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Abstract—In the age of the industrial revolution, industry and 

machinery are elements of the utmost importance to the 

development of human civilization. As industries are dependent 

on their machines, regular maintenance of these machines is 

required. However, if the machine is too big for humans to look 

after, we need a system that will observe these giants. This paper 

proposes a convolutional neural network-based system that 

detects faults in industrial machines by diagnosing motor sounds 

using accelerometers sensors. The sensors collect data from the 

machines and augment the data into 261756 samples to train 

(70%) and test (30%) the models for better accuracy. The sensor 

data are sent to the server through the wireless sensor network 

and decomposed using discrete wavelet transformation (DWT). 

This big data is processed to detect faults. The study shows that 

custom CNN architectures surpass the performance of the 

transfer learning-based MobileNetV2 fault diagnosis model. The 

system could successfully detect faults with up to 99.64% 

accuracy and 99.83% precision with the MobileNetV2 pre-

trained on the ImageNet Dataset. However, the Convolutional 1D 

and 2D architectures perform excellently with 100% accuracy 

and 100 % precision. 

Keywords—Accuracy; convolution 1D; convolution 2D; data 

loss; faulty machinery; mobileNetV2; precision 

I. INTRODUCTION 

Industries are getting smarter day by day. Early 
identification of fault inside industry machinery plays a 
significant role in this modern era. To increase the productivity 
of production systems, precise production techniques are vital. 
Extensive research has been done to detect early faults and 
classify those machines and defects. Monitoring the faulty 
machines and taking remedial action makes for a safe 
environment and reduced failures [1]. Researchers have 
suggested different classifiers for the early diagnosis and 
detection of faults. Over time, machines have become complex, 
and for complex machines, data-driven methods have shown 
efficiency, whereas non-parametric methods are applied for 
extracting related information from the data [2, 3]. Machine 
learning algorithms such as SVM have significant difficulty in 
selecting features for identifying defects, particularly in 
induction motors as seen in [4]. Deep learning addresses the 
problem of feature selection by extracting features directly 
from raw data. Deep learning models are not precise enough 
when the amount of data is not sufficient. Generalization is 

also a significant drawback for deep learning algorithms. 
Accuracy is dependent on the proper distribution of data. Later, 
Transfer learning methods start getting famous in the Fault 
Detection and Diagnosis (FDD) field to prevent industry 
anomalies [5, 6]. Transfer learning methods learn from a place 
that is enriched in data, and later these models are applied in a 
place where the amount of data is an issue. This research has 
used Convolution 1D, Convolution 2D, and MobileNetV2 
architecture to detect faulty machinery. 

A sufficient amount of research has been done to find better 
classifiers for detecting faults in industrial machinery. An 
Artificial Intelligence-based fault detection system has been 
proposed by Lei et al. For learning features from raw signals, 
they present a sparse filtering and neural network [7]. Boukra 
et al. proposed a hybrid method based on feature reduction uses 
two parameters. Their proposed method is not manipulated by 
load conditions [8]. Machine learning algorithms are used for 
identifying faults in the motor drive where supervised learning 
plays a significant role [9]. Although supervised learning 
downs efficiency with unwanted data. Feature extraction from 
raw signals plays a significant role in detecting induction 
motors' faults. Wavelet analysis, time-domain analysis, 
frequency domain analysis, time scale frequency analysis, and 
time scale frequency analysis all aid in the extraction of 
characteristics [10-12]. The features extracted here affect 
accuracy in classification and proper fault recognition. Deep 
learning reduces this problem. Deep learning algorithms show 
a significant result in detecting faults for bearings and 
gearboxes [13]. Deep CNN shows remarkable accuracy in fault 
diagnosis from raw vibrating signals in the anti-noise domain 
[14]. Deep learning models are not efficient enough when the 
amount of training data is not sufficient. Transfer learning 
models show better accuracy when the amount of data is less. 
Adversarial transfer learning algorithms can identify erroneous 
signals by first converting them to RGB pictures and then 
training the model on those images [15]. Transfer learning-
based autoencoders are proposed by Wan et al. [16]. High fault 
classification results have been shown by VGG 19 in detecting 
faults in induction motors [17]. 

In the study, the authors worked with the Dataset obtained 
from Case Western Reserve University to detect the fault of 
bearings of the machinery based on a wireless IoT framework. 
The Dataset was further divided into sub-classes and 
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environments. After label encoding and splitting to training and 
test set, the processed data were classified using CNN 
algorithms. The classification methods of MobileNetV2, 
Convolution 1D, and Convolution 2D are used. The 
performance of the algorithms is then measured to determine 
the best method to detect faults in machines in industries. 

