that it has to carry out, instead, by trial and error, it learns the
right action. The agent likely acts differently in a state for the
first time, rather than after visiting the same state many times
[19]. With experience, the agent learns the consequence of its
action on that state. The consequence of an action influences
not only the immediate reward but the next state and its
subsequent rewards.

RL is a computational approach to designing a goal-directed
learning agent that interacts with an uncertain environment
[20]. In the Long-term, the agent seeks to maximize the
cumulative payoff. At every time step (t), the agent receives a
reward in the form of a scalar value which is either positive or
negative. A positive value specifies how good the current action
is, whereas a negative value indicates the penalty for the wrong
action. The sum of the rewards starting from time ‘t’ until the
termination time ‘T’ is defined as returns (𝐺𝑡). Thus, returns is

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

412 | P a g e

www.ijacsa.thesai.org

the metric that the agent aims to maximize in the long run. The
definition of returns varies depending upon whether the task
taken into consideration is episodic or continuous.

In Episodic tasks, the interaction between the agent and the
environment breaks once the terminal state is reached [8]. The
next episode starts in a state independent of the previous one
ended. Tasks in episodes of this kind are called episodic tasks.
Returns (𝐺𝑡) for the episodic tasks starting from time ‘t’ is
expressed as the sum of undiscounted rewards as shown in
equation (1).

𝐺𝑡 = 𝑟𝑡+1 + 𝑟𝑡+2 + 𝑟𝑡+2 + 𝑟𝑡+3 + ⋯ … … … . 𝑟𝑇 (1)

where 𝑟𝑡+1 is the reward obtained at time-step (t+1) as an
effect of the action (𝑎𝑡) taken at time-step (t) on the state (𝑠𝑡).
The Time of termination (T), varies from episode to episode.
The FogRA problem considered in the work is episodic. Each
episode ends when all the fog resources are allocated to the
incoming requests. Then the system is reset with the maximum
number of fog nodes for the next episode.

On the other hand, for the tasks with continuous states, the
interaction between the agent and the environment does not
break, but rather continues without any terminal state [8]. Such
tasks that do not have an identifiable terminal state are called
continuous tasks. The rewards obtained at each time-step of
continuous task accumulate to a big value that becomes
uncountable. Also, the immediate reward got is more valuable
than the one obtained in the future [21]. Hence, the value of the
future reward is discounted by a factor of gamma (𝛾).

The value of gamma ranges from 0 to 1. When 𝛾=0, the
agent is myopic and concerned about maximizing the
immediate reward, whereas 𝛾=1 specifies that the agent gives
more importance to the future reward. The literature study
shows that values between 0.2 and 0.8 were found to be optimal
in many scenarios [15]. Thus, returns (𝐺𝑡) for the continuous
tasks starting from time ‘t’ is expressed as the sum of
discounted rewards as shown in equation (2).

𝐺𝑡 = 𝑟𝑡+1 + 𝛾1𝑟𝑡+2 + 𝛾2𝑟𝑡+2 + 𝛾3𝑟𝑡+3 + (2)

where G is the reward gained at time-step (t+1) as feedback
of the action (𝑎𝑡) taken at time-step (t) on the state (𝑠𝑡). The
FogRA problem in the work is evaluated as an episodic task,
with an initial and terminal state.

The concepts of Value function and Policy play a major role
in implementing RL methodology [8]. The value function is the
sum of all rewards that are expected in the future from every
subsequent state. While the reward signal defines what is
beneficial in the immediate sense, the value function signifies
what is beneficial in the long run. In short, the reward is the
immediate feedback for the current action, whereas the value
function is the long-term estimation of rewards [18]. The goal
of the agent is to maximize the long-term rewards in the form
of the value function. Also, there is no value function without
reward. As the iteration proceeds, the actions made by the agent
are based on the value function.

The state value function 𝑉(𝑠) given by the equation (3), is
the expectation of the returns (𝐺𝑡) at the time ‘t’ from the state
𝑠. It is the sum of immediate reward (𝑟𝑡+1) and the discounted

value of the next state 𝑉(𝑠𝑡+1) estimated iteratively, following
the sequence of observation, starting from the state.

𝑉(𝑠) = 𝔼[𝐺𝑡| 𝑠𝑡 = 𝑠]=𝔼[𝑟𝑡+1 + 𝛾𝑉(𝑠𝑡+1)| 𝑠𝑡 = 𝑠] (3)

The value of a state is expressed as a function of expectation
because future states are stochastic. Similarly, the action-value
function (𝑄(𝑠, 𝑎)) given by equation (4), is the expectation on
the Returns (𝐺𝑡) for the action ′𝑎′, taken at time t, in the state
′𝑠′.

𝑄(𝑠, 𝑎) = 𝔼[𝐺𝑡| 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]

 = 𝔼[𝑟𝑡+1 + 𝛾𝑄[𝑠𝑡+1, 𝑎𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] (4)

The value obtained by these value functions helps the agent
to decide the best action at a particular instant of time. Hence it
is essential to know the value of the state and state-action pair.
Identifying the best action for a state is termed as policy.
Policies are the rules or the strategy the agent adopts to
maximize the return in the long run [22]. Policies determine the
optimal action that the agent has to adopt to achieve its goal.

