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Abstract—Agriculture is a typical contributor to the Egyptian 

economy, which could benefit from the comprehensive 

capabilities of Big Data (BD). In this work, we review the BD role 

in the agriculture sector in responding to two main questions: 

1) Which technique, frameworks and data types were adopted. 2) 

Identification of the existing gap associated with the data sources, 

modeling, and analysis techniques. Therefore, the contribution in 

this paper can be outlined in three main aspects. 1) Popular BD 

frameworks were briefed, and a thorough comparison was 

conducted between them. 2) The potential data sources were 

described and characterized. 3) A Conceptual framework for 

Egyptian agriculture practice based on BD analytics was 

introduced. 4) Challenges and extensive recommendations have 

been provided, which could guide future development. 
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I. INTRODUCTION 

Climate change, water storage, and crop fluctuation are 
major issues in Egyptian agriculture. Variations in market 
prices and socio-cultural growth contribute to the volatility of 
food availability. Several challenges need to be tackled to 
improve agricultural productivity, such as low soil fertility, 
insect diseases, limited technical adaptation, and varied 
weather conditions. In the digital era, data become not only 
valuable but also intelligent. BD term has been introduced in 
mid-2011 to describe a broad set of heterogeneous large 
volumes of data that can hardly be managed and processed 
using conventional approaches [1, 2]. Massive amounts of data, 
rapid data generation and delivery, organized and unstructured 
data sources, validity, and value [3] are the five primary 
elements that define BD, as shown in Fig. 1. 

The BD paradigm encompasses the tools, storage, 
processing, and security measures used [4]. An enormous 
quantity of data may be analyzed using BD paradigm. It has 
four parts: techniques, storage, processing, and representation 
(see Fig. 2). They seek to find hidden trends and patterns in 
vast amounts of data from several sources. The storage 
provides management methods and tools for storing organized 
and unstructured data. 

A variety of cloud-based platforms are optimized for 
maximum processing power. Data value and accessibility for 
decision-makers are major BD challenges. Data quality, 
integrity, and legal concerns have recently been addressed by 
Egypt's government. Several private and public sector 

endeavours to develop BD cyber-infrastructures. Recent 
academic research has focused on combining data and 
predictive analytics to assist governments better develop 
agricultural action plans. BD analytics and Remote Sensing 
(RS) can assist farmers manage their fields by extracting 
insights from acquired data. 

Several attempts have been made to employ BD in 
agriculture [5]. BD is used by the business sector to increase 
large-scale commercial agriculture efficiency [5, 6]. 
Meanwhile, agribusiness makes better use of new 
communication and data sources. BD tools and approaches are 
utilized to successfully address and organize farm development 
difficulties [7, 8]. Governments must plan for the transition to 
digital agriculture. Several recent studies have explored BD in 
agriculture. Herein, we also introduce the conceptual design of 
BD in the Egyptian agriculture sector. 

In this paper, we introduce a brief review of the potential 
BD role in agriculture to answer two main questions. The first 
question indicates the trending non-spatial and spatial BD 
Framework. The second question manifests the growing 
number data sources integrated within BD in agriculture. 
Therefore, A conceptual framework to adopt BD in Egyptian 
agriculture sector was presented and the main challenges and 
further directions were highlighted. 

 

Fig. 1. Big data 5 V's Volume according to Fortune magazine. 
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Fig. 2. The Big Data (BD) Paradigm. 

The rest of this paper is organized as follows: Sections 2, 
and 3 briefly sum up the similarities of popular non-spatial and 
spatial BD framework. The potential BD data sources is 
discussed in Section 4. Section 5 presents the proposed 
conceptual framework for adopting BD in Egyptian agriculture 
sector. In Section 6, the BD challenges and future directions in 
the agriculture sector were discussed. Finally, Section 7 
concludes the paper and provides future work. 

