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Abstract—Brain tumor is a fatal disease and one of the major 

causes of rising death rates in adults. Predicting methylation of 

the O6-Methylguanine-DNA Methyltransferase (MGMT) gene 

status utilizing Magnetic resonance imaging (MRI) imaging is 

highly important since it is a predictor of brain tumor responses 

to chemotherapy, which reduces the number of needed surgeries. 

Deep Learning (DL) approaches became powerful in extracting 

meaningful relationships and making accurate predictions. DL-

based models require a large database and accessing or 

transferring patient data to train the model. Federated machine 

learning has recently gained popularity, as it offers practical 

solutions for data privacy, centralized computation, and high 

computing power. This study aims to investigate the feasibility of 

federated learning (FL) by developing a FL-based approach to 

predict MGMT promoter methylation status using the 

BraTs2021 dataset for the four sequence types, (Fluid Attenuated 

Inversion Recovery (FLAIR), T1-weighted (T1w), T1-weighted 

Gadolinium Post Contrast (T1wCE/T1Gd), and T2-weighted 

(T2w)) MRI images. The FL model compared to the DL-based 

and the experimental results show that even with imbalanced and 

heterogeneous datasets, the FL approach reached the training 

model to 99.99% of the model quality achieved with centralized 

data after 300 communication rounds between 10 institutions 

using OpenFl framework and the improved EfficentNet-B3 

neural network architecture. 
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I. INTRODUCTION 

Brain tumors are a grave problem that threatens human life 
and leads to death if not diagnosed and treated early. 
Especially, Glioblastoma (GBM) and astrocytic glioma with 
molecular features of GBM (WHO Grade 4 astrocytoma). The 
glioblastoma multiform tumor is a highly malignant brain 
tumor. Most of these brain tumors occur in adults, and they 
are characterized by a wide range of symptoms. it has a poor 
prognosis with a median survival of about ten months in most 
cases [1]. Recently been discovered that, the presence of a 
specific genetic sequence in the tumor known as MGMT (o6-
methylguanine-DNA methyltransferase) promoter methylation 
during GBM patient's chemotherapy is a significant and 
independent predictive factor of favorable survival in 
glioblastoma patients undergoing the treatment. 

MGMT is a protein that repairs damage to the DNA of 
human body cells. The chemotherapy drugs cause damage to 

tumor cells. Thus, the more MGMT protein the tumor 
produces, the less effective the chemotherapy drug is expected 
to be, as the protein will repair the damage to the tumor. The 
detection of MGMT requires the performance of a biopsy 
(removing tissue from the tumor and analyzing it) and can 
take several weeks depending on the results and the types of 
treatments initially implemented, subsequent surgery may be 
necessary [2]. The development of an efficient method of 
detection utilizing medical imaging (i.e., MRI, radio 
genomics) could potentially minimize the number of surgeries. 

Deep learning (DL) based applications have shown 
promising results in this area but to cover all medical 
questions that can be applied to a vast patient population and 
ensure high and accurate performance, DL- based applications 
rely on large, diverse datasets from different health institutions 
[3]. This is particularly challenging due to the natural 
sensitivity of healthcare informatics, legal and cultural 
challenges. Each health institution (e.g., hospital, clinic, lab, 
etc.) is often resistant to sharing patient data. Moreover, the 
available data in a single institution is not adequate for the 
training due to the low incidence rate of brain tumor 
pathologies and limited patient numbers. These limitations 
raise the need to seek alternative approaches [4-6]. 

A recent surge in popularity has been witnessed by 
federated learning, a paradigm that offers great promise for 
learning with fragmented, sensitive data. By allowing training 
a global model through a central server while keeping the data 
in local institutions where they originated, rather than 
aggregating data from different places altogether or using the 
traditional discovery and replication approach, a shared global 
model can be trained [7-9]. The main idea is moving 
computations to data, where a globally shared model is bought 
to where the data is. 

II. MOTIVATION AND CONTRIBUTION 

In this study, a set of contributions are achieved using the 
proposed study: 

1) Development of an improved EfficientNetB3 model 

relying on the combination of convolution neural network 

(CNN) and Recurrent neural network (RNN) architectures. 

