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Abstract—Weather conditions have a significant effect on 

humans’ daily lives and production, ranging from clothing choices 

to travel, outdoor sports, and solar energy systems. Recent 

advances in computer vision based on deep learning methods have 

shown notable progress in both scene awareness and image 

processing problems. These results have highlighted network 

depth as a critical factor, as deeper networks achieve better 

outcomes. This paper proposes a deep learning model based on 

DenseNet-121 to effectively recognize weather conditions from 

images. DenseNet performs significantly better than previous 

models; it also uses less processing power and memory to further 

increase its efficiency. Since this field currently lacks adequate 

labeled images for training in weather image recognition, transfer 

learning and data augmentation techniques were applied. Using 

the ImageNet dataset, these techniques fine-tuned pre-trained 

models to speed up training and achieve better end results. 

Because DenseNet-121 requires sufficient data and is 

architecturally complex, the expansion of data via geometric 

augmentation—such as rotation, translation, flipping, and 

scaling—was critical in decreasing overfitting and increasing the 

effectiveness of fine-tuning. These experiments were conducted on 

the RFS dataset, and the results demonstrate both the efficiency 

and advantages of the proposed method, which achieved an 

accuracy rate of 95.9%. 
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I. INTRODUCTION 

Weather conditions have a significant effect on humans’ 
daily lives and production [1], ranging from clothing choices to 
travel, outdoor sports, and solar energy systems. The growth of 
the intelligent transportation field has further prompted the 
development of a system that can automatically detect weather 
conditions [2]. Previously, traditional weather classification 
systems relied on human observation, but these methods are 
prone to error and are also time consuming. Current weather 
recognition systems depend on hardware equipment such as 
sensors [3], but the number of sensors, as well as their upkeep, 
necessitates both installation and regular maintenance, which 
can be expensive. This is especially so considering the impact 
of the weather on the sensors themselves—as the sensors 
weather various conditions, their accuracy may decrease, which 
may lead them to report erroneous weather conditions [4]. 

Recent advances in computer vision have shown notable 
progress in both scene awareness and image processing 
problems. One such study utilized multiple techniques to 
classify, segment, and localize pixels within urban images [5]. 

Research such as this has led to advances in intelligent vision 
systems, which can accurately recognize weather conditions 
using colored images. Due to these advances, as well as the 
presence of security cameras, computer vision systems are 
well-suited for automatic weather detection. Machine learning-
based methods such as support vector machine (SVM), random 
forest, k-NN, and neural networks have since been proposed for 
weather condition recognition. They extract features from 
images, including saturation, contrast, noise, etc. The drawback 
is that these systems utilize multifaceted feature engineering as 
well as manual extraction, both of which increase their 
complexity and decrease their generalizability [6, 7]. 

Deep learning models such as AlexNet [8], VGG [9], 
Inception [10], and ResNet [11] have recently obtained 
outstanding performances in numerous computer vision 
applications, including image recognition, object detection, and 
semantic segmentation [12]. Deep learning models can obtain 
detailed data from weather images, which makes them more 
beneficial than classical machine learning methods. This is 
because deep learning techniques such as convolutional neural 
networks (CNNs) and ResNet have the capability to extract 
rich, abstract, and semantic information. For weather 
recognition in particular, they obtain better information than 
other techniques. Deep learning is, therefore, a more advanced 
machine learning method, one that can solve complicated 
problems that often stump traditional methods [13]. 