II. NON-SPATIAL BD FRAMEWORKS 

A. Batch BD Frameworks 

The data had to pile up for hours or a few days to be 
processed in a batch setting. The data had to be loaded in 
memory processing time; otherwise, the data stored in 
database, or file system [9]. Examples of batch BD frameworks 
for large datasets include Hadoop Map Reduce and Spark. For 
smaller size, Informatica and Alteryx are widely used. For 
relational databases, Google BigQuery and Amazon Redshift 
are utilized. 

Google introduced Hadoop framework [10], which 
comprised three elements, namely: Hadoop Distributed File 
System (HDFS), Yet Another Resource Negotiator (YARN), 
and MapReduce [11]. Typically, HDFS represents Hadoop's 
core component, which introduces reliable storage [11, 12]. 
HDFS has two architectures NameNode and DataNode [20]. 
YARN is considered the cluster management component in 
Hadoop framework [13]. Finally, MapReduce component 
performs two main functions, map and reduce. The users only 
define the map and reduce functions, and the framework is 
responsible for other administrative functions like 
parallelization and failover. Overall, Hadoop MapReduce 
employs HDFS for data storage, while YARN is employed for 
resources control and job scheduling [10, 13]. 

B. Stream BD Frameworks 

Stream Frameworks process data as soon as it arrives at 
both micro-batches and real-time [9]. Examples of BD stream 
frameworks include Apache Storm and Apache Samza [11]. 

1) Apache storm: Twitter developed Apache Storm to 

process large-scale structured and non-structured data in real-

time fashion [14-16]. A typical Apache storm topology [17] 

depends on a directed acyclic graph where the edge indicates 

the data exchange, and the node represents computation 

resources. A node is either a master node “Nimbus" or a 

worker node "Supervisor." All nodes could accept streams 

(sequence of Tuples). In contrast, first nodes only 

accept Spouts, which can read messages from external sources 

and convert them to tuples and resend them to other bolts 

nodes without any computation. Bolts receive, filter, compute, 

join, and create Tuples. The exchange protocol between bolts 

and spouts is defined by Stream grouping. 

The Storm architecture [18] has three main components: 
Nimbus, Supervisor, and ZooKeeper. Nimbus oversees worker 
and slave nodes progress and assigns tasks in standard and 
failure cases. The supervisor is a stateless daemon responsible 
for initiating monitoring and restoring topologies execution 
[18]. ZooKeeper [19] maintains configuration information, 
distributed synchronization, and group membership. 

Trident Application Programming Interfaces (APIs) were 
utilized in topology, which provides a wide range of high-level 
operators [14]. Trident APIs split the workload into micro-
batches. The batch size is set as a parameter to control 
throughput and latency. However, their topologies are 
unfortunately inadequate to execute iterative algorithms due to 
their Directed Acyclic Graphs (DAGs) nature [20]. 

2) Apache samza: LinkedIn developed Apache Samza to 

tackle stream processing issues like scalability, resources 

allocation, etc. [21]. Apache Samza is built upon two other 

BD processing frameworks: Apache Kafka and Hadoop 

YARN [11, 21]. Apache Kafka is based on five main 

components: Producer, Topics, Consumer, Partitions, and 

Brokers. The Producer component is responsible for writing a 

topic for Kafka system. Every data stream entering Kafka 

system is called Topic. A consumer is an element with both 

reading ability to a Kafka topic and responsibility to maintain 

information with respect to its offset to be used in the case of 

failures. Brokers are the ingle nodes that form the Kafka 

cluster. 

C. Hybrid BD Frameworks 

Some applications require batch and stream processing 
frameworks. Therefore, it is mandatory to use hybrid 
processing frameworks in such cases. Apache Spark, as well as 
Apache Flink, are regarded as the most notable examples. 

1) Apache spark: Apache Spark represents a hybrid 

framework constructed on top of Hadoop engine but optimizes 

processing through accelerating batch processing workloads 

using complete in-memory processing [11]. 

