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Abstract—Electricity theft-induced power loss is a pressing
issue in both traditional and smart grid environments. In smart
grids, smart meters can be used to track power consumption
behaviour and detect any suspicious activity. However, smart
meter readings can be compromised by deploying intrusion tactics
or launching cyber attacks. In this regard, machine learning
models can be used to assess the daily consumption patterns
of customers and detect potential electricity theft incidents.
Whilst existing research efforts have extensively focused on batch
learning algorithms, this paper investigates the use of online
machine learning algorithms for electricity theft detection in
smart grid environments, based on a recently proposed dataset.
Several algorithms including Naive Bayes, K-nearest Neighbours,
K-nearest Neighbours with self-adjusting memory, Hoeffding
Tree, Extremely Fast Decision Tree, Adaptive Random Forest
and Leveraging Bagging are considered. These algorithms are
evaluated using an online machine learning platform considering
both binary and multi-class theft detection scenarios. Evaluation
metrics include prediction accuracy, precision, recall, F-1 score
and kappa statistic. Evaluation results demonstrate the ability
of the Leveraging Bagging algorithm with an Adaptive Random
Forest base classifier to surpass all other algorithms in terms
of all the considered metrics, for both binary and multi-class
theft detection. Hence, it can be considered as a viable option for
electricity theft detection in smart grid environments.

Keywords—Smart grid; power loss; electricity theft; online
machine learning

I. INTRODUCTION

Utilizing energy resources effectively and efficiently is a
crucial part of every nation’s social and economic growth due
to the high cost of energy acquisition and the scarcity of energy
resources [1]. Future energy monitoring may now be used to its
fullest potential thanks to the smart grid. The smart grid system
can be characterized as a whole electrical network made up
of the power system infrastructure, computers to control and
monitor energy usage, and a sophisticated monitoring system
that keeps track of the behavior and usage patterns of all
system users [2]. Today, one of the most obvious problems
affecting both traditional power grids and smart grids is electric
power loss. Countries experience different levels of electric-
ity losses. For instance, 6%, 10%, 16%, and 18% of each
country’s total energy production was lost in the USA, Russia,
Brazil, and India, correspondingly [1]. In the transmission and
distribution of electricity, there are two different categories
of losses: technical and nontechnical. Energy losses in the
machinery required for power transmission and distribution are
referred to as technical losses. Power theft, fraud on the part of