II. LITERATURE REVIEW 

The diagnosis of bearing faults is a hot topic in mechanical 
condition monitoring. The key phases in bearing defect 
diagnostics are feature extraction and pattern classification 
from monitoring data. The bearings will create extra vibrations 
when a specific bearing element fails. The fault characteristic 
frequency is a connection between the frequency of the extra 
vibration and the bearing speed. We can locate the failing 
bearing by analyzing the original vibration signal's frequency 
components [18]. 

Feature extraction techniques used in classical signal 
processing for bearing defect diagnostics using vibration 
signals include the Hilbert– Huang transform (HHT), the 
wavelet transform, empirical mode decomposition, and 
approaches. HHT was used by V.K. Rai et al. [19] to extract 
frequency domain features from bearing fault data to identify 
bearing fault categories. Xinsheng Lou et al. [20] used wavelet 
transform and neuro-fuzzy classification to develop a novel 
ball bearing problem diagnostic system. The wavelet transform 
was employed to retrieve the accelerometer signal's feature 
vectors. Once the adaptive neural-fuzzy inference system had 
been trained to categorize the feature vectors, it was used to 
classify data. The suggested approach worked effectively even 
with a variable load. 

SVMs were effectively used in the area of fault diagnostics 
by P. Konar et al. [21]. The feature vectors were extracted 
using a continuous wavelet transform (CWT), and the 
monitoring data for the three-phase induction motor was 
classified using a support vector machine (SVM). In order to 
recognize the early problem of the bearing, Zhuanzhe Zhao et 
al. [22] presented an intelligent fault detection approach based 
on a backpropagation (BP) neural network. It was suggested 
that the intrinsic mode functions (IMFs) be first acquired using 
a wavelet packet decomposition approach, and then the EMD 
method was utilized to get them. A BP neural network with 
three layers was built to recognize the monitoring signal fault 
pattern. 

Using naive Bayes classifier and Bayes net classifier 
carried out fault diagnostics [23]. Before using the suggested 
technique, the vibration signals are wavelet-analyzed to extract 
the discrete wavelet features, then utilized as input into the 
Bayes net for classification. 

An EMD method was utilized by Lei et al. [23], and a 
kurtosis-based method was offered to identify the sensitive 
characteristics for defect diagnostics based on bearing vibration 
signals. When dealing with nonlinear, non-stationary, and 
composite signals, Lin et al. [24] employed an enhanced EMD 

approach to extract features. The acoustic emission data from 
bearing tests were pre-processed using He et al.'s short-time 
Fourier transform (STFT) approach [25]. Feature selection 
techniques were commonly used to choose the most 
representative features from the collected data, including linear 
discriminant analysis (LDA) and principal component analysis 
(PCA). A diagnostic defect technique based on decision trees 
and PCA was reported by Sun et al. [26]. After feature 
extraction, PCA is used to minimize the number of features. 

S. G. et al. [27] developed a continuous wavelet transform 
and CNN approach to accurately, robustly, and generally 
diagnose rotating machines faults. This study by S. S. et al. 
[28] demonstrated that deep convolutional neural networks 
(DCNNs) could learn from various sensor outputs to identify 
induction motor faults with consistency and accuracy. By 
including freshly produced extra features for self-update to 
incorporate new aberrant samples and fault classes, W. Y. et al. 
[29] used a wide convolutional neural network to increase 
diagnostic performance and incremental learning capabilities. 

This research proposed a solution based on a wireless 
Internet of Things architecture for detecting machinery bearing 
faults using data from Case Western Reserve University. The 
Dataset was augmented in 261756 samples and further divided 
into sub-classes and environments. In order to classify the 
processed data, CNN methods were used after label encoding 
and partitioning it into training (70%) and test sets (30%). 
MobilNetV2, Convolution 1D, and Convolution 2D 
classification algorithms are used. For industrial machine fault 
detection, compare several algorithms’ results side by side to 
see which one performs better. 