Apache Spark limited the creation of storage layer links to 
two cases: loading the data into memory to be processed and 
storing the final results. Unlike Apache MapReduce, Spark 
piles the intermediate results in memory. Resilient Distributed 
Datasets (RDDs) are the core data structure of Apache Spark, 
allowing developers to accumulate intermediate for reusability 
purposes. RDDs are fault-tolerant that could optimize 
partitions, maintaining the stored data [22]. 

Apache Spark framework [22] includes several main 
components combined with upper-level libraries such as 
Spark's MLlib for machine learning [23], GraphX [24] for 
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stream processing, and Spark SQL [25] for stream processing, 
and structured data processing. 

Spark core is implemented in Scala and supports multi 
clusters. Spark supports upper-level APIs like Scala, Java, 
Python, and R and operates various data visualization and 
analysis algorithms. A cluster manager is utilized for 
requesting cluster resources for jobs' execution. Spark built-in 
cluster manager has many cluster managers used by Spark 
core, such as Hadoop YARN, Apache Mesos, and 
AmazonEC2. Besides, Spark enables data access in different 
data sources, such as HDFS, Cassandra, HBase, Hive, Alluxio, 
and many other data sources. 

2) Apache flink: Apache Flink [26] is regarded as an 

open-source hybrid framework for applications such as real-

time analytics, continuous data pipelines, batch processing, in 

addition to iterative algorithms. The main advantage is 

processing huge data volumes at an economic level of latency 

and high fault tolerance in a distributed environment. The 

DataSet API is used to process finite data sets and is often 

known as batch processing [26]. 

Finally, Table I compares the mentioned BD processing 
frameworks based on the following factors, including cluster 
architecture, data flow, data processing model, fault-tolerance, 
latency, scalability, back-pressure mechanism, programming 
languages, as well as different machine learning libraries. 

TABLE I. A COMPARISON BETWEEN POPLAR NON-SPATIAL BD FRAMEWORKS 

Framework Hadoop Storm Trident Storm Samza Spark Flink 

Processing type Batch Stream Stream Stream Hybrid Hybrid 

Computing cluster 

architecture 
YARN Nimbus Nimbus YARN and Kafka YARN and Mesos YARN and Kafka 

Data Flow 
MapReduce data 

flow 
cyclic graph DAGs 

Kafka - Kafka job – 

Kafka 

A queue of RDDs called 
DStream processed one-

at-a-time using micro-

batching cluster 

stream -> system 

(operators) -> sinks 

Data Processing 
Model 

MapReduce at-least-once exactly-once at-least-once exactly-once exactly-once 

Fault-Tolerance Yes Yes Yes Yes Yes (using lineage) 
Yes (generating 

snapshots) 

Latency low 
several 

milliseconds 

several 

milliseconds for 
small batches 

Several milliseconds High Low 

Scalability Yes Yes 

User-defined 

parallel 

processing 

Yes Yes (user demand) 

Yes (only tasks that 

can be done in 

parallel) 

Back-pressure 

Mechanism 
No  Yes Yes No (buffering instead) Yes Yes 

Programming 

Languages 
Java mostly 

Java API with 
adapters for 

Python, 

Ruby, and Perl 

Java API with 

adapters 

for Python, Ruby, 
and 

Perl 

Java mostly 
API for Scala, Java, 

Python, and R 
Java and Scala 

Support for 
Machine Learning 

Yes 
compatible with 
SAMOA API 

Trident-ML 
compatible with 
SAMOA API 

Yes (Spark MLlib) Yes (FlinkML) 

III. SPATIAL BD FRAMEWORKS 

A. Hadoop-based 

1) Hadoop-GIS: Hadoop-GIS is regarded as a 

MapReduce-based framework to process large-scale vector 

data, partitioning, as well as geographic queries [27]. 

Geographic (Spatial) queries can take many forms, such as 

descriptive, spatial relationship-based, distance-based queries, 

along with spatial mining and statistics techniques. In order to 

boost query performance, Hadoop-GIS utilize a spatial 

partitioning and local spatial indexing called SATO [41]. 