The value of a state 𝑉(𝑠) following the policy (𝜋) is written
as 𝑉𝜋(𝑠). Consequently, the value of taking action ′𝑎′ in state
′𝑠 ′and following the policy (𝜋) thereafter is denoted as
𝑄𝜋(𝑠, 𝑎). The agent looks for a policy that delivers maximum
value for the state rather than the highest immediate reward.
Unlikely, it is difficult to determine the state value 𝑉(𝑠),
compared to the reward. Because rewards are the instantaneous
feedback from the environment while value functions are long-
run values that are estimated iteratively until the value
converges with an optimal policy [15]. The value of the state
resulting after convergence is the optimal value through which
an optimal policy is derived. The agent uses the optimal policy
to take the best action thereafter.

The Bellman Optimality equation is one of the methods to
find the optimal value function [8]. The optimal value function
𝑉∗(𝑠) is one which yields the highest returns compared to all
other value functions. 𝑉∗(𝑠) is expressed as a value function
obtained by taking maximum over the policy (𝜋) as given in
the equation (5).

𝑉∗(𝑠) = 𝑚𝑎𝑥𝜋𝑉𝜋(𝑠) (5)

where 𝑉∗(𝑠) signifies the maximum quantity of long-term
returns that is obtained from the system. Optimal policies also
share optimal state-action value pairs 𝑄∗(𝑠, 𝑎). The Bellman
Optimality equation for 𝑄∗ is given by equation (6), which
states that the optimal state action-value function is the one that
is the maximum of all action functions following the policy 𝜋.

𝑄∗(𝑠, 𝑎) = 𝑚𝑎𝑥𝜋𝑄𝜋(𝑠, 𝑎) (6)

The goal of the RL problem is to find the optimal policy that
yields the highest returns in the long run. A policy 𝜋 is better
than another policy 𝜋′ if the value of a state obtained by
following policy 𝜋 is greater than the value of the state obtained
by the following policy 𝜋′ ie., 𝑉𝜋(𝑠) ≥ 𝑉𝜋′(𝑠). The optimal
policy is derived by taking the maximum over the policy ‘𝜋’
under the state ‘𝑠’ of the value function as given in equation (7).

𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋𝑉𝜋(𝑠), ∀𝑠 (7)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

413 | P a g e

www.ijacsa.thesai.org

Computation of optimal policy involves iterative estimation
of the value function. RL is a method for the efficient estimation
of value functions and optimal policy. As the FogRA problem
taken into account is model-free, Monte Carlo (MC), MC
Exploring Starts (MC-ES), and On-Policy Monte Carlo
Controls methodologies are employed to compute the optimal
policy.

B. Monte Carlo Approach

Monte Carlo (MC) is a model-free RL algorithm that learns
by averaging the samples drawn from the observation [15]. It
learns to derive the policy in an environment where transition
probabilities and reward distribution are not known [8]. Hence,
the proposed FogRA problem adopts the Monte Carlo method
to estimate the optimal policy. An episode is generated starting
from an initial state till the terminal state. The trajectory of an
episode in the MC algorithm is shown in Fig. 2.

Fig. 2. Back-up Diagram for Monte Carlo Approach [8].

At any instant of time ‘𝑡’ the agent observes the state ‘𝑠𝑡’
chooses an action ‘𝑎𝑡’, transits to a new state 𝑠𝑡+1, and gains a
reward ‘𝑟𝑡+1’. Returns 𝐺𝑡 is computed for every episode. Then
the value of the state 𝑉(𝑠) is estimated by averaging the returns.
This process is repeated till 𝑉(𝑠) converges for all states and
thus obtains the optimal value 𝑉∗(𝑠) for every state. Then the
optimal policy is derived for each state using the equation (7).

Given some experience (samples), FCA estimates the value
of states following policy 𝑉𝜋(𝑠), for all the non-terminal states
𝑠𝑡 that occur in the trajectory. The agent waits until the returns
𝐺𝑡 following the visit is known, then use the returns as a target
to update 𝑉𝜋(𝑆𝑡) as given in equation (8).

𝑉𝜋(𝑆𝑡) ← 𝑉𝜋(𝑆𝑡) + 𝛼[𝐺𝑡 − 𝑉𝜋(𝑆𝑡)] (8)

where 𝐺𝑡, is the actual returns following the time ‘𝑡’, and
′𝛼′ is the step size at which the agent learns. Alpha ′𝛼′ is the
learning rate hyperparameter. It balances the weight that has
been observed in the recent past with the weight of the newly
observed target. Equation (8) is also called Exponential
Recency Weighted Average (ERWA), which estimates the
incremental moving average by giving more weight to the
immediate reward [18]. It very much suits a non-stationary
environment like FogRA in which the action and the reward
undergo continuous learning.