utility employees, and irregular billing practices all contribute
to non-technical losses (NTL) [3]. The NTL is estimated to
cost utilities around the world US$96 billion annually [4].
Power providers, engineers, and academics are working to
reduce NTL in a number of creative and effective ways due
to the significant economic loss [5]. One of the most effective
strategies to prevent energy theft is the use of smart meter-
based Energy Internet (EI) [6]. Such a technique may be used
to remotely track consumption data from customers, record
any suspicious activity, and quickly send the data to the utility.
Despite their many benefits, smart meters are impractical for
countries experiencing severe economic difficulties due to the
significant costs associated with their deployment and mainte-
nance. Before these tools are extensively deployed, it is also
necessary to adequately manage the expanding cyber dangers.
It is difficult to secure the information flow of the EI because of
the unique characteristics of advanced metering infrastructure
(AMI). By deploying intrusion tactics, the unauthorized users
can alter data from smart meters. Because of this, power thefts
on the EI are distinct from those that occurred on the traditional
grid and were primarily the result of physically avoiding or
extinguishing the mechanical [3]. The energy usage patterns
of consumers may be automatically tracked by machine learn-
ing (ML) algorithms. When examining the data from smart
meters, it may help to identify power thieves with greater
accuracy. In other words, Machine learning technologies, such
as decision trees, random forests, support vector machines,
neural networks, and others, can be used to create classification
models in order to assess the daily electricity usage habits of
customers [7], [8]. Typically, machine learning algorithms can
be applied in either offline or online scheme. In the offline (i.e.
batch) learning, a dataset of electricity consumption patterns
is assumed to be available offline. Thereafter, a classification
model is trained and evaluated to classify users as either
malicious or benign based on their consumption patterns [9],
[10]. The developed model can then be deployed in a real
environment to make online predictions. On the other hand,
the online (a.k.a incremental) learning scheme relies on the
fact that smart meters reading arrive as a continuous stream of
data. Hence, a classification model needs to be incrementally
constructed by examining one instance at a time. Apparently,
the batch learning scheme assumes that the whole dataset is
stored in memory while building a machine learning model.
However, it is well recognized that the batch learning approach
has a number of drawbacks. First, the training phase could take
a very long time and use up a significant portion of computer
resources. Second, the amount of the training dataset has an
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impact on the trained model’s performance. Third, after the
model is trained, it cannot acquire new experience from new
input instances since in a offline (i.e., batch) learning scheme,
the training data are assumed to be static and unchanging over
time. To put it another way, it is necessary to build a new
model whenever the statistical characteristics of the model’s
input change (i.e., a concept drift is encountered). Online clas-
sification algorithms are advantageous over off-line (i.e. batch)
classification algorithms for a number of reasons, especially
given that the smart meter readings in smart grids provide
a constant stream of data. First off, algorithms for online
classification are built to handle infinite amounts of data and
gradually pick up new information. While creating projections
as necessary, they are continuously updated. Second, real-time
applications that conventional (i.e. batch) learning algorithms
cannot handle can be addressed by online data stream classifi-
cation systems. Online classification is thus viewed as a viable
technique for classifying electricity consumption patterns in
smart grid systems because user behavior may change over
time in an unanticipated way. Numerous techniques have been
put forth for the classification of data streams [11]–[13].
To the best of the authors’ knowledge, no study has ever
been done on how well these algorithms perform in detecting
electricity theft in smart grids, despite the fact that some of
them have been studied in various fields [14]–[21]. In addition,
previous research efforts have tackled electricity theft detection
using batch learning algorithms [9], [22]–[25]. Hence, the
contribution of this paper is threefold. First, implementing
online machine learning models for electricity theft detection,
based on a recent specialized dataset. Second, performing an
extensive set of experiments under both binary and multi-class
theft detection scenarios. Third, identifying the most viable
online machine learning model for theft detection in smart
grids, considering a representative set of performance metrics.

The rest of this paper is organized as follows. Section
II provides background information on the considered algo-
rithms. Section III explains the research tools and evaluation
methodology. Evaluation results are shown in Section IV.
Finally, Section V concludes and summarizes this paper.

II. BACKGROUND

Models from static datasets have traditionally been created
using ML techniques. The need for models that can handle
enormous data streams is, nevertheless, expanding. This means
that additional data samples might appear at any time, and it
is unsuitable to store them in a static dataset.

On the one hand, learning from continuous and evolving
data streams necessitates the development of the ML model
and continual stream upgrades. Additionally, it is crucial to
combat concept drift, in which the statistical characteristics of
the evolving data change with time [26], [27]. The resultant
ML model must also be immediately updated for smart grid
environments, needing algorithms with appropriate levels of
accuracy subject to constrained memory and processing ca-
pacity.

A. Bayes Learning Algorithms

The Naive Bayes (NB) algorithm is used in this category.
The NB method uses Bayesian prediction on the presumption

that each input feature included within an input instance
is independent. An NB model predicts every incoming data
sample’s class with a high degree of certainty. The NB algo-
rithm is distinguished by its simplicity and minimal processing
demands [12].

B. Lazy Learning Algorithms

The k-Nearest Neighbors classifier (kNN) and the self-
adjusting memory combined with the kNN classifier (SAM-
kNN) [28], [29] are two well-known lazy learning algorithms
that are taken into consideration in this work. In online learning
environments, the kNN algorithm relies on maintaining track
of a window with a fixed number of recently encountered
input data samples. The kNN algorithm looks within the
recently stored window and, using a predetermined distance
metric, determines the closest neighbors whenever a new input
data sample is observed. The current input sample’s class
label is then allocated appropriately. The SAM-kNN, on the
other hand, is an improvement over the standard KNN. A
self-adjusting memory (SAM) model creates an ensemble of
classification models for either current or prior concepts in
SAM-KNN. Depending on the needs of the present concept,
several models can be used. A short-term (STM) and long-term
(LTM) memory are built specifically by the SAM model. The
STM is built to represent the current concept, whereas the LTM
is used to represent earlier concepts. A cleaning procedure is
utilized to regulate the STM’s size and keep the LTM and the
STM consistent.