However, complex geometry forms, such as convex/concave 

polygons, line string, multi-point, as well as multi-polygon, 

are not supported. In fact, Hadoop-GIS supports only two-

dimensional data and two query types over geometric objects, 

including box range as well as spatial joins. 

2) Spatial-Hadoop: Spatial-Hadoop is a complete 

MapReduce framework that was introduced to overcome 

Hadoop-GIS limitations. It contains two new components for 

efficient and scalable spatial data processing: 

SpatialRecordReader and SpatialFileSplitter to support spatial 

data, spatial indexes, and operations [28]. 

Spatial-Hadoop supports different geometry types, such as 
points, multi-points, line strings, and polygons. In spatial 
indexes, spatial partitioning approaches were implemented, 
such as uniform grids, R-Tree, Quad-Tree, K-Dimensional 
Tree (KD-Tree), as well as Hilbert curves. Also, it supports 
many predefined spatial operations, such as box range queries, 
KNN queries, and spatial joins. Besides, it supports various 
geometric objects, including segments and polygons, and 
operations over them, producing convex hulls in addition to 
skylines. The mentioned capabilities are implemented in 
Spatial-Hadoop as distributed geometric data analytics 
framework. 
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B.  Spark-based 

1) Spatial-Spark: Spatial spark is a framework to process 

GIS data based on cluster computing. It was constructed on 

top of Spark RDD for providing a broad range of spatial 

operations, including range query, spatial join, spatial 

filtering, R-Tree index, and R-Tree partitioning to boost 

queries [29]. Spatial-Spark can be considered an in-memory 

BD framework intended for supporting two spatial join 

operators, including broadcast spatial join and partitioned 

spatial join [29]. 

2) Geo-Spark: Geo-Spark is regarded as an in-memory 

cluster computing framework constructed on Spark top to 

process large-scale GIS data faster than Spatial-Hadoop [30]. 

Geo-Spark expands the concept of RDDs as well as SparkSQL 

for supporting spatial data types, indexes, in addition to 

geometric operations at scale. It also helps spatial data 

partitioning systems, including a uniform grid, R-tree, Quad-

Tree, KD B-Tree, as well as KNN queries. Geo-Spark is 

optimized to select a suitable join algorithm for achieving a 

balance in a cluster between run time as well as memory/CPU 

use [31]. Geo-Spark enables the Apache Spark developers for 

developing efficient spatial analysis applications utilizing 

operational quickly (for instance, Java and Scala) in addition 

to declarative (i.e., SQL) languages and spatial RDD APIs. 

Toward more solid knowledge, principal differences and 
similarities among Hadoop-GIS, Spatial-Hadoop, Spatial-
Spark, and Geo-Spark [30, 31] dependent on prevalent 
characteristics such as spatial partitioning, spatial indexing, 
DataFrame API, in-memory processing, etc., are summarized 
in Table II. 

TABLE II. COMPARISON AMONG POPULAR BIG GIS DATA PROCESSING 

FRAMEWORKS 

Feature 
Hadoop-

GIS 

Spatial-

Hadoop 

Spatial-

Spark 

Geo-

Spark 

DataFrame API × × × √ 

In-memory 
processing 

× × √ √ 

Spatial Partitioning SATO Multiple Multiple Multiple 

Spatial Indexing R-Tree 
R-/Quad-

Tree 
R-Tree 

R/Quad-

Tree 

KNN query √ √ × √ 

Query optimizer × × × √ 

Distance query √ √ √ √ 

Distance join √ √ √ √ 

Filter (Contains) √ √ √ √ 

Filter 

(ContainedBy) 
√ √ √ × 

Filter (Intersects) √ √ √ √ 

Filter 

(WithinDistance) 
√ √ √ × 

IV. BD MAJOR DATA SOURCES 

A. Satellite Imagery 

Satellite imagery is captured by active or passive sensors to 
study the Earth's surface [9]. The collected images using 
passive sensors estimate reflected sunlight emitted from the 
sun. In contrast, the images are usually acquired using active 
sensors. In heavy cloud cover, rain conditions, and at 
nighttime, active sensors, including the Synthetic Aperture 
Radar, are efficiently utilized to tackle limitations of passive 
sensors and increase the observational capability for agriculture 
applications. 

