
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

602 | P a g e

www.ijacsa.thesai.org

Exponential Decay Function-Based Time-Aware

Recommender System for e-Commerce Applications

Ayat Yehia Hassan1, Dr.Etimad Fadel2, Dr.Nadine Akkari3

Computer Science, King Abdul-Aziz University, Jeddah, Saudi Arabia1, 2

Computer Science, Jeddah International College, Jeddah, Saudi Arabia3

Abstract—Unlike traditional recommendation systems that

rely only on the user's preferences, context-aware

recommendation systems (CARS) consider the user's contextual

information such as (time, weather, and geographical location).

These data are used to create more intelligent and effective

recommendation systems. Time is one of the most important and

influential factors that affect users’ preferences and purchasing

behavior. Thus, in this paper, time-aware recommendation

systems are investigated using two common methods (Bias and

Decay) to incorporate the time parameter with three different

recommendation algorithms known as Matrix Factorization, K-

Nearest Neighbor (KNN), and Sparse Linear Method (SLIM). The

performance study is based on an e-commerce database that

includes basic user purchasing actions such as add to cart and buy.

Results are compared in terms of precision, recall, and Mean

Average Precision (MAP) parameters. Results show that Decay-

MF and Decay-SLIM outperform the Bias CAMF and CA-SLIM.

On the other hand, Decay-KNN reduced the accuracy of the RS

compared to the context-unaware KNN.

Keywords—Time-aware recommender system; context-aware

recommender system; matrix factorization; K-Nearest Neighbor

(KNN); and Sparse Linear Method (SLIM)

I. INTRODUCTION AND BACKGROUND

Recommender systems (RS) are intelligent tools and
techniques used to recommend items to a user based on his/her
preferences [1]. In Ecommerce Applications, a Recommender
system is used to predict the product that a user is most likely
to purchase. Companies like Netflix and Amazon use
recommender systems to help their users to identify the correct
product or movies based on their history[2].

Context-aware recommender systems (CARS) produce
more significant recommendations by optimizing preferences
to suit the current situation and conditions of the user (e.g.,
location, time, weather, device, etc.) [15,17]. This method has
been proven to be effective in improving the performance of the
recommendation system [3]. One of the most important
contextual information that has been used in recommender
systems is time, especially in the context of e-commerce
applications. The winning team of the Netflix Prize competition
[5] found that using time context can significantly increase the
reliability of the recommendations. As users' preferences
change over time, new fashions and interests are constantly
emerging [4]. For example: seasonal changes (specific
holidays) leading to different shopping patterns. Also, Product
popularity are in a constant change. This leads consumers to
constantly change their taste. Therefore, it was necessary for the
recommendation systems to consider these changes in the

behavior of users. One of the factors that facilitated research on
the use of time in recommendation systems is the ease of
extracting it, which does not require special devices or effort.

The time Aware Recommender system (TARS) 's primary
purpose is to deal with user preferences changes over time [18].
There are two types of user’s feedback that can be used with the
time: implicit feedback and explicit feedback. In the explicit
feedback the system must ask users to provide their ratings for
items directly mostly using stars. However, in the implicit
feedback approach, the system automatically tracks users’
preferences by monitoring the performed actions, such as which
item they visited, where they clicked, which items they
purchased, or how long they stayed on a web page. In the real
word applications, any store can include a time-aware
recommender system to work offline without the need to collect
new data from users because it can simply use the user's implicit
feedback (purchase data) with its timestamp. As it has been
proven in this research, choosing the appropriate algorithm to
use with the time data will improve the performance of the
recommendation system, which will be reflected in the store's
revenues. Some research discussed the impact of using time
with user’s explicit feedback. However, research that consider
purchasing information such as [3, 4, 6] did not address the time
dimension. Due to the lack of datasets that uses implicit
feedback (purchase information) with time factor in the field of
e-commerce, the impact of linking these two parameters in the
field of e-commerce has not been studied in the literature. Thus,
many of the TARS research findings don't apply to e-
commerce. As this type of recommender system is concerned
with not only the preferences of the user but also with the act of
purchasing, which leads to increasing the store's earnings which
is the main goal of any business. This work analyzes TARS
with purchasing actions on an online shopping domain to
achieve the goal of increasing the store revenue by enhancing
the accuracy of the top 20 recommended items.

In previous research [51] we incorporated time with the
Matrix Factorization (MF) algorithm to improve the
recommender system accuracy. In this research, we have used
the Decay function method with two other states of art
algorithms to compare the results and find out the most
appropriate algorithm in the field of e-commerce that can be
used with the common actions (add to cart and buy). The work's
key contribution is to combine time with RS using two separate
methodologies (Bias and Decay) and purchasing actions for
online shopping recommendations.

Bias is the first method, which uses time as the third
dimension in the (user*item) rating matrix. The Decay function,

https://www.analyticssteps.com/blogs/using-data-handling-and-digital-marketing-maximise-customer-experience-netflix-case-study

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

603 | P a g e

www.ijacsa.thesai.org

on the other hand, generates predicted ratings by combining
implicit feedback (add to cart and buy) with temporal dynamics,
giving the newly purchased items a higher weight than older
ones. Then generating new predicted rates to replace the old
rates.

In this research, we evaluated the two techniques using three
cutting-edge algorithms: Matrix Factorization (MF) [7], K-
Nearest Neighbor (KNN) [8], and Sparse Linear Method
(SLIM) [9]. Precision, recall and Mean Average Precision
(MAP) were used to evaluate the experimental results.

A. Time-Aware Recommender System Categories

Authors in [19] identified seven methods on how time factor
may be used with recommender systems as follow:

 Bias: In this method, the system records the time of the
user's rating. Then Time will be added to the
collaborative filtering algorithm as the matrix's third
dimension. Collaborative filtering will compare users,
identify similar users, and then predict user ratings for
unrated items.

 Decay: In this method, the system prioritizes new things
above those with more recent interactions.

 Micro-profile: The system saves distinct profiles for
each user at different times. For example, a user can
have two profiles, one for weekends and the other for
weekdays.

 Restriction: In this case, the recommender system (RS)
matches the user's available time to the time when the
item will be used. For example, if the user wants to eat
dinner, the algorithm will only suggest restaurants that
are open late.

 Time Rating: Time is used to infer user preferences
using implicit feedback. For example, the longer a user
spends on a product page, the more the consumer likes
that product.

 Novelty: The recommendation system defines a limit
date and will not recommend any items that are older
than this date. For example, on a news website, RS will
only recommend news that was published at least one
day ago.