C. Tree-based Learning Algorithms

Online machine learning applications frequently employ
tree-based methods. The Hoeffding Tree (HT) [30] and the
Extremely Fast Decision Tree (EFDT) from [31] are the two
main tree-based algorithms employed in this work. The HT
method is a decision tree induction method that, under the
premise that the distribution that yields the entering data
samples is constant and does not evolve over time, may learn
gradually and whenever from immense online data streams.It
is based on the observation that choosing the best splitting
attribute may frequently be done with only a limited quantity of
input samples. This statement is supported theoretically by the
Hoeffding bound, which counts the number of input instances
needed to estimate a particular set of statistics with a given
precision. The HT technique is potentially more enticing than
other incremental (i.e., online) tree-based algorithms because it
provides high performance guarantees. It can be demonstrated
that the outcome of an HT model is asymptotically identical
to that of a batch-based learner employing infinitely many
input data samples by depending on the Hoeffding bound.
Additionally, the EFDT classification algorithm incrementally
constructs a tree. Once it is certain that a split is useful, it
looks for picking and deploying that split. Later, it reviews
that split choice and replaces it if it becomes clear that a more
advantageous split is there. If the distribution that generates
the input instances is stable, the EFDT can quickly pick up
on static distributions and finally learn the asymptotic offline
tree.

D. Ensemble Learning Algorithms

Two ensemble learning methodologies are assessed in this
article including Leveraging Bagging LB [32] and Adaptive

www.ijacsa.thesai.org 806 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 10, 2022

Random Forest ARF [33]. Leveraging bagging is an enhanced
online bagging algorithm. In this regard, online bagging mim-
ics conventional offline Bagging to cope with incremental
learning. For offline bagging scheme, N samples are taken
from an N sized training dataset with replacement creating
N separate datasets for M classifiers to be trained on. Since
there is no training dataset but only a stream of samples
in online learning environments, drawing input samples with
replacement is not an easy task. The online bagging simulates
the batch based training process by training each base estimator
on each incoming instance over k times, where k is drawn
from the binomial distribution. Given that the input stream
may be considered endless and that the binomial distribution
approaches a Poisson λ = 1 distribution with infinite samples,
the work in [34] has found that the procedure used by the on-
line bagging algorithms is a good ”drawing with replacement”.
The LB algorithm makes an effort to enhance classification
outcomes when assuming an infinite input data stream by
modifying Poisson distribution’s parameters produced from
the binomial distribution. The LB technique causes the λ
value of the Poisson distribution to change from 1 to 6. The
new value of λ would broaden the input space’s diversity
by giving the input data samples a variety of weights. In
order to achieve even greater improvement, the LB approach
uses output detecting codes. Each bit in the n-bit long binary
code used to encode the detection codes for each class label
corresponds to a particular one of the n classifiers. Every
classifier is trained on its corresponding bit while a new input
instance is being looked at. This helps the LB algorithm reduce
linked errors to a certain extent.

The standard batch based random forest technique has been
modified for the online learning scope by the ARF algorithm
A weighted voting method is used in ARF to decide how to
categorize each incoming data instance after many decision
trees have been built. The classification choice is prioritized
and the voting procedure is weighted more heavily in favor of
the decision tree that performs the best in terms of Kappa or
the accuracy statistic.

III. RESEARCH TOOLS AND METHODOLOGY

A. Dataset

This work is based on the Theft Detection Dataset
(TDD2022) proposed in [3]. The dataset was gathered using
the Open Energy Data Initiative (OEDI) platform which is a
consolidated repository for high-value energy research datasets
collected from the Programs, Offices, and National Labora-
tories of the United States Department of Energy [35]. The
information in TDD2022 stems from various domains such
as private industrial parties, laboratories, institutions, etc. The
dataset is composed energy consumption data for 16 different
consumer types. It encloses several energy consumption mea-
surements for distinct customer types during a one-year period.
Those measurements are recorded on hourly basis during the
day. This data was then used to implement a theft generator
for six different types of electricity theft. Each instance in the
dataset contains 11 meter readings, consumer type, and a class
label as either normal consumption or one of the six theft types.
Tables I, II, III and IV illustrate the dataset general statistics,
feature types, customer types and instances distribution on
classes, respectively.