2) Four types of Scans are used in this study, while other 

related work depended on only one or two scans. 

3) Two approaches are applied based on classical and 

federated learning. 
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4) The federated learning showed the ability to deal with 

data privacy, diversity, real time continuous learning, and 

hardware efficiency. 

III. RELATED WORK 

Recently, machine learning and deep learning techniques 
have been used to predict MGMT status, and it achieved 
satisfactory results. Korfiatis et al. in 2017 trained three 
residual deep neural network architectures, ResNet18, 
ResNet34, and ResNet50 in order to predict MGMT 
methylation status based on MRI scans with T2 and T1 
weighted post-contrast images obtained from Mayo Clinic. 
[10]. in another work by Yogananda et al., 2021, Based on 
3D-Dense-UNets, they developed a T2WI-only network 
(MGMT-net) to detect MGMT methylation status and 
segment tumors. Using MRI scans from The Cancer Imaging 
Archive (TCIA) and The Cancer Genome Atlas (TCGA) 
datasets [11]. The deep-learning approach developed by Chen 
et al., 2022 for MGMT promoter methylation using MRI scans 
of 111 patients was based on ResNet18 with fivefold cross-
validation. Four sequences were analyzed for radiomics 
features for two regions of interest (the whole tumor area and 
the tumor core area), including T1 weighted images (T1WI), 
T2 weighted images (T2WI), apparent diffusion coefficient 
maps (ADC), and T1 contrast-enhanced images (T1CE) [12]. 

Despite the efficiency of the mentioned works but all of 
them depended on the classical way of learning, That Lacked 
patient privacy protection. Even removing metadata such as 
names or dates of birth is insufficient to protect privacy 
because it is possible to reconstruct a patient’s face from MRI 
data. This sensitivity of healthcare informatics directed the 
researchers toward using federated learning in the healthcare 
applications such as federated medical imaging, federated 
remote health monitoring, and federated EHRs management 
applications [13, 14]. Due to the novelty of the approach, there 
are a few articles on Brain tumor diagnosis using federated 
learning, and almost all of these articles focus on brain tumor 
segmentation only. 

The first use of federated learning in a multi-institutional 
collaboration was presented by Sheller et al. in 2019, allowing 
deep learning modeling without sharing patient data. They 
used the Brats dataset and achieved 99% of the model 
performance with a data-sharing model. They compared 
federated learning with two alternative collaborative learning 
methods, Cyclic Institutional Incremental Learning (CIIL) and 
Institutional Incremental Learning (IIL). The comparison 
shows that these two methods failed to match the performance 
of federated learning. Even though CIIL may seem like a 
simpler option, full validation should be carried out 
periodically, such as at the end of a cycle, which will help in 
selecting a good model. The validation process would need the 
same synchronization and aggregation steps as FL and would 
even add communication costs over FL. in addition, a large 
number of institutions with small amounts of data do not scale 
well with IIL and CIIL [15]. 

Using a deep neural network, Li et al. applied federated 
learning for the segmentation of brain tumors using the BraTS 
dataset as a part of the NVIDIA Clara Train SDK. They 

studied various practical aspects of the federated model 
sharing with an emphasis on preserving patient data privacy. 
While a strong differential privacy guarantee. The 
experimental results show that the FL training was done at 
twice the number of epochs in the data centralized training to 
reach the same result [16]. 

An FL-based cross-site modeling platform has been 
proposed by Guo et al. in 2021 for the reconstruction of MRI 
images collected from a variety of institutions with different 
scanners and acquisition protocols. The experiments were 
conducted on a variety of datasets with promising results. 
Hidden features were aligned with hidden features extracted 
from various sub-sites [17]. Table I summarizes the effective 
methods for predicting the MGMT methylation status based 
on the Classical and the recent federated learning approaches 
for brain tumor diagnosis. 