 Sequence: The RS tracks items that are consumed one
after another or in a certain order. For example, the
system will recommend more products that are typically
purchased along with the consumed product.

In this paper, we investigated and compare the Bias and
Decay categories by incorporating them with RSs Algorithms.

B. Recommender Systems Algorithms

There are three main techniques used in RS: content-based
filtering, collaborative filtering, and hybrid filtering. However,
our research scope is in Collaborative filtering algorithms (CF)
which can be categorized into three main categories:
neighborhood-based algorithms such as KNN, latent factor-
based algorithms such as MF, and non-neighborhood or latent

factor algorithms such as Sparse Linear Method (SLIM)
algorithm [11-14].

 Neighborhood Based Algorithms

The K-Nearest Neighbors (KNN) algorithm depends on
finding users who are similar to the current user. The behavior
of the current user is thus predicted based on his/her closest
neighbors [20]. The interaction matrix serves as the algorithm's
initial input. The correlation between users is then used to
compute similarity. The cosine similarity is applied and
computed in this study as given in equation (1) [8]:

𝑠𝑖𝑚(𝑢𝑎, 𝑢𝑏) =
∑ 𝑟𝑢𝑎,𝑖𝑟𝑢𝑏,𝑖𝑖

√∑ 𝑟2
𝑢𝑎,𝑖𝑖 ×∑ 𝑟2

𝑢𝑏,𝑖𝑖

 (1)

Where 𝑠𝑖𝑚(𝑢𝑎, 𝑢𝑏)is the correlation between user a and
user b and 𝑟𝑢𝑎,𝑖 is the rate by the user a for item i. k (number of

the nearest neighbors) is a hyper-parameter that must be
manually adjusted and cannot be learned by the system. The
final step is to use the formula (2)[8] to calculate the rating
prediction:

𝑃𝑢𝑎,𝑖𝑥
= 𝑟𝑢𝑎

− +
∑ (𝑟𝑢𝑛,𝑖𝑥−𝑟𝑢𝑛

−)𝑠𝑖𝑚(𝑢𝑎,𝑢𝑛)𝑛∈𝑉

∑ |𝑠𝑖𝑚(𝑢𝑎,𝑢𝑛)|𝑢𝑛∈𝑁
 (2)

N is the set of closest neighbors, while 𝑟−
𝑢𝑛

 is the average

rate that one of the users in the N set has provided. 𝑃𝑢𝑎,𝑖𝑥

denotes the predicted rate of user a for item x, 𝑟𝑢𝑎,𝑖𝑥
 is the actual

rate by user a for item x.

 Matrix factorization Algorithm

Matrix factorization (MF) is a form of latent factors
technique used in RSs that uses Collaborative Filtering (CF).
MF method begins by randomly initializing two matrices. The
first is a (users*factors) matrix, while the second is a
(factors*items) matrix. When these two matrices are multiplied
together, we get the (users*items) matrix, which is the same
size as the Rating Matrix that we're attempting to forecast [21].
The number of latent components we're utilizing to estimate the
rating matrix is represented by dimension f (factors). f is usually
between 10 and 250.

This method, as stated in equation (3), seeks to fill the
matrices P and Q by predicting the ratings in the training set [7].

min ∑ (𝑟𝑢𝑎,𝑖𝑥
− 𝑃𝑢𝑎,𝑖𝑥

)
2

(𝑢𝑎,𝑖𝑥)∈𝜏 = 𝑚𝑖𝑛𝑝∗,𝑞∗
∑ (𝑟𝑢𝑎,𝑖𝑥

−(𝑢𝑎,𝑖𝑥)∈𝜏

𝑞𝑖𝑥

𝑇 𝑃𝑢𝑎
)

2
+ 𝜆(‖𝑞𝑖𝑥

‖
2

+ ‖𝑝𝑢𝑎
‖

2
) (3)

Where 𝜆(‖𝑞𝑖𝑥
‖

2
+ ‖𝑝𝑢𝑎

‖
2

) is a regularization term

intended to prevent overfitting. p and q are the two factors
matrices.

 Sparse Linear Method (SLIM) Algorithm

Similar to the neighborhood-based approach, the sparse
linear method (SLIM) method [9] tries to reduce the error rate
by using the loss function rather than similarity to determine the
difference between the training set and the test set. Equation
(4)[9] illustrates the error function's definition as follows:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

604 | P a g e

www.ijacsa.thesai.org

min𝑤∗
∑ (𝑟𝑢𝑎,𝑖𝑥

− 𝑟𝑢𝑎
𝑇 𝑤𝑖𝑥

) + 𝜆1‖𝑤𝑖𝑥
‖

2
+ 𝜆2‖𝑤𝑖𝑥

‖
1

(𝑢𝑎,𝑖𝑥)∈𝜏

𝑠. 𝑡 ‖𝑤𝑖𝑥
‖

1
≥ 0 (4)

Where w is the item-item similarity learned by minimizing
the error function, 𝑤𝑖𝑥

 is a column from the w matrix, 𝑟𝑢𝑎
𝑇 is the

user rate in the training set, 𝑟𝑢𝑎,𝑖𝑥
 is the predicted rate for item

x, and 𝜆1‖𝑤𝑖𝑥
‖

2
+ 𝜆2‖𝑤𝑖𝑥

‖
1

 are regularization terms to

prevent overfitting.

C. Evaluation Matrices

There are several measures for defining the quality of the
Top-N Recommender system. However, the main three are
precision, recall, and MAP [10].

 Precision

The percentage of recommended items in the Top-N set that
are relevant is known as precision. For example, if precision at
10 in a top-10 recommended items is 90%. This indicates that
90% of the suggestions are useful to the user. According to [22],
precision is calculated as follows:

𝑝 =
𝑟𝑒𝑙𝑒𝑣𝑒𝑛𝑡 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑 𝑖𝑡𝑒𝑚𝑠

𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑 𝑖𝑡𝑒𝑚𝑠
 (5)

 Recall

Recall is the percentage of relevant items in the top-N
recommended items. For instance, if we measured recall at 10
and discovered that it is 40%. This indicates that the top-N
results contain 40% of the entire number of relevant items. The
following is the definition of mathematical recall [22]:

𝑟 =
𝑟𝑒𝑙𝑒𝑣𝑒𝑛𝑡 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑 𝑖𝑡𝑒𝑚𝑠

𝑎𝑙𝑙 𝑡ℎ𝑒 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠
 (6)

 Mean Average Precision (MAP):

MAP is the mean of average precision, of all users. MAP
can be calculated as follows [22]:

𝑀𝐴𝑃 = ∑
𝑃@𝑖

𝑁
𝑟𝑖

𝑁
𝑖=1 (7)

where N is the length of the list of recommended items and
P@i is the precision at item i.