TABLE I. GENERAL STATISTICS

Item values
Number of instances 560640

Number of categorical features 1
Number of numerical features 10

Customer types 16
Instances per customer type 35040

Number of classes 7

TABLE II. CUSTOMER TYPES

Type Integer code
Full service restaurant 1

Hospital 2
Large hotel 3
Large office 4

Medium office 5
Medrise apartment 6

Primary school 7
Outpatient 8
Warehouse 9

Secondary school 10
Small hotel 11
Small office 12

Stand-alone retail 13
Strip mall 14

Supermarket 15
Quic service restaurant 16

TABLE III. FEATURE TYPES

Name Type
Electricity-Facility (KW/Hr) Numeric

Fans-Electricity (KW/Hr) Numeric
Cooling-Electricity (KW/Hr) Numeric
Heating-Electricity (KW/Hr) Numeric

Interior lights-Electricity (KW/Hr) Numeric
Interior equipment-Electricity (KW/Hr) Numeric

Gas-Facility (KW/Hr) Numeric
Heating-Gas (KW/Hr) Numeric

Interior equipment-Gas (KW/Hr) Numeric
Water systems-Gas (KW/Hr) Numeric

Consumer Type (KW/Hr) Categorical

TABLE IV. INSTANCES DISTRIBUTION

Class name Total number of instances
Normal 331824
Theft-1 51083
Theft-2 22958
Theft-3 44349
Theft-4 41460
Theft-5 33553
Theft-6 35413
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The first theft type consists of a pronounced reduction
of electricity consumption during the day. Such reduction is
attained by multiplying the consumption by a uniformly dis-
tributed random number in the interval[0.1,0.8]. For the second
theft type, electricity consumption is randomly dropped to
zero throughout an arbitrary period. In addition, the third theft
type resembles the first type except the fact that each hourly
consumption is multiplied by a random number. Moreover, a
random portion of the mean consumption is generated for the
fourth theft type. Furthermore, the fifth type of theft reports
the mean consumption. Finally, the sixth theft type reverses
the order of the consumption values.

B. Evaluation Methodology

This section outlines the key procedures used to assess
the effectiveness of the online machine learning (i.e., classi-
fication) algorithms on the TDD2022 dataset. The evaluation
process using the scikit-multiflow evaluation platform [36] is
shown in Fig. 1. Every online classification algorithm goes
through this review process. As seen, the dataset is initially
loaded as an input stream and then sent to the classification
algorithm after that algorithm’s initialization for online testing,
incremental learning, and evaluation.

The prequential or the interleaved test then train method
is used in this study to assess the classification algorithms. As
each incoming input sample (i.e. instance) serves two purposes
and is analyzed sequentially in order of arrival before becom-
ing instantly inaccessible, the prequential assessment approach
was created specifically for online learning environments. In
prequential evaluation, each observed input instance is first
employed to test the classification model (i.e. to generate a
prediction), and then the same input instance is used to train
that classification model. Each tested model’s performance is
continuously updated after each encountered instance and its
capacity to handle unobserved cases is continuously monitored
in real-time. As a result, a classification model that has been
instantiated is constantly tested and the metrics that go with it
are updated for input instances that it has not yet encountered.
A number of commonly used performance metrics including
accuracy, precision, recall, F-1 score and the kappa statistic
derived from online learning models are used to quantify the
performance of the classification algorithms. These measures
are defined as follows:

• Classification accuracy: is the proportion of correctly
classified input instances.

Accuracy =
TN + TP

TP + FP + FN + TN
× 100% (1)

where, respectively, TP, TN, FP, and FN stand for
true positive, true negative, false positive, and false
negative. TP is the total number of cases that were suc-
cessfully identified as positive (i.e., theft). The number
of successfully identified negative (i.e., normal) events
is referred to as TN. FP is the total number of positive
samples that are mistakenly labeled as negative ones.
The total number of negative occurrences that are
mistakenly labeled as positive occurrences is known
as FN.

• Precision: determines the proportion of predictions
for the positive class that are in fact members of the

Start

Generate a stream
from the dataset

Initialize the
classification model

Initialize the
 performance

Evaluator

Add the classification
model and the stream to

the performance
evaluator

stream end?