B. Wireless Sensor Web and IoT 

Wireless Sensor Network represents a collection of 
heterogeneous and sophisticated sensors responsible for 
collecting various data types, including temperature, humidity, 
wind, etc. WSW depends on Internet of Things technology 
(IoT), which integrates and deploys several heterogeneous 
spatially distributed sensors to enrich the identification and 
visualization capabilities of different agriculture areas [32]. 
The collected data [33] could facilitate the communication 
between the farmers, experts, and investors to maintain a closer 
day-to-day management when classical communication 
methods fail. Despite their wide usability in smart farming, 
WSW lacks the comprehensive coordination to different data 
sources as well as protocols from “Socio-techno-economic 
perspectives” [34]. 

C. Crowd-sourcing and Social-media 

In the last few years, several platforms were developed to 
collect data from the public. These platforms either actively 
contributed where contributors are aware of the data collection 
[35], such as crowdsourcing, or passively contributed where 
contributors are not aware such as social media [36]. Unlike 
crowdsourcing platforms, social media are used to track pest 
and sharing weather information. 

Social media is utilized in agriculture development for data 
gathering, information extraction, analytic workflow, geo-
location pattern/image/text analytics, and information 
transferring over social media services [37]. Real-time 
analytics dependent on social media platforms [37] offer 
considerable chances for automatic detection and monitoring of 
plant disease, yield productivity, and forecasting [38]. For 
social media data, visual analytics can simplify Spatio-
temporal analysis and generate a spatial-based decision for 
supporting environment, helping small farmers match end-user 
demand. Social media not only depends on text messages but 
also depends on posted videos and images by users. Analysis 
dependent on image/video, along with visual analytics, utilize 
social media posts to extract critical information. 

D. Mobile CDRs and GPS Traces 

GPS traces and mobile CDRs data are valuable resources, 
especially in natural disasters management such as landslide 
monitoring, Tsunami monitoring, earthquake management, 
forest fire, and flood management. GPS traces data had been a 
value-added in different agriculture applications [39], like 
identifying mobility patterns for agriculture machines and fuel 
consumption tracking. 
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E. Simulation 

Numerical simulation, or referred to as forecasting, is 
regarded as one of the essential agricultural contributions to 
meteorological phenomena, land surface phenomena, and 
diverse pollutions kinds [40, 41]. Also, mechanistic modeling 
has helped estimate water spray [42] and parameter estimation 
of subsurface pipe [43]. 

The modeling and simulation tools for agriculture 
management focus on different aspects. Several mechanistic 
models were developed to enrich the scientific understanding 
of agriculture aspects to gain insights into physical, chemical, 
and biological control parameters in crop and animal 
production systems. Another group of simulation models was 
developed to plan and support decision-makers. 

F. UAVS, Drones and LiDAR 

UAVs, as well as drones, deliver images and videos with 
very high-resolution amenable to be utilized in various 
agriculture applications [44] such as live-stock monitoring, 
crop production, yield prediction, fertilizer, pesticide spraying, 
and soil mapping [45]. Many sensors can be embedded in a 
UAV or drone, such as weather sensors, cameras, and LiDAR 
sensors. The obtained sensors data can be integrated into real-
time decision making in many fields such as spraying of 
pesticides through drone, plant phenotyping, and yield 
production estimation [46]. 

LiDAR technology [47] can create detailed topography 
maps and Digital Elevation Models (DEMs) necessary in crop 
architectural parameters, forests, and crop parameter analysis. 
LiDAR can also help in yield forecasting and monitoring, soil 
types, estimate and prevent soil erosion, land segmentation, 
and crop analysis field management [48]. LiDAR technology is 
highly valuable in geospatial community, with the massive data 
amounts amenable to utilization in a diversity of applications. 