The remainder of the paper is structured as follows:

Section II provides a summary of related works. Section III
explains Incorporating time context into RS algorithms. The
implementation and experiment are found in Section IV.
Section V explains the findings and discussion. Finally, in
section VI, the conclusion is presented.

II. RELATED WORK

Many scientists investigated how time is used in RS. Some
used it with rating prediction recommenders [29,27,30,33],
while others used it with Top-N recommendations [25,26,37].
Precision, recall, and MAP may be applied for Top-N
recommendations, whereas Mean Absolute Error (MAE) and
Root mean squared error (RMSE) can be used for
recommendation prediction. We will focus on Top-N
recommendations in this study because they are commonly

used in the commercial field, where the purpose of the
recommender system is to select a few specific things that are
most attractive to the user.

The recommendation process may be carried out in
different ways and using a variety of algorithms.
Neighborhood-based algorithms and latent factor algorithms
are the most popular types of traditional recommender systems.
The recommender was applied using Matrix factorization and
user-based K-nearest neighbor (KNN) in [23]. They created a
simulated rating utilizing the decay function to aggregate
implicit feedback datasets with time dynamics. The
experimental findings showed that their suggested technique is
successful in the multimedia domain for rating prediction and
top-N recommendation. The study's [24] objective was to
enhance the performance of neighborhood-based recommender
systems using the time context with the decay function in
addition to ratings. The author [25] employed content-based
and collaborative filtering algorithms with pre- and post-
filtering that considered the time context. However, they do not
provide any experimental tests on a dataset. Researchers in [25]
classified the methods of using time context with RSs as decay,
restriction, and novelty. Other researchers added the sequence
category with the decay function [26].

the research [27] exploited using the time context to
enhance the user-based collaborative filtering algorithm and
proposed a weight formula to account for changes in the group
users' preferences over time. Their technique raises the
accuracy of the collaborative filtering (CF) algorithm on a
movie dataset. A proactive Context-Aware RS is suggested by
[28] for lecturers and scientists who would be providing
learning resources for students. In [28], time is employed in the
same way as Restriction; the RS seeks to locate learning
materials that correspond to the real user's time. [29] suggested
a method for predicting user preferences in a recommender
system by learning the sequence of purchase history and taking
preference changes into account. Using the micro profile
technique, they use a Kalman filter to forecast user preference
vectors from user characteristics.

Time is widely implemented in the multimedia domain [23,
24, 30-34,52] and learning domain [28, 35-37] [25, 26]
according to the literature. However, in the e-commerce field,
it is rarely utilized to study purchase data rather than just rating
data. We can also see that user preferences fluctuate depending
on the season and application domain. As a result, the method
for dealing with time in one domain may not apply to another.
We used the decay function to apply to the purchase date (add
to cart & buying or transactions) in an online shopping system
in this study.

Many studies in the literature [24,26,27,30-33,53] used the
MovieLens dataset, which contains the rating from the
MovieLens website (movielens.org). The ratings are connected
to the timestamp. Other research [23, 29] examined the Last.fm
dataset, which includes a timestamp and a user's history of
listings in addition to the user's properties. The Yelp dataset in
[24] only gives a comprehensive perspective of restaurants,
including overall user ratings. Finally, the D-Lib Magazine
dataset [26] includes articles and numerous shorter items, as

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

605 | P a g e

www.ijacsa.thesai.org

well as digital collections, calls, and notifications from its 265
issues.

According to the literature, most of the datasets used do not
include the implicit feedback of purchase data (buy and add-to-
cart) linked with time in the e-commerce environment. Table I
shows a summary of the related work.

TABLE I. RELATED WORK

REF Algorithm

Time-

aware RS

category

Implicit/explicit

data
Domain

[23]
KNN

MF
Decay

User View

history

(Implicit)

Music

[24] KNN Decay
Rating data

(explicit)

- Movies

- Business

Directory

Service

[25]
Hybrid

(CF+ Content Based)

- Decay

-

Restriction

- Novelty

Date, Duration,

Learning Time

(implicit)

Learning

[29]
Kalman filtering

- Matrix factorization

Micro-

profile

User View

history

(Implicit)

Music

[38] CF Other - -

[23]
Matrix-factorization

model
Other

Rating data

(explicit)
Movies

[30]
Time- and

Community-Aware RS
decay

Rating data

(explicit)
Movies

[31]

Temporal overlapping

community detection

method

Other

Rating data

(explicit)

Movies

[33]

a novel

dynamic

recommender system.

Other
Rating data

(explicit)
Movies

[36]
knowledge-driven

recommender
Restriction -

Mobile

Learning on

the Semantic

Web

[27] CF Decay
Rating data

(explicit)
Movie

[28] Context-aware RS Restriction - Learning

[37] Hybrid Sequence -
Learning

environments

[52]
Novel

next-item RS
Sequence

Interval and
duration

(implicit)

Game-
playing data

[53] Hybrid Other
Rating data

(explicit)
Movie

In this research, we have used the Decay function method
with three states of art algorithms in the field of e-commerce
with two main implicit actions (add to cart and buy). The work's
key contribution is to analyze the effect of combining the time
context with RSs using two separate methodologies (bias, and
decay) and user’s implicit feedback for online shopping
recommendations.

III. INCORPORATING THE EXPONENTIAL DECAY FUNCTION

INTO RECOMMENDER SYSTEM

Our approach consists of three major phases as illustrated in
Fig. 1. The first phase is data pre-processing where dataset
converted to binary format. The second is the half-life decay
function [30,31,33]. Finally, the contextual modeling where

Multidimensional recommender (MD) is generated to produce
the Top-N recommended items. the three phases are explained
as follows:

A. Pre-Processing Phase

This phase involves converting the dataset in a compact
format which includes the interaction condition and its value
into a binary format that only uses 0s and 1s as shown in Fig.
2. Converting the event types (add to cart and buy) to numerical
numbers is also included in this phase.

Fig. 1. Incorporating Time Dynamic with Recommender System.

Fig. 2. Compact Format to Binary Format.

We assume that user preferences are between one and five,
which is the standard scale of user ratings in the literature. The
value of purchasing action is set as five in this study as it
represents the maximum number of prefaces a user would give
to an item. The add-to-cart action is set to four as it represents
lower interest than the purchase action.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

606 | P a g e

www.ijacsa.thesai.org

B. Half-life Decay Function

Generally, Exponential decay is a mathematical term that
defines the process of reducing a value with constant
percentage rate over time as shown in formula (8), where n
represents the decay factor as shown in equation (9) [40].