Test the model using
the current input

instance

Update performance
metrics

Update the
classification model, if

required

End

No

Yes

Fig. 1. Evaluation Flowchart.

positive class.

Precision =
TP

TP + FP
(2)

• Recall: calculates the proportion of correctly predicted
classes that are positive out of all occurrences that are
positive in the observed stream.

Recall =
TP

TP + FN
(3)

• F-score: is the precision and recall harmonic mean.

F − score =
2× Precision×Recall

Precision+Recall
(4)

• Kappa statistic (κ): is a reliable classification accu-
racy metric that takes the likelihood of agreement by
chance into account. It indicates the superiority over
the majority class classifier, which assume that all
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incoming cases will fall within the majority class [37].
In particular for data streams with unbalanced class
distribution, it is crucial in assessing classification
accuracy.

κ =
p0 − pc
1− pc

(5)

where p0 denotes the classifier’s predictive accuracy
and pc denotes the likelihood that a random classifier
will produce an accurate prediction [38]. The classifi-
cation procedure is always correct if kappa = 1.

IV. RESULTS AND ANALYSIS

This section shows the predictive performance of the con-
sidered online machine learning algorithm on a data stream
generated from the TDD2022 dataset. The considered algo-
rithms were tested under both binary and multi-class classi-
fication settings. In binary classification, each instance in the
TDD2022 dataset is labelled as either normal or theft instance
regardless of the theft type. For the multi-class classifica-
tion, the consumption instances retain their original labelling
(i.e.,normal, Theft-1, Theft-2, Theft-3, Theft-4, Theft-5 or
Theft-6). Fig. 2(a), 2(b), 2(c), 2(d) and 2(e) depict the running
mean prediction accuracy, precision, recall, F-1 score and
kappa statistics of the considered learning algorithms under
binary classification settings. They considered algorithms were
pre-trained on the first 5000 samples and then prequentially
evaluated and trained on the remaining part of the consumption
stream. As shown, the KNN, SAM-KNN, ARF and LB-ARF
algorithms have steadily maintained highr mean values of
accuracy, precision, F-1 score and kappa statistic, as compared
to the NB, HT and EFDT algorithms. In addition, the NB,
HT and EFDT algorithms demonstrate fluctuating performance
during the first 100,000 instances. On the other hand, the NB,
ARF and LB-ARF have maintained higher mean recall values,
when compared to the other algorithms. However, the NB
algorithm exhibits fluctuating behaviour during the 200,000
instances. Furthermore, the relatively high kappa values of the
ARF and LB-ARF algorithms indicate reasonable reliability
of their predictive performance. In other words, they are able
to incrementally learn the statistical characteristics of the
incoming normal and theft instances adapt reliably to unseen
instances. Overall, the LB-ARF algorithms outperforms the
other algorithm under all the considered performance metrics.
Fig. 3(a), 3(b), 3(c), 3(d) and 3(e) depict the running mean
prediction accuracy, precision, recall, F-1 score and kappa
statistics of the considered learning algorithms under multi-
class classification settings. On the one hand, Fig. 3(a) depicts
that the KNN, SAM-KNN, ARF and LB-ARF have achieved
relatively acceptable accuracy levels (≥ 80%), as compared
to the other algorithms, taking into account the complexity of
multi-class classification as compared to the binary one. On
the other hand, Fig. 3(b), 3(c) and 3(d) demonstrate the ability
of the LB-ARF algorithm to maintain acceptable precision,
recall and F-1 score, when compared to the other algorithms.
Similar to the case of binary classification, the relatively
high kappa value of the LB-ARF demonstrate its superior
performance reliability over other algorithms. Fig. 4(a), 4(b),
4(c), 4(d) and 4(e) compare the predictive performance of
the considered algorithms on binary and multi-class theft
detection settings. In general, the predictive performance of all

algorithms in binary classification is higher as compared to that
of multi-class classification. Unlike other algorithms, the LB-
ARF algorithm has maintained comparable performance levels
under all metrics for both binary and multi-class classification.
It is worth noting that the tree-based algorithms exhibit higher
performance drop when moving from binary to multi-class
classification, as compared to the other categories.