To further improve performance, researchers have 
constructed deeper and deeper CNNs, as the additional layers 
improve optimization. For example, AlexNet (the winner of 
ILSVRC2012) consists of eight layers, including five 
convolutional layers and three fully connected layers, VGG19 
consists of 16 convolutional layers and three fully connected 
layers. Inception (the winner of ILSVRC2014) is composed of 
21 convolutional layers and a single fully connected layer. 
Though these additional layers improve optimization, they 
increasingly expose CNNs to the critical issue of vanishing 
gradients. Several approaches have been proposed to address 
this, such as ReLU activation [14], batch normalization [15], 
and powerful weight initialization [13]. A second problem also 
arose, in that not all deep CNNs could be easily optimized. This 
has been addressed through two methods: the first is highway 
networks [16], which allow 2D-CNNs to connect via a memory 
device, thus training highway networks through gradient 
descent. The second is ResNets (the winner of ILSVRC2015), 
which simplified the former technique using a skip connection 
device, allowing deeper layers to receive data. The latter is 
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more efficient than the former. DenseNet architecture further 
improved upon this by connecting all layers with the CNN, 
thereby improving data flow [17]. 

This paper proposes a system based on a DenseNet-121 
deep learning model  to classify weather conditions from 
images. DenseNet has achieved excellent performance, while 
also utilizing less memory and processing power than other 
state-of-the-art techniques. The proposed system can be utilized 
in the monitoring of traffic conditions, intelligent transit 
systems, and auxiliary driving features in automobiles, among 
others. The main advantage of DenseNet-121 is that it addresses 
vanishing gradients, which has multiple positive effects: one, it 
lessens the training burden of deep learning models; two, it 
allows for the reuse of features; and three, it lowers parameter 
use as compared to other popular deep learning models. The 
largest challenge in implementing this model was the lack of a 
labelled training dataset, and so two techniques were 
implemented: transfer learning and data augmentation. The 
former uses an ImageNet [18] dataset to pretrain the model, 
which decreases training time. The latter prevents overfitting, 
and also improves fine-tuning, by increasing the size of the 
training set based on image geometric transformations such as 
rotation, translation, flipping, and scaling. Overall, the 
proposed system is efficient, effective, and responsive, which 
allows it to make the best possible decisions even in poor 
weather conditions. The contributions of this paper are as 
follows: 

• This paper presents a deep learning-based method using 
DenseNet-121 to effectively classify weather conditions 
from images in real time. The results have shown 
importance of model depth, as deeper models offer 
better results. 

• To train the DenseNet-121 model, the proposed model 
needed large amounts of data. To circumvent the 
difficulty of obtaining additional weather images, this 
paper applied transfer learning and geometric image 
data augmentation techniques to reduce convergence 
time and increase performance. 

The remainder of the paper is organized as follows: Section 
II provides the recent related works. Section III describes the 
model in detail. Section IV presents and discusses the 
experimental results. Finally, the conclusions and future works 
are presented in Section V. 

II. RELATED WORKS 

Early weather classification methods often extracted 
powerful features, a process that needed elaborate, hand-crafted 
features. Other methods utilized machine learning algorithms 
for classification, such as support vector machine (SVM), 
random forest, and K-NN. For example, Roser and Moosmann 
[6] proposed a method to define regions of interest. They 
employed a color histogram to extract the feature space, which 
was then passed into SVM to classify the weather images. The 
research in [19] concatenated the features extracted from a 
gradient amplitude histogram, the HSV color space, and road 
information. The extracted features were then fed into an 
AdaBoost algorithm to assign the image its weather label. 
Lagorio et al. [20] designed a statistical model based on a 

mixture of Gaussians to identity weather conditions from 
images. This mixture can identify both spatial and temporal 
changes, which assists the model in identifying the weather 
input. The downside of this method is that it cannot capture all 
weather events; it can only be implemented in particular 
conditions. Shen and Tan [21] built a weather condition 
detector, which can identify, for example, cloudy versus sunny 
weather using light illumination. In general, the methods that 
utilized hand-crafted weather features did not recognize 
weather conditions accurately. 