C. Monte Carlo Exploring Starts (MC-ES)

Monte Carlo (MC) estimates the optimal value function
𝑉(𝑠) for all states appearing in the episode. It simply looks
ahead and chooses the action that leads to the best combination
of reward and the next state, which means it does not consider
the choice of actions in the state. Another issue is that MC
works better when the state space is known in advance. Hence,
finding 𝑄(𝑠, 𝑎) through MC-ES is the best way, as it considers
the choice of actions across all the states and finds the optimal
policy by maximizing the action value that produces high
returns in the long run [23].

The difference is that the existing adaptive RA model used
the MC approach to estimate the value of state ‘𝑉(𝑠)’, while the
MC-ES uses the state-action value pair ‘𝑄(𝑠, 𝑎)’ to improve the
policy. The change in the algorithm is that, the returns ‘𝐺𝑡’ is
computed as 𝐺𝑡(𝑠, 𝑎) rather than 𝐺𝑡(𝑠). Hence, MC-ES
evaluates 𝑄(𝑠, 𝑎) for all state-action pairs as given in equation
(9).

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝐺𝑡(𝑠, 𝑎) − 𝑄(𝑠𝑡 , 𝑎𝑡)] (9)

Then the optimal policy 𝜋∗(𝑎/𝑠) is derived by choosing the
action with maximum action value for each state 𝑠𝑡 ∈ S as
given by the equation (10).

𝜋∗(𝑎/𝑠) ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 𝑄(𝑠, 𝑎) (10)

D. On Policy Monte Carlo Control (OMC)

The estimation of state-action value function 𝑄(𝑠, 𝑎) in
MC-ES give rise to two issues. First, it increases the state space
from S to (𝑆𝑥𝐴) leading to memory and time complexity [8].
Secondly, the agent might not be able to explore all state-action
pairs, if it acts too greedy towards the policy from the start.
Hence, the value of 𝑄(𝑠, 𝑎) and the policy obtained through
MC-ES, cannot be optimal without a proper balance of
exploration and exploitation [23]. Instead, the On-policy Monte
Carlo Controls (OMC) estimates the optimal policy through the
epsilon (ϵ) greedy approach. The agent picks a random action
at epsilon (ϵ) times and acts greedy during the period (1- ϵ)
times thus balancing the explore-exploit instability [24]. The
Epsilon is a value chosen between zero and one by trial and
error, and it is problem-dependent.

III. THE PROPOSED WORK

A. System Model

The FogRA system comprises IoT devices and Fog nodes
as its core components. The fog nodes reside between the IoT
devices and the cloud. These fog nodes are equipped with
computing cum network functionality to process incoming
requests. FogRA is modeled as an RL problem, where a fog
node act as the Fog Controller Agent (FCA). Monitoring the
number of fog nodes utilized, observing the time criticality of
the incoming request, and then deciding to act accordingly is
the prime process of FCA. The fog nodes and the requests from
the IoT devices at the edge network make up the environment.
The agent-environment interaction of the RL-based FogRA
system is portrayed in Fig. 3.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

414 | P a g e

www.ijacsa.thesai.org

Fig. 3. The FogRA System.

At any instant of time, the time-criticality of the incoming
request and the number of utilized fog nodes define the state
(𝑠𝑡). The FCA’s decision either to accept the request in fog or
decline it forms the action. As a consequence of the action
taken, the FCA receives either a positive or negative reward as
feedback. The heterogeneity of time-criticality from the IoT
and the fog’s limited resources make the environment
stochastic.

The objective of the ACT-enabled FogRA system is to
allocate the fog’s limited resources to the time-critical
applications within a short time. In the pursuit of the objective,
the system maximizes the accepted requests, rewards, and value
of state-action pairs which is termed Fog Utilization (𝑈𝐹𝑜𝑔).

Fog’s limited resource forms the constraint of the resource
allocation problem. The objective of the FogRA system is
expressed as a multi-objective optimization problem as given
in the equation (11).

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑈𝐹𝑜𝑔 = ∑ 𝑁𝑎𝑐𝑐𝑒𝑝𝑡

𝑇

𝑡=0

+ ∑ 𝑟𝑤𝑑𝑎𝑐𝑐𝑒𝑝𝑡

𝑇

𝑡=0

+ 𝑉𝐹𝑜𝑝𝑡

and 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒 = ∑ 𝟙𝑇𝑖𝑚𝑒 𝑡𝑜 𝑜𝑏𝑡𝑎𝑖𝑛 𝑉𝐹𝑜𝑝𝑡
𝑇
𝑡=0

𝑠. 𝑡. 𝑐 ∑ 𝑁𝑎𝑐𝑐𝑒𝑝𝑡 = 𝑁𝑚𝑎𝑥
𝑇
𝑡=0 (11)

where, ′𝑇′ is the terminal time-step of each episode. 𝑁𝑎𝑐𝑐𝑒𝑝𝑡

refers to the number of requests accepted by the Fog layer,
𝑟𝑤𝑑𝑎𝑐𝑐𝑒𝑝𝑡 symbolizes the amount of reward received for

allocating fog node, 𝑉𝐹𝑜𝑝𝑡 represents the optimal value

achieved and 𝑁𝑚𝑎𝑥 signifies the number of fog nodes present
in the fog layer. 𝐹𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒 refers to the finish time by which all

states converge to their optimal value. Hence, the work
concentrates on maximizing Fog Utilization and minimizing
the convergence time.