In summary, the LB-ARF (i.e., Leveraging Bagging al-
gorithm with an Adaptive Random Forest base classifier)
demonstrates consistent competence to perform theft detection
under both binary and multi-class classification scenarios.
This algorithm keeps a collection of n ARF base classifiers,
where n in the used evaluation platform is set by default
to 10 [36]. In order to classify an incoming instance, each
classifier will make a prediction (i.e., a vote), and the ultimate
classification result is produced by combining the individual
forecasts. The Condorcet’s jury theorem has a theoretical
demonstration, assuming two criteria are satisfied, that the
error rate of a particular ensemble tends to zero in the limit
[39]–[41]. First, Individual base classifiers must outperform
random guessing. This requirement is attained as the ARF
algorithm achieves relatively high predictive performance that
is better than random guessing as shown in Fig. 2, 3 and 4.
Typically, the accuracy of a random classifier (i.e., random
guess) is equal to 1/k where k is the total number of classes.
In this work, the total number of classes is equal to 2 in case of
binary classification and 7 in case of multi-class classification.

Second, each classification model must be diverse; that
is, it must not generate correlated errors. For the LB-ARF
method, online bagging is used by the LB algorithm to train its
associated base classification models. In this context, an online
re-sampling is carried out as each incoming classification case
is noticed by showing that instance to every model k sim
Poisson (λ) times and updating every model in accordance.
The value of k is treated as the incoming instance’s weight.
In order to increase online re-sampling, the λ value of the
Poisson distribution is typically set to 6 in the LB algorithm.
The LB ensemble algorithm is making the incoming instances
weights more random with such a value of λ. As a result,
it increases the diversity of the input space by giving each
incoming instance a new range of weights. The LB technique
further improves bagging performance by applying output
codes to add randomization to the ensemble’s output. As
seen in Section II-D, Each prospective class label is given
an n-bit binary string, where n is the total number of base
classifiers in the ensemble. Each base classifier learns a single
bit from the binary string. The LB algorithm utilized random
output codes instead of deterministic ones, in contrast to
typical ensemble approaches. To put it another way, employing
output codes enables each classifier in the LB ensemble to
predict a separate function, whereas the base classifiers in the
traditional approaches predict the same function [32]. This
would reduce the impact of correlations among base classifiers
and, as a result, improve the ensemble’s diversity [42], [43].
The ensemble thus partially satisfies the second criteria of the
Condorcet’s jury theorem by adding randomization to both
the input and the output of the ensemble’s base classifiers.
Additionally, the LB method employs the ADWIN method to
handle concept drift, employing ADWIN instance per classifier
in the ensemble [28]. The poorest classifier is reset whenever
a concept drift is found. As a result, the LB algorithm con-
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Fig. 2. Performance Results - Binary Classification

tinuously assesses the effectiveness of its learning procedure
and follows the current distribution of class labels within
the incoming classification examples. The classification errors
caused by any given classifier would typically be offset by
the LB-ARF’s diversity among its basic classifiers. This can
be observed in Fig. 2, 3 and 4 wherein an LB ensemble of
ARF classifiers always achieve higher predictive performance

than a single ARF instance. Overall, the LB-ARF algorithm
has demonstrated its ability to sustain an audible performance
under all taken into account performance metrics. This makes
it a viable option for online theft detection (i.e. classification)
in real-world smart grids.
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Fig. 3. Performance Results - Multi-Class Classification

V. CONCLUSION

Power loss brought on by electricity theft is a critical issue
in both traditional and smart grid settings. Smart meters can be
used in smart grids to monitor power usage patterns and spot
any questionable activities. However, using hacking techniques

or cyber attacks can undermine smart meter readings. In this
sense, machine learning algorithms can be employed to eval-
uate client daily consumption patterns and identify probable
instances of electricity theft. This work studied the appli-
cation of online machine learning algorithms for electricity
theft detection in smart grid systems, based on a recently
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Fig. 4. Performance Comparison - Binary vs. Multi-Class

proposed theft detection dataset. Evaluation results showed
that leveraging bagging with an adaptive random forest base
estimator surpassed its online machine learning counterparts
in both binary and multi-class theft detection. Hence, it can
be viewed as a promising online learning model for electricity
theft detection in smart grids.
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