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Abstract—Unlike traditional recommendation systems that 

rely only on the user's preferences, context-aware 

recommendation systems (CARS) consider the user's contextual 

information such as (time, weather, and geographical location). 

These data are used to create more intelligent and effective 

recommendation systems. Time is one of the most important and 

influential factors that affect users’ preferences and purchasing 

behavior. Thus, in this paper, time-aware recommendation 

systems are investigated using two common methods (Bias and 

Decay) to incorporate the time parameter with three different 

recommendation algorithms known as Matrix Factorization, K-

Nearest Neighbor (KNN), and Sparse Linear Method (SLIM). The 

performance study is based on an e-commerce database that 

includes basic user purchasing actions such as add to cart and buy. 

Results are compared in terms of precision, recall, and Mean 

Average Precision (MAP) parameters. Results show that Decay-

MF and Decay-SLIM outperform the Bias CAMF and CA-SLIM. 

On the other hand, Decay-KNN reduced the accuracy of the RS 

compared to the context-unaware KNN. 

Keywords—Time-aware recommender system; context-aware 

recommender system; matrix factorization; K-Nearest Neighbor 

(KNN); and Sparse Linear Method (SLIM) 

I. INTRODUCTION AND BACKGROUND 

Recommender systems (RS) are intelligent tools and 
techniques used to recommend items to a user based on his/her 
preferences [1]. In Ecommerce Applications, a Recommender 
system is used to predict the product that a user is most likely 
to purchase. Companies like Netflix and Amazon use 
recommender systems to help their users to identify the correct 
product or movies based on their history[2]. 

Context-aware recommender systems (CARS) produce 
more significant recommendations by optimizing preferences 
to suit the current situation and conditions of the user (e.g., 
location, time, weather, device, etc.) [15,17]. This method has 
been proven to be effective in improving the performance of the 
recommendation system [3]. One of the most important 
contextual information that has been used in recommender 
systems is time, especially in the context of e-commerce 
applications. The winning team of the Netflix Prize competition 
[5] found that using time context can significantly increase the 
reliability of the recommendations. As users' preferences 
change over time, new fashions and interests are constantly 
emerging [4]. For example: seasonal changes (specific 
holidays) leading to different shopping patterns. Also, Product 
popularity are in a constant change. This leads consumers to 
constantly change their taste. Therefore, it was necessary for the 
recommendation systems to consider these changes in the 

behavior of users. One of the factors that facilitated research on 
the use of time in recommendation systems is the ease of 
extracting it, which does not require special devices or effort. 

The time Aware Recommender system (TARS) 's primary 
purpose is to deal with user preferences changes over time [18]. 
There are two types of user’s feedback that can be used with the 
time: implicit feedback and explicit feedback. In the explicit 
feedback the system must ask users to provide their ratings for 
items directly mostly using stars. However, in the implicit 
feedback approach, the system automatically tracks users’ 
preferences by monitoring the performed actions, such as which 
item they visited, where they clicked, which items they 
purchased, or how long they stayed on a web page. In the real 
word applications, any store can include a time-aware 
recommender system to work offline without the need to collect 
new data from users because it can simply use the user's implicit 
feedback (purchase data) with its timestamp. As it has been 
proven in this research, choosing the appropriate algorithm to 
use with the time data will improve the performance of the 
recommendation system, which will be reflected in the store's 
revenues. Some research discussed the impact of using time 
with user’s explicit feedback. However, research that consider 
purchasing information such as [3, 4, 6] did not address the time 
dimension. Due to the lack of datasets that uses implicit 
feedback (purchase information) with time factor in the field of 
e-commerce, the impact of linking these two parameters in the 
field of e-commerce has not been studied in the literature. Thus, 
many of the TARS research findings don't apply to e-
commerce. As this type of recommender system is concerned 
with not only the preferences of the user but also with the act of 
purchasing, which leads to increasing the store's earnings which 
is the main goal of any business. This work analyzes TARS 
with purchasing actions on an online shopping domain to 
achieve the goal of increasing the store revenue by enhancing 
the accuracy of the top 20 recommended items. 

In previous research [51] we incorporated time with the 
Matrix Factorization (MF) algorithm to improve the 
recommender system accuracy. In this research, we have used 
the Decay function method with two other states of art 
algorithms to compare the results and find out the most 
appropriate algorithm in the field of e-commerce that can be 
used with the common actions (add to cart and buy). The work's 
key contribution is to combine time with RS using two separate 
methodologies (Bias and Decay) and purchasing actions for 
online shopping recommendations. 

Bias is the first method, which uses time as the third 
dimension in the (user*item) rating matrix. The Decay function, 
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on the other hand, generates predicted ratings by combining 
implicit feedback (add to cart and buy) with temporal dynamics, 
giving the newly purchased items a higher weight than older 
ones. Then generating new predicted rates to replace the old 
rates. 

In this research, we evaluated the two techniques using three 
cutting-edge algorithms: Matrix Factorization (MF) [7], K-
Nearest Neighbor (KNN) [8], and Sparse Linear Method 
(SLIM) [9]. Precision, recall and Mean Average Precision 
(MAP) were used to evaluate the experimental results. 