𝑓𝑖𝑛𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 =
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡

2𝑛 (8)

Where

𝑛 = (𝑒𝑙𝑎𝑝𝑠𝑒𝑑 𝑡𝑖𝑚𝑒)/(ℎ𝑎𝑙𝑓 𝑙𝑖𝑓𝑒) (9)

ℎ𝑎𝑙𝑓 𝑙𝑖𝑓𝑒 =
𝑙𝑜𝑔2(𝑒𝑙𝑎𝑝𝑠𝑒𝑑 𝑡𝑖𝑚𝑒)

log (
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡

𝑓𝑖𝑛𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡
)
 (10)

In our scenario, we assume that the user's interest in an item
decreases over time by a fixed amount of value. We use the
elapsed time to determine the half-life in equation (10). The
elapsed time is the period between the present date and the time
when the user gave an item a rating. The half-life is defined as
the number of days required to reduce the weight of a user rate
by half. For rating an item, the highest rate is five and the
minimum rate is one.

C. Contextual Modeling

In this phase, the filtering according to context is applied as
a part of the recommendation algorithms as follows.

 Context-Aware Matrix Factorization (CAMF)

To simulate the interaction between the items and the
context, Context-Aware Matrix Factorization (CAMF) adds a
factor B, as illustrated in equation (11)[2]:

𝑃𝑢𝑎,𝑖𝑥,𝑐𝑎
= 𝑞𝑖𝑥

𝑇 (𝑝𝑢𝑎
+ |𝑁(𝑢𝑎)|

−1

2) ∑ 𝑦𝑗𝑗∈𝑁(𝑢𝑎) + 𝐵𝑖𝑥,𝑐𝑎
 (11)

These factors B are learned using the error function which
can be calculated as shown in equation (12)[2]:

min𝑝∗,𝑞∗,𝑦∗,𝐵∗
∑ (𝑟𝑢𝑎,𝑖𝑥,𝑐𝑎

− 𝑞𝑖𝑥

𝑇 (𝑃𝑢𝑎
+(𝑢𝑎,𝑖𝑥,𝑐𝑎)∈𝜏

|𝑁(𝑢𝑎)|
−1

2 ∑ 𝑦𝑗𝑗∈𝑁(𝑢𝑎)) − 𝐵𝑖𝑥,𝑐𝑎
)

2

+ 𝜆(‖𝑞𝑖𝑥
‖

2
+ ‖𝑝𝑢𝑎

‖
2

+

∑ ‖𝑦𝑗‖
2

+𝑗∈𝑁(𝑢𝑎) 𝐵𝑖𝑥,𝑐𝑎

2) (12)

where N(𝑈𝑎) in (11),(12) is the set of items on which the
user 𝑢𝑎 has given implicit feedback, the vector 𝑦𝑗 in (11),(12)

represents the value of implicit feedback, and T is the set of all
items i that both users 𝑈𝑎 and 𝑈𝑏 have rated. To avoid

overfitting, the regularization term. 𝜆(‖𝑞𝑖𝑥
‖

2
+ ‖𝑝𝑢𝑎

‖
2

) is

added to the error function.

 Context-Aware Neighborhood Based Algorithm (CA-
KNN)

Similar to the Context-Unaware Neighborhood Algorithm,
the Context-Aware Neighborhood Algorithm, also known as
Differential Context Weighting (DCW) [42], begins by
determining the similarity between users. The set T - the set of

all items i that both users 𝑢𝑎and 𝑢𝑏 have rated- is used for the
summations in the similarity computations. The algorithm then
maintains them along with the c1 and c2 time contexts where
these ratings occurred. Equation (13) shows the incorporation
of time in the similarity equation [42]:

𝒔𝒊𝒎𝒄𝒂(𝒖𝒂, 𝒖𝒃) =
∑ 𝒓𝒖𝒂,𝒊,𝒄𝟏 𝒓𝒖𝒃,𝒊,𝒄𝟐

𝑱(𝒄𝟏,𝒄𝟐,𝝈𝟏)
(𝒊,𝒄𝟏,𝒄𝟐)∈𝑻

√∑ 𝒓𝟐
𝒖𝒂,𝒊,𝒄𝟏

(𝒊,𝒄𝟏,𝒄𝟐)∈𝑻 ∑ 𝒓𝟐

𝒖𝒂,𝒊,𝒄𝟐 ∑ 𝑱(𝒄𝟏,𝒄𝟐,𝝈𝟏)𝟐
(𝒊,𝒄𝟏,𝒄𝟐)∈𝑻

(𝒊,𝒄𝟏,𝒄𝟐)∈𝑻

 (13)

Where J is the weighted Jaccard metric which can be
computed as given in equation (14)[42] and the set 𝜎 contains
the weights for each of the potential contexts: [42]:

𝐽(𝑐1, 𝑐2, 𝜎) =
∑ 𝜎𝑓

𝑓∈𝑐1∩𝑐2

∑ 𝜎𝑓

𝑓∈𝑐1∩𝑐2

 (14)

Finally, the predicted rates can be determined in the same
way as the context-unaware method as illustrated in equation
(15) [23]:

𝑃𝑢𝑎,𝑖𝑥,𝑐𝑎
= 𝑟𝑢𝑎,𝑐𝑎

− +
∑ (𝑟𝑢𝑣,𝑖𝑥,𝑐1

𝐽(𝑐1,𝑐2,𝜎2)−𝑟𝑢𝑣,𝑐𝑎
−)𝑠𝑖𝑚𝑐𝑎(𝑢𝑎,𝑢𝑣)(𝑢𝑣,𝑐1)∈𝑉

∑ |𝑠𝑖𝑚𝑐𝑎(𝑢𝑎,𝑢𝑣)|(𝑢𝑣,𝑐1)∈𝑉
 (15)

Where (𝑟𝑢𝑣,𝑐𝑎
−) is the average user ratings in the active

context and the rating 𝑟𝑢𝑣,𝑖𝑥,𝑐1
 is weighted by the Jaccard metric.

the context in which the nearest neighbors have rated the item
𝑖𝑥 stored in the set V represented by 𝑐1.