TABLE I. METHODS FOR BRAIN TUMOR DIAGNOSIS 

Related 

Work 

Methods for Brain Tumor  

Architecture Algorithm Dataset Limitations 

Korfiatis et 

al [10] 
DCNN 

ResNet18 

ResNet34 

ResNet50 

MRI from 

Mayo Clinic 

Only two type 

of scans are 

used, 

Following 
classical 

learning 

Yogananda 

et al [11] 
CNN 

3D-Dense-

UNets, 

TCIA and 

TCGA 

datasets 

Only one type 

of scans are 

used, 

Following 
classical 

learning 

Chen et al 

[12] 
DCNN ResNet18 

MRI Scans 

for 111 

patients 

Following 

classical 

learning 

Sheller et 

al [15] 

FL , CLL 

,IIL 
DNN 

Different 

Institutions, 

collaborated 

dataset 

Brain tumor 

segmentation  

model 

Li et al 

[16] 
FL DNN BraTS 2018 

Brain tumor 

segmentation  

model 

Guo et al 

[17] 
FL DNN 

Multiple 

Datasets 

Model for 

reconstructing 

MRI scans 

IV. MATERIALS AND METHODS 

A. Training Model 

The training model is based on an improved EfficientNet-
B3 architecture relying on RNN layers. The EfficientNet-B3 
was released by Google in 2019. It is a convolutional neural 
network architecture and scaling technique that uses the 
compound coefficient technique to uniformly scale depth, 
width, and resolution in a simple and efficient manner. Which 
make it is better at analyzing images than the existing 
Artificial intelligence models such as ResNet, inception and 
DenseNet [18]. The EfficientNet-B3 is a part of the 
EfficientNet family, which ranges from B0 to B7. B3 was 
selected among this family because it offers a good 
compromise between computational resources and accuracy.  
The compound scaling method uniformly scales each 
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dimension with a certain fixed set of scaling coefficients 
Instead of randomly scaling up width, depth, or resolution. 
Equation (1) show how it is achieved mathematically. 

Fig. 1 illustrate the architecture of the proposed model.The 
fully connected features extracted from the EfficientNetB3 are 
input to a proposed RNN architecture based on a long short 
term memory (LSTM) layers. The fully connected layer 
output is input to a sequence input layer, 2 LSTM layers, 2 
dropout layers, 1 fully connected layer, and a Softmax layer. 

S.t. α · β2· γ2 ≈ 2              (1) 

α ≥ 1, β ≥ 1, γ ≥1 

commpound coefficient: φ 

depth: d = αφ 

width: w = βφ 

resolution: r = γφ 

 

Fig. 1. The Improved EfficientNet-B3 Model Architecture. 

The training process carried out on four distinct models 
based on the scan type FLAIR, T1w, T1wCE, and T2w 
respectively. Each model calculates a probability that the 
model belongs to class 0 (no presence of MGMT) or class 1 
(present presence of MGMT). 

Algorithm 1 shows how the final score per patient is 
obtained. Although the training model works on each scan 

type separately, each scan type has the same pre-processing 
and training steps. All the resulted predictions are aggregated 
to finally predict the MGMT value of each patient. The results 
of the prediction are aggregated together for each patient in 
order to get the most confident result reached out of all 
predictions. The aggregation process is applied by obtaining 
the mean of the four types of scans for each patient 
individually. Moreover, the maximum and the minimum are 
also calculated. Then, the difference between the mean and the 
maximum, and also the variance between the mean and the 
minimum is compared. Finally, the nearest difference to the 
mean is the optimal value (maximum or minimum). 

Algorithm 1 Predicting MGMT Value 

 Start 
   Predicted_MGMT_Value: List 

   For each scan type ['flair', 't1w', 't1wce', 't2w']: 

    T_df, V_df, ← training and validation sets data frames         

    Ts_df ← testing set data frame            

    T_g, V_g, Ts_g ← Augmentation (T_df, V_df, Ts_df) 

    Best_model ← trai_model (MRI, T_g, V_g, E=20)       

    Ts_pred ← best_model. Prediction (Ts_g) 

     Ts_df [Pred_y] ← Ts_pred 

    M_pred ← Ts_pred. mean () 

    Ts_pred_agg ← Aggregate the predictions results on  

                                           all MRI types for each patient 

     For each patient_id:  
       Ts_pred_agg ← Max (Ts_df [Pred_y]) 
       If Max (Ts_df [Pred_y]) – M_pred > M_pred – Min (Ts_df [Pred_y]) 