A. Time-Aware Recommender System Categories 

Authors in [19] identified seven methods on how time factor 
may be used with recommender systems as follow: 

 Bias: In this method, the system records the time of the 
user's rating. Then Time will be added to the 
collaborative filtering algorithm as the matrix's third 
dimension. Collaborative filtering will compare users, 
identify similar users, and then predict user ratings for 
unrated items. 

 Decay: In this method, the system prioritizes new things 
above those with more recent interactions. 

 Micro-profile: The system saves distinct profiles for 
each user at different times. For example, a user can 
have two profiles, one for weekends and the other for 
weekdays. 

 Restriction: In this case, the recommender system (RS) 
matches the user's available time to the time when the 
item will be used. For example, if the user wants to eat 
dinner, the algorithm will only suggest restaurants that 
are open late. 

 Time Rating: Time is used to infer user preferences 
using implicit feedback. For example, the longer a user 
spends on a product page, the more the consumer likes 
that product. 

 Novelty: The recommendation system defines a limit 
date and will not recommend any items that are older 
than this date. For example, on a news website, RS will 
only recommend news that was published at least one 
day ago. 

 Sequence: The RS tracks items that are consumed one 
after another or in a certain order. For example, the 
system will recommend more products that are typically 
purchased along with the consumed product. 

In this paper, we investigated and compare the Bias and 
Decay categories by incorporating them with RSs Algorithms.  

B. Recommender Systems Algorithms 

There are three main techniques used in RS: content-based 
filtering, collaborative filtering, and hybrid filtering. However, 
our research scope is in Collaborative filtering algorithms (CF) 
which can be categorized into three main categories: 
neighborhood-based algorithms such as KNN, latent factor-
based algorithms such as MF, and non-neighborhood or latent 

factor algorithms such as Sparse Linear Method (SLIM) 
algorithm [11-14]. 

 Neighborhood Based Algorithms 

The K-Nearest Neighbors (KNN) algorithm depends on 
finding users who are similar to the current user. The behavior 
of the current user is thus predicted based on his/her closest 
neighbors [20]. The interaction matrix serves as the algorithm's 
initial input. The correlation between users is then used to 
compute similarity. The cosine similarity is applied and 
computed in this study as given in equation (1) [8]: 

𝑠𝑖𝑚(𝑢𝑎, 𝑢𝑏) =
∑ 𝑟𝑢𝑎,𝑖𝑟𝑢𝑏,𝑖𝑖

√∑ 𝑟2
𝑢𝑎,𝑖𝑖 ×∑ 𝑟2

𝑢𝑏,𝑖𝑖

            (1) 

Where 𝑠𝑖𝑚(𝑢𝑎, 𝑢𝑏)is the correlation between user a and 
user b and 𝑟𝑢𝑎,𝑖 is the rate by the user a for item i. k (number of 

the nearest neighbors) is a hyper-parameter that must be 
manually adjusted and cannot be learned by the system. The 
final step is to use the formula (2)[8] to calculate the rating 
prediction: 

𝑃𝑢𝑎,𝑖𝑥
= 𝑟𝑢𝑎

− +
∑ (𝑟𝑢𝑛,𝑖𝑥−𝑟𝑢𝑛

− )𝑠𝑖𝑚(𝑢𝑎,𝑢𝑛)𝑛∈𝑉

∑ |𝑠𝑖𝑚(𝑢𝑎,𝑢𝑛)|𝑢𝑛∈𝑁
           (2) 

N is the set of closest neighbors, while 𝑟−
𝑢𝑛

 is the average 

rate that one of the users in the N set has provided. 𝑃𝑢𝑎,𝑖𝑥
 

denotes the predicted rate of user a for item x, 𝑟𝑢𝑎,𝑖𝑥
 is the actual 

rate by user a for item x. 

 Matrix factorization Algorithm 

Matrix factorization (MF) is a form of latent factors 
technique used in RSs that uses Collaborative Filtering (CF). 
MF method begins by randomly initializing two matrices. The 
first is a (users*factors) matrix, while the second is a 
(factors*items) matrix. When these two matrices are multiplied 
together, we get the (users*items) matrix, which is the same 
size as the Rating Matrix that we're attempting to forecast [21]. 
The number of latent components we're utilizing to estimate the 
rating matrix is represented by dimension f (factors). f is usually 
between 10 and 250. 

This method, as stated in equation (3), seeks to fill the 
matrices P and Q by predicting the ratings in the training set [7]. 

min ∑ (𝑟𝑢𝑎,𝑖𝑥
− 𝑃𝑢𝑎,𝑖𝑥

)
2

(𝑢𝑎,𝑖𝑥)∈𝜏 = 𝑚𝑖𝑛𝑝∗,𝑞∗
∑ (𝑟𝑢𝑎,𝑖𝑥

−(𝑢𝑎,𝑖𝑥)∈𝜏

𝑞𝑖𝑥

𝑇 𝑃𝑢𝑎
)

2
+ 𝜆(‖𝑞𝑖𝑥

‖
2

+ ‖𝑝𝑢𝑎
‖

2
)            (3) 

Where 𝜆(‖𝑞𝑖𝑥
‖

2
+ ‖𝑝𝑢𝑎

‖
2

) is a regularization term 

intended to prevent overfitting. p and q are the two factors 
matrices. 