 Context-Aware Sparse Linear Method (CA-SLIM)

Context-Aware Sparse Linear (SLIM) changes the
prediction equation based on the context of the rating (𝑐𝑎)
applying equation (16)[41]:

𝑃𝑢𝑎,𝑖𝑥,𝑐𝑎
= (𝑟𝑢𝑎

𝑇 + 𝑑𝑐𝑎
)𝑤𝑖𝑥

 (16)

In this equation, 𝑑𝑐𝑎
 is the column in matrix D that contains

the rating difference for each item-context interaction, which is
referred to as the contextual rating deviations (CRD). The
CRDs for all items in the context (𝑐𝑎) are stored in the vector
𝑑𝑐𝑎

By adding it to the error function, the vectors 𝑑∗ and the

matrix D are learned simultaneously with the matrix W, as
illustrated in equation (17)[41]:

min𝑤∗,𝑑∗
∑ (𝑟𝑢𝑎,𝑖𝑥

− (𝑟𝑢𝑎
𝑇 + 𝑑𝑐𝑎

)𝑤𝑖𝑥
)

(𝑢𝑎,𝑖𝑥,𝑐𝑎)∈𝜏

+ 𝜆1‖𝑤𝑖𝑥
‖

2

+ 𝜆2‖𝑤𝑖𝑥
‖

1
+ 𝜆3‖𝑑𝑐𝑎

‖
2

+ 𝜆4 ‖𝑑𝑐𝑎
‖

1

𝑠. 𝑡. |𝑤𝑖𝑥
| ≥ 0 (17)

IV. IMPLEMENTATION

The data was taken from a real-world e-commerce website
(Gift Shop) and is part of the "Retailrocket" public dataset [39].
A visitor can do three sorts of actions: "view," "add to cart," and
"transaction.". interactions are collected over a period of 4.5
months. There are around 8k buy events and approximately 28k
add-to-cart events. The day of the week and hour of the day

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

607 | P a g e

www.ijacsa.thesai.org

where the event happened were determined using the user id,
item id, and Unix time. For example: “1439694000000, 1,
view,100,” means visitorId = 1, clicked the item with id = 100
at 1439694000000 (Unix timestamp). Then, for each of the
user's events, we assume a rating value. For example, the
transaction event has a value of five and the add-to-cart event
has a value of four. We computed the elapsed time for each
occurrence. Then we utilized it to calculate a new anticipated
rate by giving less weight to the earlier event and finding the
half-life value as explained in the previous section.

A. Implementation Tools

The CARSKIT Java Library is used to implement and
expand the state-of-art context-aware algorithms. Numerous
research [20, 45, 46] have used CARSKIT [44, 47] which is a
Java-based open-source package for the context-aware
recommendation. As a hardware tool, AZIZ High-Performance
Computer (HPC) with 30GB RAM has been used. We modified
the CARSKIT code to calculate the precision, recall, and MAP
for a different number of recommended items N (from 1 to 20)
to be able to track how the algorithms behave as N increases.

B. Algorithm’s Hyper-parameters

The parameters applied for each of the recommendation
algorithms are shown in Table II. Number of factors parameter
is used in MF, If the number of latent variables (number of
factors) equals one, we are selecting the most popular things
with the most interactions with no regard for personalization.
Increasing the number of latent variables (the number of rows
or columns associated with a single product or user) would
increase personalization, and hence the RS's quality. However,
if the number of latent components grows too large, it will
generate an overfitting problem, lowering the quality of the
recommendations. To avoid the overfitting problem, we'll need
some regularization terms which is used to minimize overfitting
while increasing the number of latent factors. In MF and SLIM,
without a predefined stopping condition, iterative steps will
continue forever. A limitation on running time or the number of
iterations is often used to interrupt the infinite loop. In KNN
which is known as Differential Context Weighting (DCW) [42]
the threshold is applied to distinguish between frequent and
infrequent variables and Particle Swarm Optimization (PSO)
[43] is used to determine how much weight to give to each
potential context. PSO iteratively seeks to enhance potential
solutions based on a specified quality metric to find the best
answer to an issue [16].

Based on the default parameters for CARSKIT [44] and the
suitable values for our dataset, we determined the algorithm’s
hyper-parameter values for our experiment as shown in Table
II. We used a factor count of 10 to ensure that we had enough
factors to adequately capture the variability in the data, but not
too many that the training data would be overfitting. The
maximum number of iterations required to obtain an accurate
result is 100. Based on the "Retailrocket" dataset, which
includes customer data from May 2015 to August 2015, we
estimate a half-life of 43 days. The hyper-parameters for the
three algorithms (MF, KNN, SLIM) with the three distinct
techniques (baseline, bias, and decay) are shown in Table II.

TABLE II. EXPERIMENT CASES AND ASSUMPTIONS

Algorithms with

cases
Hyperparameters Values

Matrix

Factorization

Case#A1: MF

(Time un-

aware)

Regularization factor
default

value

of iterations 100

of factors 10

Case#A2:

CAMF (Time

aware (Bias))

Regularization factor
default

value

of iterations 100

of factors 10

Case#A3: Decay

CAMF (Time

aware Decay)

Regularization factor
default

value

of iterations 100

of factors 10

 Half-life 43

Sparse

Linear

Method

Case#B1: SLIM

(Time un-

aware)

Regularization factor
default

value

Of iterations 100

Of neighbors 10

Case#B2:

CASLIM (Time

aware (Bias))

Regularization factor
default

value

Of iterations 100

Of neighbors 10

Case#B3: Decay

CA-SLIM

(Time aware

(Decay))

Regularization factor
default

value

Of iterations 100

 # Of neighbors 10

 Half-life 43

Nearest

Neighbor

Algorithm

Case#C1: User-

Based KNN

(Time un-

aware)

Of neighbors 10

Case#C2: DCW

(Time aware

(Bias))

PSO parameters
default

value

Threshold 0,5

Case#C3: Decay

DCW (Time

aware (Decay))

PSO parameters
default

value

Threshold 0,5

Half-life 43

V. RESULTS

The application of the three RS algorithms Matrix
Factorization (MF), K-Nearest Neighbor (KNN), and Sparse
Linear Method is examined in this section (SLIM) using two
different methods (Bias and Decay) as shown in Table II. The
metrics used to analyze the experiment are Precision, Recall,
and MAP. N is the number of suggested items, and the metrics
are calculated for N=1 to N=20.

A. Case A: Matrix Factorization (MF)

This section uses two methods – Bias (traditional) and
Decay- to illustrate the effect of introducing time into the matrix
factorization algorithm. The accuracy, recall, and MAP for the
MF are shown in Fig. 3, 4, and 5, respectively. The decay
technique outperformed the Bias-CAMF and MF in terms of
accuracy, recall, and MAP, with a 0.05 percent in precision,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

608 | P a g e

www.ijacsa.thesai.org

0.45 percent recall, and 0.16 percent MAP as shown in Table
III.

Fig. 3. MF, CAMF, and Decay CAMF Precision.

Fig. 4. MF, CAMF, and Decay CAMF Recall.