G. Vector-Based GIS Data 

Vector-based GIS data provides powerful add-ons in 
agriculture management applications [49] like farmland 
suitability analysis, estimation fertilizer costs, and pesticide. 
Additional geospatial analysis for critical facilities (healthcare 
providers, schools, fire station, etc.) [52], estimation of the 
actual effect on human (age, gender, social and economic 
status, etc.), resources inventory (vehicles, supplies, equipment, 
etc.), and infrastructure (utility grids and transport networks) 
help and empower farmers community. Common GIS data 
sources enrich precision agriculture in developing countries 
[49]. 

In [49], the authors implemented a framework that 
integrated GIS with Multi-Criteria Decision Analysis (GIS-
MCDA) to assess land suitability for irrigation with reclaimed 
water. In [53,54], the authors developed a GIS-based approach 
that studies the appropriate soil-site citrus features for 
enhancing productivity. 

From the above discussion of various BD sources, it can be 
noted that satellite imagery, aerial imagery, crowdsourcing, 
social media records, simulation and GIS data could offer 
economic solution to enrich the Egyptian farming sector with 
valuable information. On the other hand, WSW, IoT, video and 
images from UAVs, GPS traces and CDRs, and LiDAR could 
be valuable and cost-effective data sources for private sector 
that could open new business opportunities. 

V. A CONCEPTUAL FRAMEWORK FOR USING BD IN 

EGYPTIAN AGRICULTURE 

In Egypt, agriculture's contribution of real GDP growth fell 
from 16.5% in 2002 to 11.4% in 2018 [1]. It employs 14.5 
percent of the active population [1, 50] and supplies 91.5 
percent of the population's requirements. It also only exports 
8.7% of total commodities. BD analytics, the "new oil," can 
help the agriculture industry [51, 53]. According to a recent 
study, the internet's ubiquity and suitable communication 
technologies might assist evaluate enormous volumes of 
gathered data to address critical concerns like desertification 
and global food costs. Two significant reasons [51] often 
influence BD analytics adoption in Egypt: 

 Push factor determines the motivation opportunities 
such as the new governmental investments in 
technology and infrastructure. 

 Pull factor analyses business factors such data quality, 
security, and availability. 

Egyptian agriculture issues fall into three categories: 
monitoring, management, and forecasting. As illustrated in Fig. 
3, we developed a conceptual framework to address Egyptian 
agriculture difficulties using BD analytics. The next parts 
describe data collecting, data analysis, and issue solutions. 

A. Data Collection 

Data collection, the first and primary step of BD 
applications, aims to collect a variety of structured and 
unstructured data, including soil, yield, climate data, satellite 
images, and other information sources. The basic modules 
implemented in this stage include filtering and harmonizing the 
captured data and nullifying unnecessary data. Also, metadata 
is generated for each dataset to identify how the data is 
rendered and analyzed. 

B. Data Analysis 

The collected data had to be prepared by extracting the vital 
information for further analysis. The valuable information is 
extracted by cleaning, interpreting, integrating, mining, 
analyzing, and warehousing data in this stage. Different 
analysis approaches could be performed to improve data 
understanding, such as visual analysis, prescriptive, diagnostic, 
and predictive analysis. 
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Fig. 3. The Proposed Conceptual Framework for BD in Egyptian Agriculture. 

Generally, visual analysis can be utilized to gain insights 
about the uncovered relationships within massive datasets and 
empower investigators for obtaining more intuitive visual 
cognition as well as efficient decision-making assist. Now, 
government, as well as related policymakers, may utilize the 
aforementioned BD sources for conducting visual analysis of 
water resources monitoring, weather condition, soil condition, 
and close contact of scientific researchers for making 
decisions. Moreover, visualization is principally accomplished 
through GIS. By linking BD and GIS can help farmers, 
enterprises, and institutions better understand their spatial 
patterns as well as relationships. In this regard, GIS technology 
should first be provided with properly attained BD. The data 
collection is no longer restricted to conventional facilities and 
approaches, including stations, satellite RS, and field 
measurement. Besides, it still extends with IoT and UAV 
capabilities. For processing and analysis, this appears to 
happen primarily via batch processing technology like 
MapReduce and distributed system infrastructure like Hadoop. 