 Sparse Linear Method (SLIM) Algorithm 

Similar to the neighborhood-based approach, the sparse 
linear method (SLIM) method [9] tries to reduce the error rate 
by using the loss function rather than similarity to determine the 
difference between the training set and the test set. Equation 
(4)[9] illustrates the error function's definition as follows: 
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min𝑤∗
∑ (𝑟𝑢𝑎,𝑖𝑥

− 𝑟𝑢𝑎
𝑇 𝑤𝑖𝑥

) + 𝜆1‖𝑤𝑖𝑥
‖

2
+ 𝜆2‖𝑤𝑖𝑥

‖
1

  

 
(𝑢𝑎,𝑖𝑥)∈𝜏

 

𝑠. 𝑡 ‖𝑤𝑖𝑥
‖

1
≥ 0              (4) 

Where w is the item-item similarity learned by minimizing 
the error function, 𝑤𝑖𝑥

 is a column from the w matrix, 𝑟𝑢𝑎
𝑇 is the 

user rate in the training set, 𝑟𝑢𝑎,𝑖𝑥
 is the predicted rate for item 

x, and 𝜆1‖𝑤𝑖𝑥
‖

2
+ 𝜆2‖𝑤𝑖𝑥

‖
1

 
 are regularization terms to 

prevent overfitting. 

C. Evaluation Matrices 

There are several measures for defining the quality of the 
Top-N Recommender system. However, the main three are 
precision, recall, and MAP [10]. 

 Precision 

The percentage of recommended items in the Top-N set that 
are relevant is known as precision. For example, if precision at 
10 in a top-10 recommended items is 90%. This indicates that 
90% of the suggestions are useful to the user. According to [22], 
precision is calculated as follows: 

𝑝 =
# 𝑟𝑒𝑙𝑒𝑣𝑒𝑛𝑡 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑 𝑖𝑡𝑒𝑚𝑠

# 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑 𝑖𝑡𝑒𝑚𝑠 
            (5) 

 Recall 

Recall is the percentage of relevant items in the top-N 
recommended items. For instance, if we measured recall at 10 
and discovered that it is 40%. This indicates that the top-N 
results contain 40% of the entire number of relevant items. The 
following is the definition of mathematical recall [22]: 

𝑟 =
# 𝑟𝑒𝑙𝑒𝑣𝑒𝑛𝑡 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑 𝑖𝑡𝑒𝑚𝑠

# 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠
            (6) 

 Mean Average Precision (MAP): 

MAP is the mean of average precision, of all users. MAP 
can be calculated as follows [22]: 

𝑀𝐴𝑃 = ∑
𝑃@𝑖

𝑁
𝑟𝑖

𝑁
𝑖=1              (7) 

where N is the length of the list of recommended items and 
P@i is the precision at item i. 

The remainder of the paper is structured as follows: 

Section II provides a summary of related works. Section III 
explains Incorporating time context into RS algorithms. The 
implementation and experiment are found in Section IV. 
Section V explains the findings and discussion. Finally, in 
section VI, the conclusion is presented. 

II. RELATED WORK  

Many scientists investigated how time is used in RS. Some 
used it with rating prediction recommenders [29,27,30,33], 
while others used it with Top-N recommendations [25,26,37]. 
Precision, recall, and MAP may be applied for Top-N 
recommendations, whereas Mean Absolute Error (MAE) and 
Root mean squared error (RMSE) can be used for 
recommendation prediction. We will focus on Top-N 
recommendations in this study because they are commonly 

used in the commercial field, where the purpose of the 
recommender system is to select a few specific things that are 
most attractive to the user. 

The recommendation process may be carried out in 
different ways and using a variety of algorithms. 
Neighborhood-based algorithms and latent factor algorithms 
are the most popular types of traditional recommender systems. 
The recommender was applied using Matrix factorization and 
user-based K-nearest neighbor (KNN) in [23]. They created a 
simulated rating utilizing the decay function to aggregate 
implicit feedback datasets with time dynamics. The 
experimental findings showed that their suggested technique is 
successful in the multimedia domain for rating prediction and 
top-N recommendation. The study's [24] objective was to 
enhance the performance of neighborhood-based recommender 
systems using the time context with the decay function in 
addition to ratings. The author [25] employed content-based 
and collaborative filtering algorithms with pre- and post-
filtering that considered the time context. However, they do not 
provide any experimental tests on a dataset. Researchers in [25] 
classified the methods of using time context with RSs as decay, 
restriction, and novelty. Other researchers added the sequence 
category with the decay function [26]. 

the research [27] exploited using the time context to 
enhance the user-based collaborative filtering algorithm and 
proposed a weight formula to account for changes in the group 
users' preferences over time. Their technique raises the 
accuracy of the collaborative filtering (CF) algorithm on a 
movie dataset. A proactive Context-Aware RS is suggested by 
[28] for lecturers and scientists who would be providing 
learning resources for students. In [28], time is employed in the 
same way as Restriction; the RS seeks to locate learning 
materials that correspond to the real user's time. [29] suggested 
a method for predicting user preferences in a recommender 
system by learning the sequence of purchase history and taking 
preference changes into account. Using the micro profile 
technique, they use a Kalman filter to forecast user preference 
vectors from user characteristics. 