Fig. 5. MF, CAMF, and Decay CAMF MAP.

TABLE III. AVG MF PRECISION, RECALL, AND MAP

AVG Precision

percentage

AVG Recall

percentage

AVG MAP

percentage

MF 0.020 0.220 0.050

CAMF 0.020 0.240 0.050

Decay & CAMF 0.050 0.450 0.160

B. Case B: Sparse Lanier Method (SLIM)

Using two approaches (Bias and Decay), this section
highlights the effect of adding time with the Sparse Lanier
Method (SLIM) algorithm. Fig. 6, 7, and 8 depict the SLIM's
precision, recall, and MAP, respectively. Table IV shows that
the decay technique outperformed the time unaware SLIM and
bias CA-SLIM in terms of accuracy, recall, and MAP, with
precision, recall, and MAP of 0.22 percent, 1.40 percent, and
0.78 percent, respectively.

Fig. 6. SLIM, CA-SLIM, and Decay CA-SLIM Precision.

Fig. 7. SLIM, CA-SLIM, and Decay CA-SLIM Recall.

Fig. 8. SLIM, CA-SLIM, and Decay CA-SLIM MAP.

TABLE IV. AVG SLIM PRECISION, RECALL, AND MAP

AVG Precision

Percentage

AVG Recall

Percentage

AVG MAP

Percentage

SLIM 0.130 0.800 0.550

CA-SLIM 0.130 0.690 0.450

Decay & CA-

SLIM
0.220 1.400 0.780

C. Case C: Nearest Neighbor (KNN)

Using two approaches, this section highlights the effect of
adding time with the KNN algorithm. Fig. 9, 10, and 11 depict
the KNN's precision, recall, and mean absolute deviation,
respectively. As shown in Table V, the average results indicate
that using the time context in Bias and decay method decreases
the efficiency of the RS with Avg precision, recall, and MAP
of 0.04%, 0.37%, and 0.10% respectively.

0

0.001

1 3 5 7 9 11 13 15 17 19

P
er

ci
si

o
n

N

Percision at N

MF CAMF Decay CAMF

0

0.01

1 3 5 7 9 11 13 15 17 19

R
ec

al
l

N

Recall at N

MF CAMF Decay CAMF

0

0.001

0.002

1 3 5 7 9 11 13 15 17 19

M
A

P

N

MAP at N

MF CAMF Decay CAMF

0

0.01

1 3 5 7 9 11 13 15 17 19

p
er

ci
si

o
n

N

Precision at N

SLIM CASLIM Decay CASLIM

0

0.02

1 3 5 7 9 11 13 15 17 19

R
ec

al
l

N

Recall at N

SLIM CASLIM Decay CASLIM

0

0.005

0.01

1 3 5 7 9 11 13 15 17 19

M
A

P

N

MAP at N

SLIM CASLIM Decay CASLIM

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

609 | P a g e

www.ijacsa.thesai.org

Fig. 9. KNN, DCW, Decay DCW Precision.

Fig. 10. Fig 1 Recall for KNN, DCW, Decay DCW

Fig. 11. Fig 2 MAP for KNN, DCW, Decay DCW

TABLE V. AVG KNN (RECALL, PRECISION, AND MAP)

AVG Precision

Percentage

AVG Recall

Percentage

AVG MAP

Percentage

KNN 0.070 0.460 0.260

DCW 0.020 0.220 0.060

Decay DCW 0.040 0.370 0.100

D. Half-Life Decay with All Algorithms (MF, SLIM, KNN)

Comparison

The outcomes of three RS techniques (Matrix Factorization
(MF), K-Nearest Neighbor (KNN), and Sparse Linear Method
(SLIM)) are compared in this section: Fig. 12 and 13 illustrate
the accuracy of the three RS methods with The Decay factor.
With a significant difference, Decay CA-SLIM outscored the
other methods. CAMF and DCW, on the other hand, have
approximately similar Average-performances.

Fig. 12. The Decay Time-Aware Algorithms' Precision.

Fig. 13. The Decay Time-Aware Algorithms' Avg- Precision.

As seen in Fig. 14 and 15, Decay CA-SLIM outperformed
the other algorithms by a significant margin. With 0.45 percent
and 0.37 percent, respectively. while CAMF and DCW have a
similar Average-performance.

Fig. 14. The Decay Time-Aware Algorithms’ Recall.

Fig. 15. The Decay Time-Aware Algorithms' Average Recall.

Fig. 16 and 17 depict the MAP for Decay DCW, Decay
CAMF, and Decay CA-SLIM, respectively. For the three
approaches, the avg-MAP values are 0.1 percent, 0.7 percent,
and 0.16 percent, respectively.

0

0.002

0.004

1 3 5 7 9 11 13 15 17 19

P
er

ci
si

o
n

N

Percision at N

KNN DCW Decay DCW

0

0.005

0.01

1 3 5 7 9 11 13 15 17 19

R
ec

al
l

N

Recall at N

KNN DCW Decay DCW

0

0.002

0.004

1 3 5 7 9 11 13 15 17 19

M
A

P

N

MAP at N

KNN DCW Decay DCW

0

0.005

0.01

1 3 5 7 9 11 13 15 17 19

P
er

ci
si

o
n

N

Precision at N

Decay DCW Decay CASLIM Decay CAMF

0.04%

0.22%

0.05%

0.00%

0.10%

0.20%

0.30%

Decay DCW Decay CASLIM Decay CAMF

Avg-Percision

0

0.02

1 3 5 7 9 11 13 15 17 19

R
Ec

al
l

N

Recall at N

Decay DCW Decay CASLIM Decay CAMF

0.37%

1.40%

0.45%

0.00%

1.00%

2.00%

Decay DCW Decay CASLIM Decay CAMF

Avg-Recall

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

610 | P a g e

www.ijacsa.thesai.org

Fig. 16. The Decay Time-Aware Algorithms MAP.

Fig. 17. The Decay Time-Aware Algorithms AVG-MAP.

E. Findings

Based on the experiment results, we conclude that in the e-
commerce domain that uses purchasing data, the item-oriented,
decay time-aware recommender algorithms outperform
baseline context-aware algorithms and context-unaware
algorithms. This conclusion is based on the fact that the overall
effectiveness improves when time information is used.
Furthermore, we arrive at the conclusion that the sparse linear
approach, which has proven positive performance for the top-N
recommendation in this research may not necessarily transition
well to other datasets in the literature.

 The average findings show that the decay technique
outperformed the Bias CAMF and time unaware MF,
with precision, recall, and MAP of 0.05 percent, 0.45
percent, and 0.16 percent, respectively.