        Else, Min (Ts_df [Pred_y]) 

       End if 

      End 
       Predicted_MGMT_Value ← Ts_pred_agg 

    End 

        End 

Data augmentation is performed on the images and the 
type of augmentation applied was based on geometric 
techniques. The augmentation step aims to balance the number 
of images in each class before training. The model takes the 
whole training and validation data (Original and augmented) 
as an input. The epochs of the model are defined with 20 
(E=20), whereas the number of iterations for each epoch is 
equal to 58. This forms a total of 1160 iterations for the entire 
model. 

B. Federated Learning 

To preserve patient data privacy, we need to eliminate the 
existence of a centralized dataset to prevent data movement 
and share it with others. On the other hand, the single medical 
site has its data only, which is a bit amount of data and 
insufficient to train the model. Federated learning (FL) is a 
data-private collaborative learning approach that enables 
multiple health institutions to parallel train a machine learning 
model at the same time using their own data [19]. 

The general architecture of federated learning consists of 
four main components. Fig. 2 illustrates the architecture of the 
federated learning approach. The training model learned using 
the local dataset and sends the results to the central server 
(Aggregator), the server sends these results to the global 
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model to learn from it. After that, the global model sends back 
the updated results to all the local models. The whole training 
process is done through several communication rounds 
between the aggregator and the collaborators. 

 Aggregator: is the responsible for the aggregation 
process, receives updates and results from each local 
model, and feeds them with the updates. 

 Collaborator(s): represent the medical institutions. 

 Local Model: learn from the local data. 

 Global Model: learn from the local model gradients. 

 

Fig. 2. The Architecture of the Federated Learning Approach – Hospitals 

Represents the Medical Institution. 

In this way, FL enables connecting data from different 
institutions while not requiring any movement of patient data. 
Furthermore, FL solves insufficient data volume problem in a 
single institution. 

V. EXPERIMENTAL RESULTS 

A. Experimental Setup 

1) BraTS Dataset: collaboration with the MICCAI 

Society (the Medical Image Computing and Computer-

Assisted Intervention Society), the Radiological Society of 

North America (RSNA) provided a massive dataset of MRI 

scans from patients diagnosed with gliomas (BraTS2021) [20]. 

These scans were obtained from various institutions under 

standard clinical conditions, and various imaging equipment 

and protocols were used to produce a heterogeneous image 

quality reflecting the diverse clinical practices at different 

institutions. Four different sequence types of images are 

collected for each patient (Fluid Attenuated Inversion 

Recovery (FLAIR), T1-weighted (T1w), T1-weighted 

Gadolinium Post Contrast (T1wCE/T1Gd), and T2-weighted 

(T2w)). A total of 585 scans were collected for the training set 

and 87 scans were collected for the testing are sorted by the 

patient ID.  A binary label is used to describe the methylation 

status of the MGMT promoter (0: unmethylated, 1: 

methylated). Fig. 3 shows four types of scans for two patients 

with various MGMT_value. 

 

Fig. 3. Sample from the Dataset Icludes Two Patients with two different 

MGMT_Value. 

2) Data Pre-Processing: This dataset is presented in 

DICOM (Digital Imaging and Communications in Medicine) 

format, which is extremely complex and inefficient for image 

processing and analysis. DICOM has the drawback that a 

single volume is stored as a series of 2D slices. The FLAIR 

sequence of patient #00014 is 74 slices as shown in Fig. 4, 

while the FLAIR sequence of patient #00000 contains 400 

slices, making it extremely challenging to analyze. 

To facilitate the data handling, the DICOM sequences 
were converted to the NIfTi (Neuroimaging Informatics 
Technology Initiative) format. 

 

Fig. 4. The FLAIR Sequence of Patient with ID #00014. 
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Fig. 5. FLAIR Sequence of Patient 00014 after converting it to the nii 

Format. 