Time is widely implemented in the multimedia domain [23, 
24, 30-34,52] and learning domain [28, 35-37] [25, 26] 
according to the literature. However, in the e-commerce field, 
it is rarely utilized to study purchase data rather than just rating 
data. We can also see that user preferences fluctuate depending 
on the season and application domain. As a result, the method 
for dealing with time in one domain may not apply to another. 
We used the decay function to apply to the purchase date (add 
to cart & buying or transactions) in an online shopping system 
in this study. 

Many studies in the literature [24,26,27,30-33,53] used the 
MovieLens dataset, which contains the rating from the 
MovieLens website (movielens.org). The ratings are connected 
to the timestamp. Other research [23, 29] examined the Last.fm 
dataset, which includes a timestamp and a user's history of 
listings in addition to the user's properties. The Yelp dataset in 
[24] only gives a comprehensive perspective of restaurants, 
including overall user ratings. Finally, the D-Lib Magazine 
dataset [26] includes articles and numerous shorter items, as 
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well as digital collections, calls, and notifications from its 265 
issues. 

According to the literature, most of the datasets used do not 
include the implicit feedback of purchase data (buy and add-to-
cart) linked with time in the e-commerce environment. Table I 
shows a summary of the related work. 

TABLE I. RELATED WORK 

REF Algorithm 

Time-

aware RS 

category 

Implicit/explicit 

data 
Domain 

[23] 
KNN 

MF 
Decay 

User View 

history 

(Implicit) 

Music 

[24] KNN Decay 
Rating data 

(explicit) 

- Movies 

- Business 

Directory 

Service 

[25] 
Hybrid 

(CF+ Content Based) 

- Decay 

- 

Restriction 

- Novelty 

Date, Duration,  

Learning Time 

(implicit) 

Learning 

[29] 
Kalman filtering 

- Matrix factorization 

Micro-

profile 

User View 

history 

(Implicit) 

Music 

[38] CF Other - - 

[23]  
Matrix-factorization 

model 
Other 

Rating data 

(explicit) 
Movies 

[30] 
Time- and 

Community-Aware RS 
decay 

Rating data 

(explicit) 
Movies 

[31] 

Temporal overlapping 

community detection 

method 

Other 

Rating data 

(explicit) 

 

Movies 

[33] 

a novel  

dynamic 

recommender system. 

Other 
Rating data 

(explicit) 
Movies 

[36] 
knowledge-driven 

recommender 
Restriction - 

Mobile 

Learning on 

the Semantic 

Web 

[27] CF Decay 
Rating data 

(explicit) 
Movie 

[28] Context-aware RS Restriction - Learning 

[37] Hybrid Sequence - 
Learning 

environments 

[52] 
Novel 

next-item RS 
Sequence 

Interval and 
duration 

(implicit) 

Game-
playing data 

[53] Hybrid  Other 
Rating data 

(explicit) 
Movie 

In this research, we have used the Decay function method 
with three states of art algorithms in the field of e-commerce 
with two main implicit actions (add to cart and buy). The work's 
key contribution is to analyze the effect of combining the time 
context with RSs using two separate methodologies (bias, and 
decay) and user’s implicit feedback for online shopping 
recommendations. 

III.  INCORPORATING THE EXPONENTIAL DECAY FUNCTION 

INTO RECOMMENDER SYSTEM  

Our approach consists of three major phases as illustrated in 
Fig. 1. The first phase is data pre-processing where dataset 
converted to binary format. The second is the half-life decay 
function [30,31,33]. Finally, the contextual modeling where 

Multidimensional recommender (MD) is generated to produce 
the Top-N recommended items. the three phases are explained 
as follows: 

A. Pre-Processing Phase 

This phase involves converting the dataset in a compact 
format which includes the interaction condition and its value 
into a binary format that only uses 0s and 1s as shown in Fig.  
2. Converting the event types (add to cart and buy) to numerical 
numbers is also included in this phase. 

 

Fig. 1. Incorporating Time Dynamic with Recommender System. 

 

Fig. 2. Compact Format to Binary Format. 

We assume that user preferences are between one and five, 
which is the standard scale of user ratings in the literature. The 
value of purchasing action is set as five in this study as it 
represents the maximum number of prefaces a user would give 
to an item. The add-to-cart action is set to four as it represents 
lower interest than the purchase action. 
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B. Half-life Decay Function 

Generally, Exponential decay is a mathematical term that 
defines the process of reducing a value with constant 
percentage rate over time as shown in formula (8), where n 
represents the decay factor as shown in equation (9) [40]. 

𝑓𝑖𝑛𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 =
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡

2𝑛             (8) 

Where 

𝑛 = (𝑒𝑙𝑎𝑝𝑠𝑒𝑑 𝑡𝑖𝑚𝑒)/(ℎ𝑎𝑙𝑓 𝑙𝑖𝑓𝑒)            (9) 

ℎ𝑎𝑙𝑓 𝑙𝑖𝑓𝑒 =
𝑙𝑜𝑔2(𝑒𝑙𝑎𝑝𝑠𝑒𝑑 𝑡𝑖𝑚𝑒)

log (
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡

𝑓𝑖𝑛𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡
)
          (10) 

In our scenario, we assume that the user's interest in an item 
decreases over time by a fixed amount of value. We use the 
elapsed time to determine the half-life in equation (10). The 
elapsed time is the period between the present date and the time 
when the user gave an item a rating. The half-life is defined as 
the number of days required to reduce the weight of a user rate 
by half. For rating an item, the highest rate is five and the 
minimum rate is one. 