FogRA is modeled as MDP to define the mathematical
framework of the RL problem. The fog nodes are defined as a
set of states in the Markov model, and at each time step, it is in
one of the states (𝑠0, 𝑠1, 𝑠2, 𝑠3, … … … . . 𝑠𝑛). At any instant of
time t = 1,2, …T, the state is represented by 𝑠𝑡. To achieve the
objective, the FCA undergoes learning to choose the best action
in a current state.

B. Problem Definition

The Fog Controller Agent (FCA) perceives the state of the
environment by constant interaction with it. With the
continuous stream of application requests, the FCA takes RA
decisions regularly. As the current action taken by the FCA,
influences the next state and in turn possibility of future actions
and rewards, the FogRA problem is formulated as MDP. The
MDP to allocate fog nodes for the time-critical IoT requests is
defined as MDP_FogRA = {S, A, P, R, 𝛾} where,

• S = {(m, 𝑛𝑡, 𝑐𝑡)/m=10, and 0 ≤ n ≤ 𝑁𝑚𝑎𝑥 and 1 ≤ c ≤
𝐶 } is the set of possible states of the MDP. At any
instant of time, the state of the fog node is expressed as
{𝑠0, 𝑠1, 𝑠2, 𝑠3 … … . . 𝑠𝑡 ∈S} in which,

 m ∈ ℕ defines the number of applications considered in

 the work.

 𝑛𝑡 ∈ ℕ is the number of fog nodes utilized at any instant

 of time ′𝑡′ bounded by 𝑁𝑚𝑎𝑥.

 𝑐𝑡 ∈ ℕ is the time criticality of the incoming request at

 any instant of time ′𝑡′. It is a random number in the
range.

 of one and ten with 𝐶 =10 as the highest priority.

• A = {a∈ (‘accept’, ‘decline’)} is the action set where
‘accept’ denotes allocation of fog node, and ‘decline’
indicates refusal of fog node.

• P = 𝑆 × 𝐴 ×S → [0,1] is the probability of transition P
(𝑠′|𝑠, 𝑎) to a new state 𝑠′ from state ‘𝑠’ when action ‘𝑎’
is taken.

• R = 𝑆 × 𝐴 → ℕ denotes the expected reward when the
environment is in state ‘s’ and action ‘a’ is taken.

• 𝛾 → 0< 𝛾 <1 is the discount factor that computes the
present value of the expected future reward.

Allocation of fog resources to the IoT application requests
depends on the number of available resources and the time
criticality of the incoming request. The state of the MDP at any
instant of time (𝑡) as defined in equation (12),

 𝑠𝑡 = 𝑚. 𝑛𝑡 + 𝑐𝑡 (12)

where 𝑛𝑡 ∈ {0,1,2,3………𝑁𝑚𝑎𝑥} is the number of fog
nodes utilized/allocated. The current state is based on the
number of utilized fog nodes, and the time-criticality of the
successive task. The time criticality of the service request
arriving at time ′𝑡′ is denoted by “𝑐𝑡”. It is obtained based on
the latency requirement of the incoming request presented in
Table I. “𝑐𝑡” is calibrated by a ten-point scale ranging between
1 and 10, with 10 being the highest priority. Starting with ten
applications (m), the total number of states encountered is
m(𝑁𝑚𝑎𝑥) + 𝐶. The next state 𝑠𝑡+1 depends on the current state
and the action taken, thereby reflecting the Markov property.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

415 | P a g e

www.ijacsa.thesai.org

TABLE I. LATENCY TIME-CRITICALITY MAPPING

When the fog node is in one of the possible states 𝑠𝑡 ∈ S =
{1, 2, 3, ….. 𝐶 (𝑁𝑚𝑎𝑥 + 1)}, the agent either accepts the
incoming task or declines it. Thus, ‘A’ is the set of actions
{accept, decline} where the action ‘accept’ denotes allocation
of a fog resource and ‘decline’ indicates forwarding the request
without allocation of a fog resource. The action chosen is based
on the sum of the immediate reward and the value of the
possible next state as given in equation (13).

 (13)

where the immediate reward is based on the time criticality
and intended action as described in the reward system.
𝑟𝑡𝑎𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒 and 𝑟𝑡𝑑𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒 describes the reward obtained
on acceptance and declination respectively. The value of a state
denotes the quantity of goodness for the agent to remain in that
state. It is determined by its immediate reward and the
discounted value of the next possible state. The value of the
terminal states is zero.