Fig. 5 shows the FLAIR sequence of patient #00014 that 
was displayed before in Fig. 5 after converting it to NIfTi 
format. The generated NIfTi file has 512 x 512 x 216 
dimensions in x, y, and z. In both x and y dimensions, the 
spacing between slices is 0.5 mm, and in z dimensions, it is 
1.2 mm. 

In each NIfTi file, the header file contains sform and 
qform code matrices, which are always related to the input 
image. These code matrixes are appropriately remapped when 
padding, cropping, or applying affine spatial transformations. 
Whenever the sform is set in processing operations that deal 
with a single image, it is transformed in the same manner as 
qform. These matrices displayed in detail with Fig. 6. 

Some simple preprocessing transformations applied to the 
NIfTi files. They normalized, resized and rotated to be easier 
in loading and processing Fig. 7 displays the nii file for the 
same patient after applying those preprocessing steps. After 
resizing the NIfTi files, they have x, y, and z dimensions of 
128 x 128 x 64, with a spacing value of 1.0 millimeters 
between slices. After normalization, the range is reduced from 
0-2116 to -1.0-1.0. Furthermore, sform and qform code matrix 
values have been changed. 

3) Data partitioning: The host of the provided dataset has 

confirmed that these three cases have some issues in the 

training dataset. For the two patients with ID #00109 and 

#00709, the FLAIR sequences are blank, and for the patient 

with ID #00123, the TW1 sequence is blank. As a result, 582 

patient’s cases were successfully trained. We shared the two 

training and testing datasets with 10 collaborators, 

corresponding to the 10 institutions that exist in real life. The 

resulting patient counts for each of the institutions, which we 

will refer to as collaborators (C) 1–10 are given randomly with 

high variations. A local validation set, consisting of 10% of 

training data of each institution, is also held out as a validation 

set. The actual numbers of patients at each institution in the 

training, validation, and testing datasets illustrated in Table II. 

 

Fig. 6. The FLAIR Sequence of Patient 00014 after the Normalization 

Process. 

TABLE II. PATIENTS DISTRIBUTION FOR EACH COLLABORATOR 

Collaborator  

#Number 

Number of Patients 

Training  Validation Testing 

C1 72 8 10 

C2 63 7 9 

C3 67 8 9 

C4 54 6 8 

C5 31 4 8 

C6 58 7 8 

C7 45 5 9 

C8 36 4 8 

C9 32 4 8 

C10 63 7 10 

The data partitioning process followed the Horizontal 
partitioning (sharding) strategy which partitioned the dataset 
into multiple different datasets. The partitions all share the 
same features but have entirely different patients. Similarly, 
each partition has its own set of data. 

4) Work flow: Federated Learning projects require a 

trusted execution environment to support the development 

process and facilitate the implementation of all necessary 

features in a secure manner. OpenFl is an open-source Python 

3 framework for federated learning developed by Intel Labs in 

collaboration with the Internet of Things Group. Through a 

plugin mechanism, ML models and neural network training 

frameworks such as Tensor Flow and PyTorch can be used to 

train models. Communication between participants is secured 

by certificates [21]. 

OpenFL can be used to establish and run experiments with 
federations in two different ways: via Director-based 
workflows and Aggregator-based workflows. Fig. 7 illustrates 
the Aggregator-based workflow in OpenFl framework, which 
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is the chosen workflow in the conducted experiment. The 
federation runs between the aggregator node which owns the 
learning model and an arbitrary number of collaborators.   
This workflow is based on creating a workspace at the 
aggregator node and sending this workspace to each 
collaborator individually. 

 

Fig. 7. The Architecture of the Aggregator-based Workflow. 

This workspace consists of the plan and the learning 
model. The plan is a YAML file where the experiment settings 
are defined and is used to modify the workspace to the needed 
requirements such as the address of the aggregator, the global 
model that will be sent to collaborators, the number of 
federation rounds, and the encryption for network 
connections. Other parameters describing the model training 
process can be included as well. 

To establish the connection, all participants must provide a 
valid public key infrastructure certificate signed by a trusted 
certificate authority (CA). OpenFL uses mutually 
authenticated transport layer security (TLS) connections. It is 
possible to create a certificate authority and generate X.509 
certificates with OpenFL, but it is intended only for non-
production testing. Once the connection is established, the 
federation starts with the aggregator and the collaborators. 