C. Contextual Modeling 

In this phase, the filtering according to context is applied as 
a part of the recommendation algorithms as follows. 

 Context-Aware Matrix Factorization (CAMF) 

To simulate the interaction between the items and the 
context, Context-Aware Matrix Factorization (CAMF) adds a 
factor B, as illustrated in equation (11)[2]: 

𝑃𝑢𝑎,𝑖𝑥,𝑐𝑎
= 𝑞𝑖𝑥

𝑇 (𝑝𝑢𝑎
+ |𝑁(𝑢𝑎)|

−1

2 ) ∑ 𝑦𝑗𝑗∈𝑁(𝑢𝑎) + 𝐵𝑖𝑥,𝑐𝑎
        (11) 

These factors B are learned using the error function which 
can be calculated as shown in equation (12)[2]: 

min𝑝∗,𝑞∗,𝑦∗,𝐵∗
∑ (𝑟𝑢𝑎,𝑖𝑥,𝑐𝑎

− 𝑞𝑖𝑥

𝑇 (𝑃𝑢𝑎
+( 𝑢𝑎,𝑖𝑥,𝑐𝑎)∈𝜏

|𝑁(𝑢𝑎)|
−1

2  ∑ 𝑦𝑗𝑗∈𝑁(𝑢𝑎) ) − 𝐵𝑖𝑥,𝑐𝑎
)

2

+ 𝜆(‖𝑞𝑖𝑥
‖

2
+ ‖𝑝𝑢𝑎

‖
2

+

∑ ‖𝑦𝑗‖
2

+𝑗∈𝑁(𝑢𝑎) 𝐵𝑖𝑥,𝑐𝑎

2)           (12) 

where N(𝑈𝑎) in (11),(12) is the set of items on which the 
user 𝑢𝑎 has given implicit feedback, the vector 𝑦𝑗 in (11),(12) 

represents the value of implicit feedback, and T is the set of all 
items i that both users 𝑈𝑎 and 𝑈𝑏 have rated. To avoid 

overfitting, the regularization term. 𝜆(‖𝑞𝑖𝑥
‖

2
+ ‖𝑝𝑢𝑎

‖
2

) is 

added to the error function. 

 Context-Aware Neighborhood Based Algorithm (CA-
KNN) 

Similar to the Context-Unaware Neighborhood Algorithm, 
the Context-Aware Neighborhood Algorithm, also known as 
Differential Context Weighting (DCW) [42], begins by 
determining the similarity between users. The set T - the set of 

all items i that both users 𝑢𝑎and 𝑢𝑏 have rated- is used for the 
summations in the similarity computations. The algorithm then 
maintains them along with the c1 and c2 time contexts where 
these ratings occurred. Equation (13) shows the incorporation 
of time in the similarity equation [42]: 

𝒔𝒊𝒎𝒄𝒂(𝒖𝒂, 𝒖𝒃) =
∑ 𝒓𝒖𝒂,𝒊,𝒄𝟏 𝒓𝒖𝒃,𝒊,𝒄𝟐

𝑱(𝒄𝟏,𝒄𝟐,𝝈𝟏) 
(𝒊,𝒄𝟏,𝒄𝟐)∈𝑻

√∑ 𝒓𝟐
𝒖𝒂,𝒊,𝒄𝟏 

 
(𝒊,𝒄𝟏,𝒄𝟐)∈𝑻 ∑ 𝒓𝟐

𝒖𝒂,𝒊,𝒄𝟐 ∑ 𝑱(𝒄𝟏,𝒄𝟐,𝝈𝟏)𝟐
(𝒊,𝒄𝟏,𝒄𝟐)∈𝑻

 
(𝒊,𝒄𝟏,𝒄𝟐)∈𝑻

      (13) 

Where J is the weighted Jaccard metric which can be 
computed as given in equation (14)[42] and the set 𝜎 contains 
the weights for each of the potential contexts: [42]: 

𝐽(𝑐1, 𝑐2, 𝜎 ) =
∑ 𝜎𝑓

 
𝑓∈𝑐1∩𝑐2

∑ 𝜎𝑓
 

𝑓∈𝑐1∩𝑐2

           (14) 

Finally, the predicted rates can be determined in the same 
way as the context-unaware method as illustrated in equation 
(15) [23]: 

𝑃𝑢𝑎,𝑖𝑥,𝑐𝑎
= 𝑟𝑢𝑎,𝑐𝑎

− +
∑ (𝑟𝑢𝑣,𝑖𝑥,𝑐1

𝐽(𝑐1,𝑐2,𝜎2)−𝑟𝑢𝑣,𝑐𝑎
− )𝑠𝑖𝑚𝑐𝑎(𝑢𝑎,𝑢𝑣)(𝑢𝑣,𝑐1)∈𝑉

∑ |𝑠𝑖𝑚𝑐𝑎(𝑢𝑎,𝑢𝑣)|(𝑢𝑣,𝑐1)∈𝑉
 (15) 

Where (𝑟𝑢𝑣,𝑐𝑎
− ) is the average user ratings in the active 

context and the rating 𝑟𝑢𝑣,𝑖𝑥,𝑐1
 is weighted by the Jaccard metric. 

the context in which the nearest neighbors have rated the item 
𝑖𝑥 stored in the set V represented by 𝑐1. 