Similarly, the action from the current state in terms of the
state-action pair 𝑄(𝑠, 𝑎) is given in equation (14). The choice
of the equation for action selection depends on whether the
algorithm is MC, MC-ES, or OMC respectively.

(14)

An effective reward system influences the learning ability
of an agent. With the right reward as the feedback, the FCA
learns better and fast. In FogRA the reward is defined as a
function of time criticality, priority threshold, and action taken
as shown in Table II. Every incoming request is associated with
a time-criticality value (𝑐𝑡) which is appended in an array. Then
the median of the array value is computed in every episode to
obtain the Priority threshold (𝑝𝑡ℎ𝑡) at the time ‘t’. Considering
the chance of uneven distribution of 𝑐𝑡 values, FogRA chooses
the median as the measure of central tendency.

TABLE II. REWARD SYSTEM

Action taken Time-Criticality Reward

accept 𝑐𝑡 ≥ 𝑝𝑡ℎ𝑡 𝑝𝑡ℎ𝑡

decline 𝑐𝑡 ≥ 𝑝𝑡ℎ𝑡 -𝑝𝑡ℎ𝑡

accept 𝑐𝑡 < 𝑝𝑡ℎ𝑡 -𝑝𝑡ℎ𝑡 2⁄

decline 𝑐𝑡 < 𝑝𝑡ℎ𝑡 𝑝𝑡ℎ𝑡 2⁄

At any instant of time, if the time-criticality of the arrived
request (𝑐𝑡) is greater than the priority threshold (𝑝𝑡ℎ𝑡), then
the request is considered to be of high priority. Accepting such
a request indicates the right action of the agent. Hence, the agent
is encouraged with a positive value of the priority threshold as
a reward. Declining the high priority request indicates a wrong
action, for which the agent is rewarded with a negative value of
𝑝𝑡ℎ𝑡. On the other hand, a time-criticality value less than that
of the priority threshold indicates the less time-sensitiveness of
the incoming request. Accepting the less time-sensitive task is
considered a wrong action anyway, hence the agent is rewarded
with (−𝑝𝑡ℎ𝑡/2). Otherwise, the agent is rewarded with
(𝑝𝑡ℎ𝑡/2) for declining the less time-sensitive request. Thus, the
reward obtained at time ‘t’ depends on the priority threshold
computed at that time step.

The probability of state transition (P) and reward
distribution (R) describes the dynamics of the environment.
When the dynamics of the environment are known, the optimal
policy is directly obtained through Dynamic Programming
(DP) [8]. Also, DP is bound to fixed values of P, R, and policy
𝜋. But, the FogRA environment considered in the work is
neither stationary nor policy deterministic. With m(𝑁𝑚𝑎𝑥) + 𝐶
number of states and 2 actions per state, the problem of
computing the transition probability for all states grows
exponentially and cumbersome rather than solving the RA
problem itself. Hence, Monte Carlo (MC) method that learns
the optimal policy without P and R is sought. Hence, the
proposed work does not consider the distribution parameters

and employs MC to derive the optimal policy.

C. ACT enabled MC for FogRA

Time criticality (𝑐𝑡) of an incoming request is defined in the
range of one to ten, with ten designated as the highest priority.
As Fog resources are limited, only those requests whose time
criticality value is greater than the priority threshold is given
importance to get processed in fog nodes. But, fixing a suitable
priority threshold (𝑝𝑡ℎ𝑡) at every time step is not a trivial task
in FogRA whose environment is stochastic and non-stationary.
An increased 𝑝𝑡ℎ𝑡 value leads to poor performance of the FCA,
in which the number of accepted requests becomes less than the
decline. A decrease in the 𝑝𝑡ℎ𝑡 results in the allocation of fog
nodes to non-time-critical applications, which conflicts with the
objective of the system. Hence the work suggests Auto Centric
Threshold (ACT) that self-generates the threshold at every time
step. The incoming time criticality (𝑐𝑡) is appended in an array.
Then, the priority threshold (𝑝𝑡ℎ𝑡) is computed as the median
of the time criticality (𝑐𝑡) values stored in the array at every
time step.

Initially, the FogRA system allocates the fog resource with
the priority threshold computed at time t=0. As the episode
proceeds, the FCA learns the best policy in which only those
requests with a critical value greater than the recently computed
priority threshold are allocated the fog resource. The algorithm
to learn the optimal policy by the ACT-enabled MC for the
FogRA is given in Algorithm 1.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

416 | P a g e

www.ijacsa.thesai.org

The FogRA system is implemented as an episodic task.
Once a task arrives, based on its latency requirement, the time-
criticality is obtained from the latency time-criticality mapping
table. The value of states 𝑉(𝑠) is initialized with Zero for all
states. Based on equation (13), FCA decides whether to accept
the request in the fog or decline it. By continuous interaction
with the environment, the FCA updates the state value of all
states and derives the optimal policy for every state.