B. Practical Considerations 

1) Training parameters: Several parameters are adjusted 

to the EfficientNetB3 architecture to achieve high accuracy 

performance. The first parameter is the optimizer, and it is 

selected to be adaptive moment estimation (Adam). The 

second parameter is the learning rate, and it is set to 0.001. 

The third parameter is the number of epochs of the model, and 

it is defined with 20, whereas the number of iterations for each 

epoch is equal to 58. In order to prevent overfitting, batch 

normalization is added and a 40% dropout is added before 

each fully connected layer. A sigmoid activation function is 

used on the last layer to resolve the two-class classification 

problem. A binary-crossentropy function is used for the cost 

function to solve the two-class classification problem. Also, 

some parameters are adjusted to the proposed RNN 

architecture. The number of neurons of each LSTM layer is 

150, and the dropout layer has a probability value of 0.2. 

2) Plan parameters: The experiment conducted with 10 

collaborators represent the 10 institutions and lasted for 300 

communication rounds to achieve the same results. OpenFL 

framework supports four aggregation algorithms in this 

experiment the FedOpt algorithm is used with the Adam 

optimizer. 

C. Experimental Results 

We conducted two experiments the first, followed the 
classical way of learning, the training model use a centralized 
dataset to predict the MGMT value. In the second, we use the 
same data set and the same Learning model but with the 
federated learning approach. The main goal is to show that the 
developed FL-based model can perform the same as the DL-
based model in addition to persevering the patient's privacy, 
preventing data transferring and aggregation from data 
owners, and using less computational power, which makes it 
better for healthcare applications. The two developed model 
were evaluated according to the performance of the model and 
the resulting values of the MGMT promoter methylation. 

1) Model performance: To test the performance of the 

machine learning model, 10% of the dataset has been allocated 

for testing the model and it achieved accuracy with a score 

96.21% and with 3.783 loss. 

The following line charts Fig. 8 illustrate the classical 
model performance over the twenty epochs for each scan type. 
a and b represent the training accuracy and Loss of the four 
scan types and each scan type is colored by a specific color. 
The first two scan types are colored in yellow and black for 
Flair and T1w respectively, while the last two scan types are 
colored in red and blue for T1wce and T2w, respectively. The 
validation accuracy and loss represented in c and d, 
respectively. 

The Federated learning model was also tested on 10% of 
the dataset and achieved an accuracy of 96.713% and a loss of 
3.287. Fig. 9 shows the performance of the same previous 
model but as the global model in the FL experiment in terms 
of training and validation. a and c manifest the validation and 
training accuracy curve in the yellow and blue colors over 300 
rounds and b and c manifest the validation and training loss. 

2) Predicted MGMT_value: The presentence of the 

MGMT protein is the main desired results of the proposed 

approach and the most important factor to measure the 

effectiveness of Federated Learning approach. The results of 

the two models are shown In Table III and Table IV. Using 

both federated and classical learning respectively. Each table 

consists of three columns. The first column represents the 

records of the patients, while the second column describes the 

patient ID and it was provided with the dataset, whereas the 

last column presents the predicated MGMT value. The 

predicted MGMT value for each patient in the two models are 

the same, which ensures the efficiencies of the federated 
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model to work as the classical one and produce the same 

results. 

 

Fig. 8.  (a) and (b) Represent the Training Accuracy and Loss for Four Scan 

Types and (c) and (d) Illustrates the Validation Accuracy and Loss for the 
Same MRI Scan Types. 

 

Fig. 9. (a and c) Represent the Global Accuracy Curves on the Training and 

Validation Data (b and d) Represent the Loss Obtain from the Training and 

Validation Data. 

TABLE III. RESULTS OF THE FEDERATED LEARNING MODEL 

Federated Learning Results 

Record BraTS21ID MGMT_value 

 0 1 0.6135 

1 13 0.4693 

2 15 0.4871 

3 27 0.6152 

4 37 0.4731 

---- -------- -------- 

80 826 0.5684 

81 829 0.5231 

82 833 0.4285 

83 997 0.5021 

84 1006 0.5481 

Several trials were applied using different values for the 
round number. The trials started from 10 rounds till reached 
500, and at 300 rounds the performance of the federated and 
the classical learning was approximately identical. The 
MGMT values from both models show a 99.99% similarity 
degree. 