 The decay technique outscored the Bias CA-SLIM and
time unaware SLIM approach, with precision, recall,
and MAP of 0.22, 1.40, and 0.78, respectively.

 Adding the time context reduces the accuracy of the
recommendation process in the KNN technique. In
addition to the algorithm's incredibly high running time
(weeks to execute one single run), which obstructed us
from running all combinations of hyper-parameters.

 Running the KNN and SLIM with no limit on the
number of neighbors had to be left out because it took
weeks to execute one single run.

 Given that our utilized dataset has a density of = 0.0124
percent. The results suggest that adding decay context-
awareness to KNN algorithms reduces the accuracy of
the algorithms for all recommendation list lengths N.
However, decay context-awareness improves the
efficacy of the Sparse Linear Method (SLIM) and
Matrix Factorization.

 In the online shopping area, the SLIM method
outperforms both the KNN and MF algorithms using the
half-life decay function. It also performs well in terms
of Top-N recommendations. The increase in

effectiveness was proven to be related to the average
number of interactions per item[48].

 In our dataset the number of interactions per user is
limited. Therefore, item-oriented algorithms like SLIM
perform better than user-oriented algorithms like KNN.

 Because the SLIM method bases its predictions on item
similarity coefficients, it works well on our dataset. Due
to the data sparsity (limited numbers of interactions per
user), some algorithms (e.g., KNN) perform poorly in
terms of recommendations accuracy because it depends
on the user’s similarity.

 Our research results are consistent with the research [9,
49, 50] that reported increases in effectiveness when
using SLIM instead of KNN or MF. this is since SLIM
is specifically designed for the top-N recommendation
task.

Overall, we conclude that, for the datasets with limited
numbers of interactions per users the use of item-oriented decay
time-aware recommender systems lead to better performance
when compared to bias context aware recommender systems
and time-unaware recommender systems.

VI. CONCLUSION

This paper used the user implicit feedback (add to cart and
buy) associated with time context to improve the RS
performance in online shopping systems. Bias and Decay
methods were used to incorporate the time data into RSs. The
experiment included incorporating time with three state-of art-
algorithms (MF, KNN, and SLIM). To compare the
performance of the RSs we applied three cases for each
algorithm (time unaware RS, Bias time aware RS, and Decay
time aware RS). Precision, Recall, and MAP were used to
compare the performance between the different algorithms and
between the three cases in each algorithm. As a result, Decay-
MF and Decay-SLIM outperform the time Bias MF and SLIM.
On the other hand, Decay-KNN reduced the accuracy of the RS
compared to the context UN-aware KNN. The results that were
reached from the study achieved the goal of the research, which
is analyzing and finding the most appropriate algorithm in the
field of e-commerce to build a time-aware recommendation
system using the user's implicit feedback (purchasing data). As
a future work, this study might be applied to a larger dataset
with all combinations of algorithms' parameters and with
unlimited number of neighbors. This study might also be
expanded by combining the decay function approach with other
RSs algorithms and on different domains datasets.

REFERENCES

[1] Ricci, F., L. Rokach, and B. Shapira, Recommender systems: introduction
and challenges, in Recommender systems handbook. 2015, Springer. p.
1-34.

[2] Ricci, F., Rokach, L. and Shapira, B, Introduction to recommender
systems handbook. In Recommender systems handbook. Springer Boston,
MA. , 2011: p. (pp. 1-35).

[3] Schafer, J.B., J.A. Konstan, and J. Riedl, E-commerce recommendation
applications. Data mining and knowledge discovery, 2001. 5(1-2): p. 115-
153.

[4] Sarwar, B., et al. Analysis of recommendation algorithms for e-
commerce. in Proceedings of the 2nd ACM conference on Electronic
commerce. 2000.

0

0.01

1 3 5 7 9 11 13 15 17 19

M
A

P

N

MAP

Decay DCW Decay CASLIM Decay CAMF

0.10%

0.78%

0.16%

0.00%

1.00%

Decay DCW Decay CASLIM Decay CAMF

Avg-MAP

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

611 | P a g e

www.ijacsa.thesai.org

[5] Koren, Y., Bell, R. and Volinsky, C, Matrix factorization techniques for
recommender systems. Computer, 2009: p. pp.30-37.

[6] Sarwar, B.M., et al. Recommender systems for large-scale e-commerce:
Scalable neighborhood formation using clustering. in Proceedings of the
fifth international conference on computer and information technology.
2002.

[7] Paterek., A., Improving regularized singular value decomposition for
collaborative filtering, in In Proceedings of KDD cup and workshop.
2007. p. 5–8.

[8] Paul Resnick, N.I., Mitesh Suchak, Peter Bergstrom, and John,
Grouplens: an open architecture for collaborative filtering of netnews, in
Proceedings of the 1994 ACM conference on Computer supported
cooperative In work 1994, ACM: Riedl. p. 175–186.

[9] Karypis, X.N.a.G., Slim: Sparse linear methods for top-n recommender
systems, in 2011 IEEE 11th International Conference on Data Mining.
2011, IEEE. p. 497–506.

[10] Adomavicius, G. and A. Tuzhilin, Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible
extensions. IEEE Transactions on Knowledge & Data Engineering,
2005(6): p. 734-749.

[11] Burke, R., Hybrid web recommender systems, in The adaptive web. 2007,
Springer. p. 377-408.

[12] Kumar, B. and N. Sharma, Approaches, issues and challenges in
recommender systems: a systematic review. Indian J. Sci. Technol, 2016.
9(47): p. 1-12.

[13] Mahmood, T.a.R., Improving recommender systems with adaptive
conversational strategies, in In Proceedings of the 20th ACM conference
on Hypertext and hypermedia. 2009. p. (pp. 73-82).

[14] Ben-Shimon, D., et al., Recommender system from personal social
networks, in Advances in Intelligent Web Mastering. 2007, Springer. p.
47-55.

[15] Dey, A.K., Understanding and using context. Personal and ubiquitous
computing, 2001. 5(1): p. 4-7.

[16] Schmidt, A., M. Beigl, and H.-W. Gellersen, There is more to context than
location. Computers & Graphics, 1999. 23(6): p. 893-901.

[17] Adomavicius, G. and A. Tuzhilin, Context-aware recommender systems,
in Recommender systems handbook. 2011, Springer. p. 217-253.

[18] Campos, P.G., F. Díez, and I. Cantador, Time-aware recommender
systems: a comprehensive survey and analysis of existing evaluation
protocols. User Modeling and User-Adapted Interaction, 2014. 24(1-2):
p. 67-119.