Recently, improvements in the fields of deep learning and 
CNNs have been applied to weather recognition tasks. New 
research has utilized deep learning algorithms for classifying 
weather from images. For instance, Xiao et al. [22] presented a 
MetaCNN for classifying weather phenomena. MetaCNN is a 
modified version of the VGG16 [9] model. In MetaCNN, the 
authors replaced the fully connected layers in VGG16 with a 
single, global, average pooling layer. The final output was a 
softmax that estimated the probability distribution for each 
weather class label. The authors introduced a new dataset called 
the weather phenomenon database (WEAPD) that consists of 
6,877 images for 11 different weather classes. Other 
researchers, such as Huang and Chang [23], employed a self-
organizing map (SOM) to automatically classify weather 
images based on six variables at five different weather stations 
in Taiwan. Xia et al. [24] modified ResNet-50 to ResNet-15 to 
classify weather images, where the convolutional layers 
extracted the weather features that would be fed into the 
softmax function for classification. Guerra et al. [4] proposed a 
framework to classify weather as rain, fog, or snow using super-
pixel masks that enhanced the input image. Then, the features 
were extracted using a pre-trained CNN and passed into an 
SVM for classification. Zhaoa et al. [1] developed a CNN-RRN 
model for multi-class weather on a single image, where the 
CNN was exploited to extract features. Next, the channel-wise 
attention model chose the most discriminative features; the 
convolutional LSTM was then used to estimate the weather 
class label. These deep learning methods of weather recognition 
are generally superior to traditional methods, but the limitations 
are as follows: one, these methods utilize large datasets, and 
two, they require a high-end GPU for training, making them 
computationally expensive. 

Due to the great performance of DenseNet architecture, it 
has been used in diverse areas, including disease diagnosis, in 
the detection of Alzheimer's disease using an MRI [25], 
COVID-19 from chest images [26], and plant diseases [27]. 

Depth is an important consideration in improving the 
findings of deep learning models. Because of this, the proposed 
model is based on DenseNet-121, which has dense connections 
and thereby increases accuracy. These connections are 
advantageous because they utilize feature reuse to remain 
compact; use feed-forward networks; lower the number of 
parameters needed; increase feature propagation; and 
encourage feature generation, all of which increase accuracy 
and speed. 

III. PROPOSED MODEL 

The workflow of the proposed system is shown in Fig. 1. 
First, the pretrained DenseNet-121 model was loaded. This 
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model was trained on ImageNet for weight initialization. The 
last layer was removed and replaced with a softmax with three 
neurons, where each neuron predicts the weather condition 
class (rain, fog, or snow). Then the model was re-trained and 
fine-tuned with the RFS dataset. In the testing phase, this 
trained model was efficiently used to estimate weather 
conditions. 

 

Fig. 1. The Workflow of the Proposed System. 

A. Model Architecture 

This paper utilized a Dense Convolutional Network 
(DenseNet) [28] comprised of 121 layers to classify weather 
images. DenseNet is a special kind of CNN that was originally 
proposed by Huang et al. It achieved state-of-the-art results on 
several image classification datasets, such as Cifar-10 and 
SVHN. In a DenseNet architecture, layers are connected with 
dense blocks, meaning that each layer utilizes inputs from all 
previous layers in order to create a feature map that will send 
data to all of the following layers. Therefore, the 𝑙𝑡ℎ-layer 
receives all previous features maps (𝑥0, 𝑥1, … … , 𝑥𝑙−1 ) as 
inputs: 

𝑥𝑙 = 𝐻𝑙([𝑥0, 𝑥1, … … , 𝑥𝑙−1 ])            (1) 

Here, [𝑥0, 𝑥1, … … , 𝑥𝑙−1 ] represents the concentration of all 

previous feature maps of 𝑙𝑡ℎ- layer. 𝑥𝑙 is the output of the 

𝑙𝑡ℎ layer, and 𝐻𝑙 represents 𝑙𝑡ℎ layer, which is a composition 
function consisting of three successive operations including 
batch normalization, a ReLU activation function, and 
convolution. DenseNet is similar to methods such as ResNet, 
but the latter combines previous layers with future layers while 
DenseNet concatenates layers instead. DenseNet approaches 
the problem of vanishing gradients by reusing features which 
also reduces the number of parameters. As shown in Fig. 2, 
DenseNet-121 utilizes four dense blocks. Between each block 
is a transition layer that utilizes down-sampling on the feature 
maps to create a 1× 1 convolution as well as a 2× 2 average 
pooling layer. The dense blocks comprise multiple 
convolutional layers, which are connected in series and serve as 
cross-layer connections between distant layers. To increase 
non-linearity, DenseNet-121 utilizes a ReLU activation 

function to increase non-linearity. The proposed ReLU 
activation is defined as follows: 

𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥)              (2) 

The last layer is a fully connected layer with a softmax 
function that predicts the probability of a weather image class. 

The softmax is defined by the following equation: 

 𝑠𝑚(𝑧)𝑖 =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝐶

𝑗=1

   for 𝑖 = 1, … … , 𝐶           (3) 

Here, 𝑧 = (𝑧1, … … , 𝑧𝐶) ∈ ℝ𝐶. 𝑧 is the input vector, and the 
exponential is implemented for each value 𝑧𝑖. Note that the sum 
of output vector 𝑠𝑚(𝑧) is equal to 1. A summary of the 
DenseNet-121 model layers is presented in Table I. 

 

Fig. 2. The DenseNet-121 Architecture, which Consists of Four Dense 

Block Layers and Three Transition Layers. 

TABLE I. LAYERS DETAILS OF DENSENET-121. THE DENSENET-121 HAS 

6, 12, 24, 16 LAYERS IN FOUR DENSE BLOCKS 

Layers Output size DenseNet-121 

Convolution 112 ×  112 7 ×  7 conv, stride 2 

Pooling 56 ×  56 3 ×  3 max pool, stride 2 

Dense Block (1) 56 ×  56 [
1 × 1 𝑐𝑜𝑛𝑣
3 × 3 𝑐𝑜𝑛𝑣

] ×  6 

Transition layer (1) 

56 × 56 1 × 1 𝑐𝑜𝑛𝑣 

28 × 28 
2 × 2 average pool, stride 

2 

Dense Block (2) 28 × 28 [
1 × 1 𝑐𝑜𝑛𝑣
3 × 3 𝑐𝑜𝑛𝑣

] ×  12 

Transition layer (2) 

28 × 28  1 × 1 𝑐𝑜𝑛𝑣 

14 × 14 
 2 × 2 average pool, 

stride 2 

Dense Block (3) 14 × 14 [
1 × 1 𝑐𝑜𝑛𝑣
3 × 3 𝑐𝑜𝑛𝑣

] ×  24 

Transition layer (3) 

14 × 14 1 × 1 𝑐𝑜𝑛𝑣 

7 × 7 
2 × 2 average pool, stride 

2 

Dense Block (4) 7 × 7 [
1 × 1 𝑐𝑜𝑛𝑣
3 × 3 𝑐𝑜𝑛𝑣

] ×  16 

Classification layer 
1 × 1 

 7 × 7 global average 

pool 

 Softmax layer 
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B. Transfer Learning 

The deep DenseNet-121 model requires a large training set 
to increase its accuracy rate, but collecting labelled weather 
images is difficult. Transfer learning (TL) has been proposed as 
a common technique to address this limitation. The TL strategy 
pre-trains a model on a large, labelled dataset and then transfers 
the gained knowledge (learned weights) to other related tasks 
within the same architecture design. It treats the model as a 
starting point in the target task’s training, which avoids the 
process of training the model from scratch with random weight 
initializations. Once TL is complete, the last layer must be 
altered to the number of required classes and then fine-tuned on 
the target dataset of interest. Recent research has demonstrated 
that TL improves performance rates compared to training a 
model from scratch on a small dataset. In addition, TL enhances 
generalization, reduces both overfitting training time, and 
decreases the labeled data required. Recently, TL has been 
applied widely in computer vision and natural language 
processing applications [29]. 