 Context-Aware Sparse Linear Method (CA-SLIM) 

Context-Aware Sparse Linear (SLIM) changes the 
prediction equation based on the context of the rating (𝑐𝑎) 
applying equation (16)[41]: 

𝑃𝑢𝑎,𝑖𝑥,𝑐𝑎
= (𝑟𝑢𝑎

𝑇 + 𝑑𝑐𝑎
)𝑤𝑖𝑥

           (16) 

In this equation, 𝑑𝑐𝑎
 is the column in matrix D that contains 

the rating difference for each item-context interaction, which is 
referred to as the contextual rating deviations (CRD). The 
CRDs for all items in the context (𝑐𝑎) are stored in the vector 
𝑑𝑐𝑎

By adding it to the error function, the vectors 𝑑∗ and the 

matrix D are learned simultaneously with the matrix W, as 
illustrated in equation (17)[41]: 

min𝑤∗,𝑑∗
∑ (𝑟𝑢𝑎,𝑖𝑥

− (𝑟𝑢𝑎
𝑇 + 𝑑𝑐𝑎

)𝑤𝑖𝑥
)

 

( 𝑢𝑎,𝑖𝑥,𝑐𝑎)∈𝜏

+ 𝜆1‖𝑤𝑖𝑥
‖

2

+ 𝜆2‖𝑤𝑖𝑥
‖

1
+ 𝜆3‖𝑑𝑐𝑎

‖
2 

+ 𝜆4 ‖𝑑𝑐𝑎
‖

1
 

𝑠. 𝑡. |𝑤𝑖𝑥
| ≥ 0            (17) 

IV. IMPLEMENTATION 

The data was taken from a real-world e-commerce website 
(Gift Shop) and is part of the "Retailrocket" public dataset [39]. 
A visitor can do three sorts of actions: "view," "add to cart," and 
"transaction.". interactions are collected over a period of 4.5 
months. There are around 8k buy events and approximately 28k 
add-to-cart events. The day of the week and hour of the day 
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where the event happened were determined using the user id, 
item id, and Unix time. For example: “1439694000000, 1, 
view,100,” means visitorId = 1, clicked the item with id = 100 
at 1439694000000 (Unix timestamp). Then, for each of the 
user's events, we assume a rating value. For example, the 
transaction event has a value of five and the add-to-cart event 
has a value of four. We computed the elapsed time for each 
occurrence. Then we utilized it to calculate a new anticipated 
rate by giving less weight to the earlier event and finding the 
half-life value as explained in the previous section. 

A. Implementation Tools 

The CARSKIT Java Library is used to implement and 
expand the state-of-art context-aware algorithms. Numerous 
research [20, 45, 46] have used CARSKIT [44, 47] which is a 
Java-based open-source package for the context-aware 
recommendation. As a hardware tool, AZIZ High-Performance 
Computer (HPC) with 30GB RAM has been used. We modified 
the CARSKIT code to calculate the precision, recall, and MAP 
for a different number of recommended items N (from 1 to 20) 
to be able to track how the algorithms behave as N increases. 

B. Algorithm’s Hyper-parameters 

The parameters applied for each of the recommendation 
algorithms are shown in Table II. Number of factors parameter 
is used in MF, If the number of latent variables (number of 
factors) equals one, we are selecting the most popular things 
with the most interactions with no regard for personalization. 
Increasing the number of latent variables (the number of rows 
or columns associated with a single product or user) would 
increase personalization, and hence the RS's quality. However, 
if the number of latent components grows too large, it will 
generate an overfitting problem, lowering the quality of the 
recommendations. To avoid the overfitting problem, we'll need 
some regularization terms which is used to minimize overfitting 
while increasing the number of latent factors. In MF and SLIM, 
without a predefined stopping condition, iterative steps will 
continue forever. A limitation on running time or the number of 
iterations is often used to interrupt the infinite loop. In KNN 
which is known as Differential Context Weighting (DCW) [42] 
the threshold is applied to distinguish between frequent and 
infrequent variables and Particle Swarm Optimization (PSO) 
[43] is used to determine how much weight to give to each 
potential context. PSO iteratively seeks to enhance potential 
solutions based on a specified quality metric to find the best 
answer to an issue [16]. 

Based on the default parameters for CARSKIT [44] and the 
suitable values for our dataset, we determined the algorithm’s 
hyper-parameter values for our experiment as shown in Table 
II. We used a factor count of 10 to ensure that we had enough 
factors to adequately capture the variability in the data, but not 
too many that the training data would be overfitting. The 
maximum number of iterations required to obtain an accurate 
result is 100. Based on the "Retailrocket" dataset, which 
includes customer data from May 2015 to August 2015, we 
estimate a half-life of 43 days. The hyper-parameters for the 
three algorithms (MF, KNN, SLIM) with the three distinct 
techniques (baseline, bias, and decay) are shown in Table II. 