[19] De Borba, E.J., I. Gasparini, and D. Lichtnow. Time-aware recommender
systems: a systematic mapping. in International Conference on Human-
Computer Interaction. 2017. Springer.

[20] van Kortenhof, B.L., Context-Aware Recommender Systems in the E-
commerce Domain. 2017.

[21] Introduction to Latent Matrix Factorization Recommender Systems
Available from: towardsdatascience.com.

[22] Guibing Guo; Jie Zhang; Zhu Sun; and Neil Yorke-Smith. In Posters, D.,
Librec: A java library for recommender systems., in Late-breaking
Results and Workshop Proceedings of the 23rd International Conference
on User Modeling, Adaptation and Personalization. 2015.

[23] Sánchez-Moreno, D., Y. Zheng, and M.N. Moreno-García. Incorporating
time dynamics and implicit feedback into music recommender systems.
in 2018 IEEE/WIC/ACM International Conference on Web Intelligence
(WI). 2018. IEEE.

[24] de Zwart, T., Time-Aware Neighbourhood-Based Collaborative Filtering.
2018.

[25] de Borba, E.J., I. Gasparini, and D. Lichtnow. The Use of Time
Dimension in Recommender Systems for Learning. in ICEIS (2). 2017.

[26] Luo, J., et al., A context-aware personalized resource recommendation for
pervasive learning. Cluster Computing, 2010. 13(2): p. 213-239.

[27] Karahodza, B., H. Supic, and D. Donko. An Approach to design of time-
aware recommender system based on changes in group user's preferences.
in 2014 X International Symposium on Telecommunications (BIHTEL).
2014. IEEE.

[28] Gallego, D., et al. A model for generating proactive context-aware
recommendations in e-learning systems. in 2012 Frontiers in Education
Conference Proceedings. 2012. IEEE.

[29] Inuzuka, K., T. Hayashi, and T. Takagi. Recommendation system based
on prediction of user preference changes. in 2016 IEEE/WIC/ACM
International Conference on Web Intelligence (WI). 2016. IEEE.

[30] Rezaeimehr, F., et al., TCARS: Time-and community-aware
recommendation system. Future Generation Computer Systems, 2018. 78:
p. 419-429.

[31] Feng, H., et al., Personalized recommendations based on time-weighted
overlapping community detection. Information & Management, 2015.
52(7): p. 789-800.

[32] Gueye, M., T. Abdessalem, and H. Naacke, Dynamic recommender
system: using cluster-based biases to improve the accuracy of the
predictions, in Advances in Knowledge Discovery and Management.
2016, Springer. p. 79-104.

[33] Luo, C., X. Cai, and N. Chowdhury. Self-training temporal dynamic
collaborative filtering. in Pacific-Asia Conference on Knowledge
Discovery and Data Mining. 2014. Springer.

[34] Chen, J., et al., A Temporal Recommendation Mechanism Based on
Signed Network of User Interest Changes. IEEE Systems Journal, 2019.

[35] Arora, R.M.A.T.A., Temporal Recommendations for Discovering Author
Interests, in 2019 Twelfth International Conference on Contemporary
Computing (IC3) 2019: Noida, India. p. pp. 1-6.

[36] Benlamri, R. and X. Zhang, Context-aware recommender for mobile
learners. Human-centric Computing and Information Sciences, 2014.
4(1): p. 12.

[37] Chen, W., et al., A hybrid recommendation algorithm adapted in e-
learning environments. World Wide Web, 2014. 17(2): p. 271-284.

[38] Wei, S., N. Ye, and Q. Zhang. Time-aware collaborative filtering for
recommender systems. in Chinese Conference on Pattern Recognition.
2012. Springer.

[39] Retailrocket recommender system dataset. Available
from:https://www.kaggle.com/retailrocket/ecommerce-dataset.

[40] Ludwig–Maximilians, Demonstration of the exponential decay law using
beer froth. EUROPEAN JOURNAL OF PHYSICS, 2001: p. 21-26.

[41] Yong Zheng, B.M., and Robin Burke., Cslim: Contextual slim
recommendation algorithms, in Proceedings of the 8th ACM Conference
on Recommender Systems. 2014., ACM. p. 301–304.

[42] Yong Zheng, R.B., and Bamshad Mobasher, Recommendation with
differential context weighting, in In International Conference on User
Modeling, Adaptation, and Personalization. 2013, Springer. p. pages 152–
164.

[43] Russell, K.J.a.E., Particle swarm optimization, in 1995 IEEE International
Conference on Neural Networks,. 1995. p. 1942–1948.

[44] Yong Zheng, B.M., and Robin Burke. , Carskit: A java-based context-
aware recommendation engine. . IEEE International Conference on Data
Mining Workshop (ICDMW), 2015: p. 1668–1671.

[45] Al Jawarneh, I.M., Bellavista, P., Corradi, A., Foschini, L., Montanari, R.,
Berrocal, J. and Murillo, J.M., A Pre-Filtering Approach for Incorporating
Contextual Information Into Deep Learning Based Recommender
Systems. IEEE Computer Society, 2020: p. 40485-40498.

[46] Ilarri, S., Trillo-Lado, R. and Hermoso, R., Datasets for context-aware
recommender systems: Current context and possible directions, in 2018
IEEE 34th International Conference on Data Engineering Workshops
(ICDEW). 2018,, IEEE. p. 25-28.

[47] Zheng, Y., A User's Guide to CARSKit. 2015, arXiv preprint

[48] Pedro G. Campos Soto. , , . Temporal models in recommender systems:
An exploratory study on different evaluation dimensions. 2011,
Universidad Autónoma de Madrid: Madrid.

[49] Hoslim, E.C.a.G.K., Higher-order sparse linear method for top-n
recommender systems., in Pacific-Asia Conference on Knowledge
Discovery and Data Mining. 2014, Springer. p. 38–49.

[50] Karypis., E.C.a.G., Local item-item models for top-n recommendation, in
Proceedings of the 10th ACM Conference on Recommender Systems.
2016, ACM. p. 67–74.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 10, 2022

612 | P a g e

www.ijacsa.thesai.org

[51] A. Hassan, E. Fadel, and N. Akkari, Time-Aware Recommender System
For E-Commerce Applications, 2020. p. 534-542.

[52] Wang, D., Xu, D., Yu, D., & Xu, G. (2021). Time-aware sequence model
for next-item recommendation. Applied Intelligence, 51(2), 906-920.

[53] Yang, D., Nie, Z. T., & Yang, F. (2021). Time-aware CF and temporal
association rule-based personalized hybrid recommender system. Journal
of Organizational and End User Computing (JOEUC), 33(3), 19-34.