This research used a DenseNet-121 model pre-trained on 
the ImageNet dataset, which is composed of 1.2 million colored 
images in 1000 categories; therefore, the initialization of 
DenseNet-121 weights came from the pre-trained model. The 
output layer was removed and replaced with another layer 
containing three neurons, each matching up to a weather class 
label. A softmax function was applied in the final layer of the 
proposed model to predict the probability of each class as the 
output. Finally, the model was trained and fine-tuned across all 
layers on the RDF weather dataset. 

C. Image Data Augmentation 

Another way to deal with a limited training set is image data 
augmentation. This technique alters the images in the existing 
training set. This leads to an increase in the number of 
examples, and therefore the diversity, in the training set. 
Another advantage to data augmentation is the reduction of 
overfitting. Data augmentation can be divided into two main 
classes: geometric and color transformations. Geometric 
augmentation affects only the location of the pixels (e.g., 
flipping, shifting, cropping, and resizing) as illustrated in Fig. 
3. In contrast, color augmentation modifies the values of the 
image pixels (e.g., blurring and color distortion). Since the 
color of weather images plays a critical role in recognizing the 
weather, this paper only applied geometric augmentation to 
increase the training set while keeping the image pixel values. 
The geometric augmentation was performed as follows: 

• Rotation was performed by rotating the image between 
0 and 360 degrees randomly. This research rotated the 
images randomly in range from 0 to 45. 

• Flipping flipped the image across the x and/or y axis. 

• Translation moved the image horizontally or vertically 
(or both). Width translation and height translation were 
ranges (as a fraction of the total width or height) within 
which images were randomly translated vertically or 
horizontally. 

• Cropping removed part of the image. 

• Scaling increased or decreased the size of the image. 

 

Fig. 3. Different Methods of Data Augmentation Including Rotation, 

Flipping, Translation, and Cropping and Resizing. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Dataset 

In this work, we used the Rain Fog Snow (RFS) weather 
dataset. This is an open source dataset that was proposed by [2] 
to support computer vision and deep learning applications in 
classifying weather via images. The images are collected from 
different locations with different environmental settings. Each 
class contains 1100 images. Fig. 4 shows a sample of the RFS 
dataset for each weather class. This dataset is particularly 
effective for this research because it contains quality images, 
various environments, and targeted labels. All images were 
resized to 224 × 224 × 3 for suitable input into our DenseNet-
121 model. We randomly selected 800 images for training and 
300 for testing for each class. 

B. Pre‑processing 

Image pre-processing is significant in deep learning models. 
Min-max normalization is one of the common techniques used 
to rescale and transform original image pixels into an 
appropriate size, typically a range between 0 and 1. This 
removes biases by eliminating differences in magnitude. As a 
result, this normalization accelerates training and enhances the 
model’s performance. In this paper, we normalized the image 
pixels in a range from 0 to 1 using the following equation: 

𝑥′ =
𝑥−min (𝑥)

max (𝑥)−min (𝑥)
             (4) 

where 𝑥 is the original pixel value, 𝑥′ is the new value, and 
min (𝑥) and max(𝑥) represent the minimum and maximum 
pixel values of the image, respectively. 

 

Fig. 4. A Sample of RFS Dataset for each Class. Each Column Represents 

One Class. 
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C. Training Setting and Model Implementation 

The proposed system was implemented in Python. 
DenseNet-121, and other deep learning models, were 
developed using the PyTorch framework. The experiments 
were then performed using Google Colab Pro to access a faster 
GPU. Adam [29] optimizer was also used to optimize the 
weights and biases of the DenseNet-121 with a learning rate of 
0.001 and a momentum set to 0.9. The batch size was set to 64 
and the number of epochs to 100. The formula for updating 
weights based on Adam optimizer is defined as follows: 

𝜃𝑡+1 =  𝜃𝑡 + ∆𝜃𝑡              (5) 

where 

𝑣𝑡 =  𝛽1 ∗  𝑣𝑡−1 − (1 − 𝛽1) ∗ 𝑔𝑡            (6) 