TABLE II. EXPERIMENT CASES AND ASSUMPTIONS 

 
Algorithms with 

cases 
Hyperparameters Values 

Matrix 

Factorization 

Case#A1: MF 

(Time un-

aware) 

Regularization factor 
default 

value 

# of iterations 100 

# of factors 10 

Case#A2: 

CAMF (Time 

aware (Bias)) 

Regularization factor 
default 

value 

# of iterations 100 

# of factors 10 

Case#A3: Decay 

CAMF (Time 

aware Decay) 

Regularization factor 
default 

value 

# of iterations 100 

# of factors 10 

 Half-life 43 

Sparse 

Linear 

Method 

Case#B1: SLIM 

(Time un-

aware) 

Regularization factor 
default 

value 

# Of iterations 100 

# Of neighbors 10 

Case#B2: 

CASLIM (Time 

aware (Bias)) 

Regularization factor 
default 

value 

# Of iterations 100 

# Of neighbors 10 

Case#B3: Decay 

CA-SLIM 

(Time aware 

(Decay)) 

Regularization factor 
default 

value 

# Of iterations 100 

 # Of neighbors 10 

 Half-life 43 

Nearest 

Neighbor 

Algorithm 

Case#C1: User-

Based KNN 

(Time un-

aware) 

# Of neighbors 10 

Case#C2: DCW 

(Time aware 

(Bias)) 

PSO parameters 
default 

value 

Threshold 0,5 

Case#C3: Decay 

DCW (Time 

aware (Decay)) 

PSO parameters 
default 

value 

Threshold 0,5 

Half-life 43 

V. RESULTS 

The application of the three RS algorithms Matrix 
Factorization (MF), K-Nearest Neighbor (KNN), and Sparse 
Linear Method is examined in this section (SLIM) using two 
different methods (Bias and Decay) as shown in Table II. The 
metrics used to analyze the experiment are Precision, Recall, 
and MAP. N is the number of suggested items, and the metrics 
are calculated for N=1 to N=20. 

A. Case A: Matrix Factorization (MF) 

This section uses two methods – Bias (traditional) and 
Decay- to illustrate the effect of introducing time into the matrix 
factorization algorithm. The accuracy, recall, and MAP for the 
MF are shown in Fig. 3, 4, and 5, respectively. The decay 
technique outperformed the Bias-CAMF and MF in terms of 
accuracy, recall, and MAP, with a 0.05 percent in precision, 
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0.45 percent recall, and 0.16 percent MAP as shown in Table 
III. 

 

Fig. 3. MF, CAMF, and Decay CAMF Precision. 

 

Fig. 4. MF, CAMF, and Decay CAMF Recall. 

 

Fig. 5. MF, CAMF, and Decay CAMF MAP. 

TABLE III. AVG MF PRECISION, RECALL, AND MAP 

 
AVG Precision 

percentage 

AVG Recall 

percentage 

AVG MAP 

percentage 

MF 0.020 0.220 0.050 

CAMF 0.020 0.240 0.050 

Decay & CAMF 0.050 0.450 0.160 

B. Case B: Sparse Lanier Method (SLIM) 

Using two approaches (Bias and Decay), this section 
highlights the effect of adding time with the Sparse Lanier 
Method (SLIM) algorithm. Fig. 6, 7, and 8 depict the SLIM's 
precision, recall, and MAP, respectively. Table IV shows that 
the decay technique outperformed the time unaware SLIM and 
bias CA-SLIM in terms of accuracy, recall, and MAP, with 
precision, recall, and MAP of 0.22 percent, 1.40 percent, and 
0.78 percent, respectively. 

 

Fig. 6. SLIM, CA-SLIM, and Decay CA-SLIM Precision. 

 

Fig. 7. SLIM, CA-SLIM, and Decay CA-SLIM Recall. 

 

Fig. 8. SLIM, CA-SLIM, and Decay CA-SLIM MAP. 

TABLE IV. AVG SLIM PRECISION, RECALL, AND MAP 

 
AVG Precision 

Percentage 

AVG Recall 

Percentage 

AVG MAP 

Percentage 

SLIM 0.130 0.800 0.550 

CA-SLIM 0.130 0.690 0.450 

Decay & CA-

SLIM 
0.220 1.400 0.780 

C. Case C: Nearest Neighbor (KNN) 

Using two approaches, this section highlights the effect of 
adding time with the KNN algorithm. Fig. 9, 10, and 11 depict 
the KNN's precision, recall, and mean absolute deviation, 
respectively. As shown in Table V, the average results indicate 
that using the time context in Bias and decay method decreases 
the efficiency of the RS with Avg precision, recall, and MAP 
of 0.04%, 0.37%, and 0.10% respectively. 
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Fig. 9. KNN, DCW, Decay DCW Precision. 

 

Fig. 10. Fig 1 Recall for KNN, DCW, Decay DCW 

 

Fig. 11. Fig 2 MAP for KNN, DCW, Decay DCW 

TABLE V. AVG KNN (RECALL, PRECISION, AND MAP) 

 
AVG Precision 

Percentage 

AVG Recall 

Percentage 

AVG MAP 

Percentage 

KNN 0.070 0.460 0.260 

DCW 0.020 0.220 0.060 

Decay DCW 0.040 0.370 0.100 
 

D. Half-Life Decay with All Algorithms (MF, SLIM, KNN) 

Comparison 

The outcomes of three RS techniques (Matrix Factorization 
(MF), K-Nearest Neighbor (KNN), and Sparse Linear Method 
(SLIM)) are compared in this section: Fig. 12 and 13 illustrate 
the accuracy of the three RS methods with The Decay factor. 
With a significant difference, Decay CA-SLIM outscored the 
other methods. CAMF and DCW, on the other hand, have 
approximately similar Average-performances. 