The collected data is amenable to be transformed into an 
acceptable format for GIS systems. Decision-makers utilized 
tools such as GoogleEngine, which provide interactive digital 
maps with almost real-time visualization of much free satellite 
imagery and a continuous development platform for the 
intelligent integration of multi-sources information. 

1) Descriptive analytics: Descriptive analytics enable 

visualization and interpreting of the collected data in order to 

answer the “what happened?” question [2, 7]. Several 

visualization tools and Ad-hoc were implemented for various 

data-related agriculture sources to tackle the complex nature 

of both structured and unstructured data. A basic 

summarization of these large volumes of data can be 

performed in diverse formats, including summaries, i.e., 

tables, charts, spreadsheets, etc. 

2) Diagnostic analytics: Diagnostic analytics motivate 

analysts to perform a root cause analysis to discover key 

reasons for the events. A smart, well-designed dashboard 

combined with time-series data offers analysts mandatory 

tools to quickly summarize an overview that matches the 

business objectives. The question answered using diagnostic 

analytics is, “why did it happen?”. Data mining, as well as 

correlation, can offer profound perception into defining the 

targeted problems and issues. DL is a full orientation shift in 

supervised machine learning, such as pattern recognition and 

natural language processing. 

3) Predictive analytics: Predictive analytics aims to 

predict future by answering the “what is going to happen?” 

questions. Generally, ample statistical and machine learning 

approaches aim to correlate past and today data to assume the 

future. 

4) Prescriptive analysis: Prescriptive analytics assess 

analysts for determining optimal actions and decisions on the 

basis of answers to a diversity of questions concerning “what 

might happen?”. For instance, analysts might possess 

numerous choices for dispatching maintenance actions 

towards a specific asset. For maintenance actions, the time-

varying expense required items to be repaired or substituted, 

while the risk linked to each of such decisions is capable of 

determining the optimal dispatch. Prescriptive analytics 

synthesize the BD, diverse sciences’ principles, business rules, 

in addition to IoT disciplines for receiving the predictions 

merits, followed by taking the most optimal decisions. 

Prescriptive analytics goes beyond the prediction. Indeed, the 

“what will happen” and “when will happen” questions should 

be able to justify the “why it would happen” questions. 

C. Problem Solving 

Finally, the collected data is converted into actionable 
perceptions. Herein, the data captured from different sensors 
could be utilized to improve the monitoring, management, and 
prediction of agriculture sector activities in Egypt. 
Furthermore, BD is utilized to boost predictive insights in real-
time for future outcomes in farming. Recently, the private 
Egyptian agricultural sector started implementing innovative 
technologies, particularly those requiring large scale of 
operations and costly initial investment. To implement new 
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technologies, this possesses a substantial influence on farmers’ 
prospects. The modern visualization and analysis tools enable 
farmers, experts, and research institutions to easily connect and 
simplify data management in a cost-effective way. Such a shift 
to new technologies comes true by research as well as 
development in hardware and software services. Recently, 
agricultural innovation has caused auspicious new methods for 
boosting productivity. However, for Egyptian farmers, access 
to high quality and precise information at a reasonable expense 
is challenging. 

Various efforts had been conducted to incorporate BD 
technologies in the agriculture sector. BD analytical help 
governments to establish policies and define mitigation plans 
toward climate change adaptation to secure food. BD 
integrated with IoT technology effectively supports a wide 
range of daily agriculture activities such as livestock 
monitoring, pest monitoring and fertilization control. 