𝑠𝑡 =  𝛽2 ∗  𝑠𝑡−1 − (1 − 𝛽2) ⋆  𝑔𝑡
2            (7) 

∆𝜃𝑡 = −𝜆
𝑣𝑡

√𝑠𝑡+𝜖
∗ 𝑔𝑡             (8) 

Here, 𝜆 indicates the initial learning rate, 𝑔𝑡 is the gradient 
with respect to 𝜃𝑡 at time 𝑡. 𝑣𝑡 represents the first moment 
estimate, 𝑠𝑡 is the second moment, and 𝛽1 and 𝛽2 are 
hyperparameters. The values of 𝛽1 and 𝛽2 are set to 0.9 and 
0.99, respectively. To minimize the loss function, the proposed 
model utilized a backpropagation algorithm. This research 
employed categorical cross-entropy as the loss function, 
defined as follows: 

ℒ(𝜃) = −
1

𝑛
∑ ∑ 𝑦𝑖,𝑗  log ( 𝐶

𝑗=1
𝑛
𝑖=1 �̂�𝑖,𝑗)           (9) 

where 𝑦 is the correct output, �̂� is the predicted output, 𝑛 
represents the number of training samples, and C is the number 
of classes (𝐶 = 3). 𝐿2 regularization was implemented to 
alleviate overfitting with a weight decay value of 10−4. Data 
augmentation was implemented using Transforms from the 
Torchvision library. It contains multiple transforms, which 
allowed for different types of augmentation on the images. The 
proposed model was initialized with weights that were pre-
trained on ImageNet dataset. Doing this allowed this research 
to leverage the pretrained model. Then, the model was 
customized to weather recognition by training and finetuning it 
on the weather dataset. 

D. Results and Discussion 

To gauge the efficacy of the proposed system for labelling 
weather conditions from images using DenseNet-121, the 
proposed system was compared to deep learning models that 
obtained state-of-the-art results in a variety of computer vision 
tasks. These models include AlexNet [8], VGG16 [9], Inception 
[10], and ResNet-18 [11]. To evaluate the performance of the 
model, this research used accuracy to measure performance. 
The accuracy of the testing set was computed as follows: 

𝐴𝑐𝑐 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 

Total number of testing examples
          (10) 

To compute this, the proposed DenseNet-121 model was 
trained on the FRS training set. Once this was completed, this 
research tested the proposed model and received, as an output, 
the classification results, which were one of three weather 
conditions: fog, rain, or snow. The accuracy of this model’s 

recognition was then tested on over 900 test images. The results 
are shown in Table II and Fig. 5. The proposed model obtained 
the best average accuracy l, with a rate of 95.6%, followed by 
ResNet-18, AlexNet, VGG16, and Inception, respectively. 
DenseNet-121 had an accuracy at least 2% higher than the other 
deep learning models. 

The results also show the accuracy of each category for each 
deep learning model. Among them, the proposed model 
achieved an accuracy rate on foggy images of 97.55%, 93.55% 
on rainy images, and 96.98% on snowy images. This means that 
the proposed DenseNet-121 model achieved superior results on 
classifying weather conditions from all three image types. 

This research also studied the effect of TL for training a 
model versus training one from scratch with random weights. 
To do this, this paper evaluated the performance of the 
proposed DenseNet-121, trained with initial weights set to the 
pre-trained model from ImageNet dataset, as compared to a 
second DenseNet-121 model that was trained from scratch with 
random weights at initialization. Table III displays the results. 
By utilizing weight initialization, the pre-trained model 
achieved an accuracy of 95.9% as compared to 91.3% for the 
model trained from scratch. Performing TL allows the 
necessary features to be extracted from ImageNet; by doing 
this, the data is used more efficiently and thereby the proposed 
model is trained to identify weather conditions more easily. A 
DenseNet-121 model with random weight initialization 
obtained accuracy rate of about 59% after the first iteration (see 
Fig. 6 (a)), while DenseNet-121 based on transfer learning 
obtained an accuracy rate of 85% after the first iteration. As 
shown in Fig. 6, the proposed TL model converged in fewer 
iterations than the model that started with random weights, in 
respect to loss and accuracy rate. This decreased the 
computation time. 