 

Fig. 12. The Decay Time-Aware Algorithms' Precision. 

 

Fig. 13. The Decay Time-Aware Algorithms' Avg- Precision. 

As seen in Fig. 14 and 15, Decay CA-SLIM outperformed 
the other algorithms by a significant margin. With 0.45 percent 
and 0.37 percent, respectively. while CAMF and DCW have a 
similar Average-performance. 

 

Fig. 14. The Decay Time-Aware Algorithms’ Recall. 

 

Fig. 15. The Decay Time-Aware Algorithms' Average Recall. 

Fig. 16 and 17 depict the MAP for Decay DCW, Decay 
CAMF, and Decay CA-SLIM, respectively. For the three 
approaches, the avg-MAP values are 0.1 percent, 0.7 percent, 
and 0.16 percent, respectively. 
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Fig. 16. The Decay Time-Aware Algorithms MAP. 

 

Fig. 17. The Decay Time-Aware Algorithms AVG-MAP. 

E. Findings 

Based on the experiment results, we conclude that in the e-
commerce domain that uses purchasing data, the item-oriented, 
decay time-aware recommender algorithms outperform 
baseline context-aware algorithms and context-unaware 
algorithms. This conclusion is based on the fact that the overall 
effectiveness improves when time information is used. 
Furthermore, we arrive at the conclusion that the sparse linear 
approach, which has proven positive performance for the top-N 
recommendation in this research may not necessarily transition 
well to other datasets in the literature. 

 The average findings show that the decay technique 
outperformed the Bias CAMF and time unaware MF, 
with precision, recall, and MAP of 0.05 percent, 0.45 
percent, and 0.16 percent, respectively. 

 The decay technique outscored the Bias CA-SLIM and 
time unaware SLIM approach, with precision, recall, 
and MAP of 0.22, 1.40, and 0.78, respectively. 

 Adding the time context reduces the accuracy of the 
recommendation process in the KNN technique. In 
addition to the algorithm's incredibly high running time 
(weeks to execute one single run), which obstructed us 
from running all combinations of hyper-parameters. 

 Running the KNN and SLIM with no limit on the 
number of neighbors had to be left out because it took 
weeks to execute one single run. 

 Given that our utilized dataset has a density of = 0.0124 
percent. The results suggest that adding decay context-
awareness to KNN algorithms reduces the accuracy of 
the algorithms for all recommendation list lengths N. 
However, decay context-awareness improves the 
efficacy of the Sparse Linear Method (SLIM) and 
Matrix Factorization. 

 In the online shopping area, the SLIM method 
outperforms both the KNN and MF algorithms using the 
half-life decay function. It also performs well in terms 
of Top-N recommendations. The increase in 

effectiveness was proven to be related to the average 
number of interactions per item[48]. 

 In our dataset the number of interactions per user is 
limited. Therefore, item-oriented algorithms like SLIM 
perform better than user-oriented algorithms like KNN. 

 Because the SLIM method bases its predictions on item 
similarity coefficients, it works well on our dataset. Due 
to the data sparsity (limited numbers of interactions per 
user), some algorithms (e.g., KNN) perform poorly in 
terms of recommendations accuracy because it depends 
on the user’s similarity. 

 Our research results are consistent with the research [9, 
49, 50] that reported increases in effectiveness when 
using SLIM instead of KNN or MF. this is since SLIM 
is specifically designed for the top-N recommendation 
task. 

Overall, we conclude that, for the datasets with limited 
numbers of interactions per users the use of item-oriented decay 
time-aware recommender systems lead to better performance 
when compared to bias context aware recommender systems 
and time-unaware recommender systems. 

VI. CONCLUSION 

This paper used the user implicit feedback (add to cart and 
buy) associated with time context to improve the RS 
performance in online shopping systems. Bias and Decay 
methods were used to incorporate the time data into RSs. The 
experiment included incorporating time with three state-of art-
algorithms (MF, KNN, and SLIM). To compare the 
performance of the RSs we applied three cases for each 
algorithm (time unaware RS, Bias time aware RS, and Decay 
time aware RS). Precision, Recall, and MAP were used to 
compare the performance between the different algorithms and 
between the three cases in each algorithm. As a result, Decay-
MF and Decay-SLIM outperform the time Bias MF and SLIM. 
On the other hand, Decay-KNN reduced the accuracy of the RS 
compared to the context UN-aware KNN. The results that were 
reached from the study achieved the goal of the research, which 
is analyzing and finding the most appropriate algorithm in the 
field of e-commerce to build a time-aware recommendation 
system using the user's implicit feedback (purchasing data). As 
a future work, this study might be applied to a larger dataset 
with all combinations of algorithms' parameters and with 
unlimited number of neighbors. This study might also be 
expanded by combining the decay function approach with other 
RSs algorithms and on different domains datasets. 
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