TABLE IV. RESULTS OF THE CLASSICAL LEARNING MODEL 

Federated Learning Results 

Record BraTS21ID MGMT_value 

 0 1 0.6135 

1 13 0.4693 

2 15 0.4871 

3 27 0.6152 

4 37 0.4732 

---- -------- -------- 

80 826 0.5684 

81 829 0.5231 

82 833 0.4285 

83 997 0.5021 

84 1006 0.5481 

A sample of 87 patients was used in the experiment for 
testing and obtaining their MGMT values. Fig. 10(a) and (b) 
visualize the probability distribution of the patients using 
federated and classical learning respectively. Each class in 
federated learning is exactly equal in the number of patients to 
its corresponding class in classical learning. 

 

Fig. 10.  (a) MGMT Probability Distribution using Federated Learning (b) 

MGMT Probability Distribution using Classical Learning. 

VI. DISCUSSION 

The study proposed a methodology based on an improved 
efficientNetB3 model for the predicating the MGMT promoter 
methylation of GBM brain tumor with the aim of measuring 
the response of the tumor to the chemotherapy. At the 
beginning the data were obtained from the BraTS2021 dataset 
entirely.  The next step is converting the images from the 
DICOM to NFITI format. The reason for this conversion is to 
enhance the performance and it can be easy and simple in the 
processing. Then, the images in the NIfT format are 
normalized to be ready for feature extraction using the 
improved efficientNetB3. The features are extracted using the 
improved efficientNetB3 based on the combination of the 
CNN and RNN architectures. The entire methodology ran 
using two different approaches. The first approach is based on 
classical or conventional learning, while the second approach 
relies on the federated learning. The illustrated results in 
Table III, Table IV and Fig. 10, show that the proposed 
federated model architecture using the OpenFl framework and 
the BraTS2021 dataset through 300 communication rounds 
between the aggregator and 10 collaborators managed to 
surpass the limitation of the classic training model in the 
following points: 

1) Data privacy: Each one of the ten collaborators 

participates in the training process while, keeping its data 

private, only sharing results and its model gradients. 
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2) Data diversity: Federated learning facilitates training 

the machine learning model with various and diverse datasets 

from different institutions, eliminating the need for a 

centralized data center while making the local data of each 

collaborator sufficient for the training process as the local 

training model utilizes its local data and the gradients of the 

other collaborators. 

3) Real-time continual learning: Continual learning is 

done by using client data instead of aggregated data to 

improve models. 

4) Hardware efficiency: Since federated learning models 

operate without a central server, less complex hardware is 

needed. 

VII. CONCLUSION AND FUTURE WORK 

Our study explores various practical aspects of the 
federated model sharing with an emphasis on protecting the 
privacy of patient data in order to predict the MGMT promoter 
value of brain tumors. We demonstrate how clinical 
institutions can train their models without sharing their data by 
using federated learning. Our FL experiments shows that even 
with imbalanced datasets, such as the BraTS institutional 
distribution the FL approach among 10 institutions reached the 
training model to 99.99% of the model quality achieved with 
centralized data. 

Incorporating such an FL system into a clinical setting for 
multi-institutional collaboration, which produces computer-
aided analytics and assistive diagnostics, is expected to 
contribute to precision medicine at a catalytic level. 
Integrating knowledge from another institution into the trained 
models would be particularly beneficial since patient data 
wouldn't have to be shared, thereby removing concerns about 
privacy and data ownership. As a result, the final accuracy 
achieved a value of 96% on both classical and federated 
learning. This proves that the federated learning is more 
efficient in all terms as an environment than the classical 
learning. 

We are striving to improve the performance of the FL 
model to achieve the results with a smaller number of 
communication rounds and reduce time consumption in 
addition to increasing the number of collaborated institutions 
and exploring different workflows using swarm intelligence. 
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