TABLE II. ACCURACY COMPARISONS OF THE PROPOSED METHOD WITH 

DIFFERENT DEEP LEARNING MODELS 

Model 
Foggy 

(%) 

Rainy 

(%) 

Snowy 

(%) 

Avg. Accuracy 

(%) 

VGG16 [9] 93.81 93.54 92.56 93.2 

Inception [10] 88.89 89.00 93.40 90.3 

AlexNet [8] 92.43 92.64 95.53 93.5 

ResNet-18 [11]  92.47 90.79 94.30 93.7 

DenseNet-121 

(proposed model) 
 97.55 93.55 96.98 95.9 

 

Fig. 5. Comparison of Average Accuracy for different Models. 
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(a) 

 
(b) 

Fig. 6. (a) The Testing Accuracy Achieved from the DenseNet-121 Models 

Trained from Scratch and with TL. (b) The Loss Values Obtained for the 

DenseNet-121 Models Trained from Scratch and TL. 

TABLE III. COMPARISON OF ACCURACY RATE OF DENSENET-121 BASED 

ON WEIGHT INITIALIZATION APPROACH 

Weight Initialization Approach Accuracy (%) 

Random weight initilization 91.3 

Pretained from ImageNet 95.7 

Deep learning models require massive amounts of training 
to achieve high accuracy. The training examples are augmented 
by rotation, flipping, and shifting, and the accuracy has been, 
therefore, improved. In addition, pre-training DenseNet-121 
with a large dataset such as ImageNet further improved the 
performance, and the model learned faster than the one trained 
from scratch. Data augmentation plays a significant role in 
reducing overfitting in particular when the training set is small. 

These results suggest that the performance of the proposed 
model outperformed previous research and state-of-the-art 
techniques. Continued hardware and software advances will 
enable researcher to build deeper neural networks, which have 
higher representation power than shallower ones. These results 
demonstrated the importance of network depth, as networks 
with more layers achieved better outcomes. One of DenseNet’s 
advantages is its increased flow of information and gradients, 
which improves training time. Each layer can access both the 
loss function and the original input, creating a deep supervision 
that trains deep architectures. In addition, feature propagation 
allows for the repetition, and efficient use, of features. It also 
reduces the parameters needed and, therefore, reduces the 
calculations needed, all of which is an advantage because 

DenseNet layers are narrow. They may have only 12 filters per 
layer, and may add only a small set of feature maps to the 
network’s collective knowledge; it is the final classifier that 
uses all the feature maps to make a decision. This paper’s 
results and analysis show that the proposed model classifies 
weather conditions accurately by utilizing DenseNet features 
effectively. Furthermore, the proposed model also works well 
in real-time environments, which is another advantage. 

V. CONCLUSIONS AND FUTURE WORKS 

Weather conditions have a significant impact on daily 
activities. Deep learning models have shown promising results 
in numerous computer vison and image analysis tasks. Recent 
research has demonstrated that CNNs can be deeper, and also 
more accurate and efficient, if there are shorter connections 
between the inputs and outputs. To test these hypotheses, this 
paper employed DenseNet-121 to recognize weather conditions 
from images. The results demonstrated that the proposed 
system, based on a DenseNet-121 model with transfer learning 
and data augmentation, maximized the accuracy rate with a 
small number of training examples. This paper also 
implemented and evaluated popular deep learning methods for 
recognizing weather conditions from images. 

Future works will focus on simplifying the DenseNet-121 
architecture to fit with edge devices while keeping the same 
performance. In addition, future research should apply self-
supervised learning to utilize an unlabelled training set in pre-
training, so that the proposed model can learn discriminative 
features. 
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