Given the episode, generated by following the policy 𝜋 (ie.,
action taken based on equation (13), the ACT-enabled MC
optimal policy algorithm evaluates 𝑉𝜋(𝑆𝑡) for all the non-
terminal states 𝑆𝑡 occurring in that episode. The returns 𝐺𝑡 is
computed as the sum of undiscounted rewards starting from the
initial state till the terminal state of the episode. The returns of
every state are used as the target to update the value of the
respective state 𝑉𝜋(𝑆𝑡) as given in equation (8). Episodes are
generated as long as the state values converge for all states.
Once state value converges, the optimal policy is obtained
based on equation (7).

IV. EXPERIMENTAL ANALYSIS AND DISCUSSION

The MDP for FogRA system adopts the definition of state
from adaptive resource allocation but differs in certain aspects
[15]. First, the proposed work obtains the time-criticality value
(𝑐𝑡) from the Latency Time-criticality mapping Table I, which
maps the preference level of the IoT request with its criticality
value. Secondly, as the proposed MDP is episodic, the returns
are computed with undiscounted rewards. Thirdly, priority
threshold is computed by a self-generated Auto Centric
Threshold (ACT) method which suits more for the stochastic
nature of the IoT environment. Finally, unlike constant value-
based rewards, the novel reward system acts in coherence with
the priority threshold and provides the best incentive for the
agent to learn better and faster.

The experiment is implemented in python Spyder. The
simulation was conducted for the latency generated at random.
Then the priority level of the request is obtained from the

latency-time criticality mapping Table I. The simulation
parameter and their corresponding values are maintained as
given in the Table III.

TABLE III. SIMULATION PARAMETERS

This section analyses the experimental results obtained
through MC, MC-ES, and OMC to evaluate the performance of
FCA. The work considers ten IoT applications, hence the value
of ′𝑚′ is set to 10 in the work. With the number of fog nodes
𝑁𝑚𝑎𝑥 as 15, and the maximum time criticality value 𝐶 as 10,
the MDP leads to m(𝑁𝑚𝑎𝑥) + 𝐶 possible states, which are
given by 𝑠𝑡 ∈ S = {1,2,3, ….. m(𝑁𝑚𝑎𝑥) + 𝐶}. Initially, at the
time t=0, all fog nodes are available, so the number of occupied
fog nodes 𝑛𝑡 remains zero in the equation (12) with the possible
initial state as 𝑠0 ∈ {1,2,3 … . 𝐶}. The MDP terminates at time T
when all the fog nodes are occupied, ie., 𝑛𝑡 = 𝑁𝑚𝑎𝑥 with the
possible terminal states as 𝑠𝑇 ∈ {𝐶𝑁𝑚𝑎𝑥 + 1, 𝐶𝑁𝑚𝑎𝑥 +
2, 𝐶𝑁𝑚𝑎𝑥 + 3 … … . . 𝐶(𝑁𝑚𝑎𝑥 + 1)}. Hence, the proposed work
is experimented with 160 states, with {1, 2, 3, ….10} as one of
the possible initial states and {151,152,153…………160} as
one of the terminal states.

A. Adaptive MC vs ACT MC

First, the performance of FogRA is evaluated with the
adaptive MC and the proposed ACT-based MC model. Fig. 4
reflects the value of a few states estimated by the Adaptive MC
algorithm in the earlier work [15]. The adaptive model
converges after 10000 episodes resulting in the optimal state
value 16. Fig. 5 shows that the ACT-based MC derives an
optimal state value of 17.5 which is 9.375 % more than the
Adaptive MC. The metrics observed in the implementation of
Adaptive and ACT-based MC are tabulated in Table IV.

Fig. 4. Optimal State Value in Adaptive RA.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

417 | P a g e

www.ijacsa.thesai.org

Fig. 5. Optimal State Value with ACT-MC.

The estimation of 𝑉∗(𝑠) obtained by the MC algorithm fits
more for the model-based MDP. As FogRA is a model-free
system, the exploration-oriented ACT MC-ES (Monte Carlo
Exploring Starts), is implemented to compare its results with
the Adaptive model.

B. Adaptive MC-ES vs ACT MC-ES

The FogRA system is then evaluated in MC-ES for both the
Adaptive and ACT model. The ACT-based MC-ES algorithm
estimates 𝑄(𝑠, 𝑎) rather than 𝑉(𝑠). Hence, the state space
increases from 𝑠 to (𝑠 x 𝑎), and the action selection depends on
equation (14). Fig. 6 and Fig. 7 show the convergence of
optimal action-value Q*(state, accept) and Q*(state, decline) in
Adaptive RA for twelve states chosen at random.

Fig. 6. Q*(s, Accept) for Adaptive MC-ES.

Fig. 7. Q*(s, Decline) for Adaptive MC-ES.

Unlike the Adaptive approach, the values obtained by ACT-
based MC-ES in Fig. 8 and Fig. 9 show improved optimal
values comparatively. The estimated 𝑄∗(𝑠, 𝑎) value in the
Adaptive approach is lesser than the ACT model. The reason
behind the poor 𝑄∗(𝑠, 𝑎) value is that the Adaptive MC-ES is
not able to explore widely in an episodic environment with a
limited number of fog nodes.