Several studies had investigated the power of BD in digital 
farming worldwide to effectively estimate the biophysical 
factors of different crops and yield prediction which adopted in 
crop monitoring, and the investigation of irrigation water 
needs. 

VI. CHALLENGES AND FUTURE DIRECTION 

This section discusses the open issues and challenges that 
face big data in agriculture sector. Some of the challenges were 
identified from the literature have been discussed previously. 

A. Big Data Acquisition 

Agriculture sector in Egypt requires different set of data 
from different sources in order to fill the gaps between current 
and required state by BD analytics. The integration of multiple 
data sources will improve data quality and data integrity, 
provided that individual data validation is conducted before 
data integration. In the context of agriculture management, data 
integration can benefit from the data semantics or properties 
related to the data itself. It is impossible to avoid noises and 
misinformation from big data as a lot of these are 
unintentional, especially from social media and crowdsourcing. 
Also, data privacy and accuracy issues associated with big data 
acquisition still represent significant challenges, despite the 
available protocols and analytical method which are crucially 
required during the acquisition process. One of the proposed 
solutions that can help to eliminate such noise and 
misinformation is to develop a framework that enables the 
integration of multiple sources of data, such as crowd-sourcing 
data sensor outputs. The framework could facilitate the 
detection to the anomaly or improper values caused by system 
failure or misleading data acquisition methods. Machine 
learning techniques can contribute to the integration filtration 
process to increase the data quality 

B. Big Data Analytics 

Due to the integration of multi-platform, multi-scale, and 
multi-discipline data, there is a must to enhance the predictive 
modeling capability for the farm management to become more 
efficient. Activities and research associated with using the 
integrated information and the results of predictive analysis are 
expected to better enhance our capability to efficiently handle 

livestock, farm clinic, and supply and chain process. It has 
been noted that crowd-sourced data provided by affected 
farmers have significant value during the management and 
decision making. However, analytical methods are still 
strongly required to integrate these crowd-sourced data reliably 
and precisely into the physical sensing data (e.g., satellite, 
UAV) and official data (e.g., terrain data, census data). Only in 
this case, the smart farming can be effectively depicted in 
terms of pests control, livestock managements, and yield 
production. Hence, the decision-making processes can benefit 
from the analytical results and build food security system that 
benefits populations and communities 

C. Cyber-infrastructures 

There is a critical necessity for the design and development 
of cyber-infrastructures so that big data can be effectively 
integrated into agriculture sector management agencies for 
real-time decision making. These cyber-infrastructure 
capabilities provide shared knowledge and communicating 
platforms to the decision-makers and responders from different 
organizations to conduct the process required in agriculture in 
an effective way. Research efforts and related activities are still 
needed to overcome the challenges emerging from big, sensed 
data, including efficient data management, fast data transfer, 
and intuitive data visualization. 

VII. CONCLUSION 

This paper conducted a systematic literature review to 
inspect the recent cutting-edge research of BD in the 
agricultural and farming field. BD analytics can help the 
Egyptian agriculture sector overcome several challenges; 
however, it required a hefty investment to be integrated. 
Egyptian Farmers had to adopt modern and new technology to 
balance the food gap and supply concerns. This paper reviews 
242 peer-reviewed articles on BD in agriculture, indicating 
BD's prominent role in tackling the agriculture sector's 
challenges. Therefore, ample conclusions were drawn: 

 The up-raising trend in adopting BD in different 
agriculture applications, the availability of free satellite 
imagery, and the massive computational capabilities 
and efficient machine learning algorithms help 
researchers gain insights and recommend solutions to 
agriculture challenges. 

 BD tackled a more comprehensive range of 
applications, even in the agriculture sector. 

 Satellite imageries were specifically employed to 
produce different popular vegetation indices and land 
cover maps, especially Landsat and Sentinel-2 imagery. 

 Extensive studies adopted different machine learning 
methods for RS data processing. In the last five years, 
deep learning had been adopted in several studies, 
especially in crop mapping and pests and disease 
identification. 
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