Table IV shows the improved value from 16 in the MC
model to 18.7025 in ACT-based MC-ES. The increase in the
percentage of 16.8906% indicates the robustness of the ACT-
enabled FogRA over the Adaptive system even in an
environment with scarce resources. Still, the improvement is
not considered favourable as the action selection process of
MC-ES is greedy without enough exploration. Hence, the ACT-
based FogRA System is tuned towards a balanced mix of
exploration and exploitation in the OMC approach.

C. Adaptive OMC vs ACT OMC

The OMC algorithm estimates the value of state-action pair
𝑄(𝑠, 𝑎), but the action based on equation (14) is decided only
after a balanced trial of exploration and exploitation. FCA
controls the level of exploration and exploitation based on a ϵ-
greedy policy and is hence named as On-Policy Monte Carlo
Control (OMC). The agent explores such that a random action
is picked epsilon times and the greedy action based on equation
(14) is picked for the (1- ϵ) times. In this case, epsilon (ϵ) is
chosen as a small positive number of 0.2 after trial and error.
Fig. 10 and Fig. 11 show the convergence of optimal action
value 𝑄∗(𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑐𝑒𝑝𝑡) and 𝑄∗(𝑠𝑡𝑎𝑡𝑒, 𝑑𝑒𝑐𝑙𝑖𝑛𝑒) for twelve
states chosen at random using an Adaptive approach.

Fig. 8. Q*(s, Accept) for ACT MC-ES.

Fig. 9. Q*(s, Decline) for ACT MC-ES.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

418 | P a g e

www.ijacsa.thesai.org

Fig. 10. Q*(s, Accept) for Adaptive OMC.

Fig. 11. Q*(s, Decline) for Adaptive OMC.

Despite its balanced explore-exploit strategy, the adaptive
OMC terminates fast, resulting in minimal 𝑄∗(𝑠, 𝑎) value. It
expresses the inability of the adaptive system for exploration.
Whereas the ACT enabled OMC outperforms its counterpart by
improved 𝑄∗(𝑠, 𝑎) with minimal termination time in Fig. 12
and Fig. 13. The numerical results obtained during execution
are tabulated in Table IV.

Fig. 12. Q*(s, Accept) for ACT OMC.

Fig. 13. Q*(s, Decline) for ACT OMC.

The optimal state-action value estimated by ACT-based
OMC is increased by 41% more than the Adaptive MC. Thus,
the ACT-based OMC surpasses other methods by maximizing
long-term returns. The high value of the long-term returns with
minimum termination time denotes that the FCA has learned
the best policy at a fast rate, thanks to the smart learning ability
of the ACT-based On Policy Monte Carlo Control.

TABLE IV. PERFORMANCE EVALUATION

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

419 | P a g e

www.ijacsa.thesai.org

V. CONCLUSION AND FUTURE WORKS

In this work, an RL-based ACT-enabled FogRA system is
implemented for time-critical applications of IoT. The proposed
system instantaneously decides whether to allocate fog
resources or not, based on the time-criticality of the incoming
request and the availability of fog resources. In the pursuit to
derive the optimal policy, the algorithm trains the FCA to learn
better decision-making. The RA problem is executed for the
incoming requests both on the Adaptive and ACT-enabled
FogRA systems. Results show that the ACT-enabled FogRA
system prioritizes time-critical applications to allocate fog
nodes. Also, utilization of fog resources is maximized in terms
of the percentage of requests accepted by fog, rewards obtained
and optimal value achieved. The performance assessment of the
ACT-enabled FogRA system exhibits an improved optimal
state-action value by 41% more than the Adaptive model. In
future work, the FogRA system is planned for continuous tasks
with the auto-scaling feature of fog resources. Also, it is
planned to extend the work as RL enabled Energy Efficient
FogRA system that minimizes the energy cost with maximized
performance.

REFERENCES

[1] A. Khanna and S. Kaur, “Internet of Things (IoT), Applications and
Challenges: A Comprehensive Review,” Wirel. Pers. Commun., vol. 114,
no. 2, pp. 1687–1762, Sep. 2020.

[2] B. Jamil, M. Shojafar, I. Ahmed, A. Ullah, K. Munir, and H. Ijaz, “A job
scheduling algorithm for delay and performance optimization in fog
computing,” Concurr. Comput. Pract. Exp., vol. 32, no. 7, Apr. 2020.

[3] L. F. Rahman, T. Ozcelebi, and J. Lukkien, “Understanding IoT Systems:
A Life Cycle Approach,” Procedia Comput. Sci., vol. 130, pp. 1057–
1062, 2018.

[4] M. Mohammed Sadeeq, N. M. Abdulkareem, S. R. M. Zeebaree, D.
Mikaeel Ahmed, A. Saifullah Sami, and R. R. Zebari, “IoT and Cloud
Computing Issues, Challenges and Opportunities: A Review,” Qubahan
Acad. J., vol. 1, no. 2, pp. 1–7, Mar. 2021.

[5] B. Jamil, M. Shojafar, I. Ahmed, A. Ullah, K. Munir, and H. Ijaz, “A job
scheduling algorithm for delay and performance optimization in fog
computing,” Concurr. Comput. Pract. Exp., vol. 32, no. 7, Apr. 2020.

[6] F. Murtaza, A. Akhunzada, S. ul Islam, J. Boudjadar, and R. Buyya,
“QoS-aware service provisioning in fog computing,” J. Netw. Comput.
Appl., vol. 165, p. 102674, Sep. 2020.

[7] R. Mahmud, K. Ramamohanarao, and R. Buyya, “Application
Management in Fog Computing Environments: A Taxonomy, Review
and Future Directions,” ACM Comput. Surv., vol. 53, no. 4, pp. 1–43, Jul.
2021.

[8] R. S. Sutton and A. G. Barto, Reinforcement learning: an introduction.
Cambridge, Mass: MIT Press, 1998.

[9] M. Faraji Mehmandar, S. Jabbehdari, and H. Haj Seyyed Javadi, “A
dynamic fog service provisioning approach for IoT applications,” Int. J.
Commun. Syst., vol. 33, no. 14, p. e4541, Sep. 2020.

[10] S. Kalantary, J. Akbari Torkestani, and A. Shahidinejad, “Resource
discovery in the Internet of Things integrated with fog computing using
Markov learning model,” J. Supercomput., vol. 77, no. 12, pp. 13806–
13827, Dec. 2021.

[11] M. Salimian, M. Ghobaei‐Arani, and A. Shahidinejad, “Toward an
autonomic approach for Internet of Things service placement using gray
wolf optimization in the fog computing environment,” Softw. Pract. Exp.,
vol. 51, no. 8, pp. 1745–1772, Aug. 2021.

[12] M. Etemadi, M. Ghobaei-Arani, and A. Shahidinejad, “Resource
provisioning for IoT services in the fog computing environment: An
autonomic approach,” Comput. Commun., vol. 161, pp. 109–131, Sep.
2020.

[13] A. Mijuskovic, A. Chiumento, R. Bemthuis, A. Aldea, and P. Havinga,
“Resource Management Techniques for Cloud/Fog and Edge Computing:
An Evaluation Framework and Classification,” Sensors, vol. 21, no. 5, p.
1832, Mar. 2021.

[14] O. Fadahunsi and M. Maheswaran, “Locality sensitive request
distribution for fog and cloud servers,” Serv. Oriented Comput. Appl.,
vol. 13, no. 2, pp. 127–140, Jun. 2019.

[15] A. Nassar and Y. Yilmaz, “Reinforcement Learning for Adaptive
Resource Allocation in Fog RAN for IoT With Heterogeneous Latency
Requirements,” IEEE Access, vol. 7, pp. 128014–128025, 2019.

[16] M. K. Pandit, R. N. Mir, and M. A. Chishti, “Adaptive task scheduling in
IoT using reinforcement learning,” Int. J. Intell. Comput. Cybern., vol. 13,
no. 3, pp. 261–282, Jan. 2020.

[17] F. Bahrpeyma, H. Haghighi, and A. Zakerolhosseini, “An adaptive RL
based approach for dynamic resource provisioning in Cloud virtualized
data centers,” Computing, vol. 97, no. 12, pp. 1209–1234, Dec. 2015.

[18] T. V. Maia, “Reinforcement learning, conditioning, and the brain:
Successes and challenges,” Cogn. Affect. Behav. Neurosci., vol. 9, no. 4,
pp. 343–364, Dec. 2009.

[19] G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani, “A Hybrid
Reinforcement Learning Approach to Autonomic Resource Allocation,”
in 2006 IEEE International Conference on Autonomic Computing,
Dublin, Ireland, 2006.

[20] S. Shukla, M. F. Hassan, M. K. Khan, L. T. Jung, and A. Awang, “An
analytical model to minimize the latency in healthcare internet-of-things
in fog computing environment,” PLOS ONE, vol. 14, no. 11, p. e0224934,
Nov. 2019.

[21] M. Ghobaei-Arani, S. Jabbehdari, and M. A. Pourmina, “An autonomic
resource provisioning approach for service-based cloud applications: A
hybrid approach,” Future Gener. Comput. Syst., vol. 78, pp. 191–210, Jan.
2018.

[22] K. Gai and M. Qiu, “Optimal resource allocation using reinforcement
learning for IoT content-centric services,” Appl. Soft Comput., vol. 70,
pp. 12–21, Sep. 2018.

[23] C. Wang, s. Yuan, k. Shao, and k. Ross, “on the convergence of the monte
carlo ex- ploring starts algorithm for reinforcement learning,” p. 33, 2022.

[24] “Miguel Morales - Grokking Deep Reinforcement Learning (2020,
Manning Publications) - libgen.li.pdf.”