III. PROPOSED METHODOLOGY 

Fig. 1 depicts a ZigBee-based wireless sensor network 
(WSN) concept for the proposed fault diagnostic technique. 
The WSN was created to gather accelerometer sensor data 
from a variety of industrial bearings. The TMS320F28335 
digital signal microcontroller is utilized as a microcontroller 
unit (MCU) in the WSN model, collecting data from 
accelerometers and transmitting it through an XBee (Pro Series 
3) radio transmitter. In addition, the XBee module is used to 
configure a coordinator gateway that receives signals from 
sensor nodes and sends them to the diagnostic server, which 
hosts the suggested fault diagnosis model. The ZigBee network 
protocols are used to create a mesh network of XBee devices. 
Besides, fault diagnosis methods comprise the following steps: 
a) data collection through accelerometer sensors, b) apply 
DWT to decomposed signals, c) preprocess data steps 
including creating a set of classes, set reshaping, and label 
encoding, d) splitting the dataset into 30% for testing and 70% 
for training, e) then classify data for fault detection and 
evaluate the performance. 

To identify defects, the suggested approach used 
convolutional neural network algorithms. The proposed 
method's process is shown in Fig. 1. 
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Fig. 1. Wireless Sensor Network ZigBee based and (b) Proposed Fault Diagnosis Approach. 

A. Data Collection and Pre-Processing 

In this study, the Case Western Reserve University dataset 
[30] is used as a standard guide to assessing the efficiency of 
the fault detection algorithm. The CWRU data center examined 
a 2 hp Reliance electric induction motor for regular bearings, 
single-point drive end (DE), and fan end (FE) faults under 
diverse settings. Accelerometers with magnetic bases 
connected to the housing were used to gather vibration data. At 
both the driving and fan ends of the motor casing, 
accelerometers were installed at midnight. An accelerometer 
was also connected to the motor that supported the base plate 
in specific tests. A 16-channel DAT recorder was used to 
capture vibration data, then analyzed in a MATLAB 
environment. MATLAB (*.mat) format is used for all data 
files. For drive and bearing problems, digital data was captured 
at 12000 samples per second and data was gathered at 48000 
samples per second, the final dataset volume was around 
261756 samples [31]. Data on speed and horsepower was 
collected using a torque transducer/encoder and manually 
recorded. 

The dataset included three working environments with the 
following conditions: 

1) Data collection at 12000 samples per second. 

2) Motor load range 0~2. 

3) Fault diameter 0.007 inches. 

So, from the big data warehouse of the CWRU data center, 
we gathered a dataset of 16 signals, of which four were normal 
baseline. The rest had four inner race faults, ball and outer race 

faults each. These 16 significant signals were individually 
sliced into 5949 samples so we can later reshape them as 
needed for feeding into the neural networks. Hence, the total 
length of the Dataset is 23796 samples and augmented the final 
Dataset into 261756 samples. The dataset is homogeneous and 
balanced. A simulator of data collection from bearing based on 
Accelerometer’s sensors is shown in Fig. 2. 

The faults were artificially introduced on the SKF Drive 
End bearing (6205-2RS JEM) using Electro-Discharge 
Machining. For environments 1, 2, and 3, the collected data 
provide a varied motor speed of 1797, 1772, and 1750, 
respectively. Fig. 3 shows the histogram of all elements in the 
data collection used in the analysis. 

 

Fig. 2. Accelerometers Sensors placed on bearing Simulator of CWRU. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 4, 2022 

205 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 3. Histogram for all Elements in Dataset. 

We started by loading all of the signal data and creating 
three sets of data. Label Binarizer was used to label the 
products and reshaped all three datasets. This work used a 
random seed value of 0.2 and utilized 30% of our data for 
testing and 70% of our data for training. 

For training our model with Convolution 1D, Convolution 
2D, and MobileNetV2 used Tensorflow and Keras library 
because of its convenient coding environment and ability to 
train a state-of-an-art algorithm for signal processing and 
computer vision. 

B. Convolution 1D and Convolution 2D 

The 2D in Conv2D refers to the fact that each channel in 
the input and filter is two-dimensional, while the 1D in 
Conv1D refers to the fact that each channel in the input and 
filter is one-dimensional. Normalizing the data in our 
Convolution 1D and Convolution 2D models initially set up the 
first hidden layer with 100 nodes and implemented the RELU 
activation feature. MaxPooling1D was used with a pool size of 
2 to minimize the dimension feature. The second and third 
convolution layers have 32 and 10 nodes, respectively. The 
signals were translated into NumPy arrays to speed up the 
computation. For backpropagation, the learning rate was set at 
0.001 and used Categorical Cross-Entropy and the Adam 
optimizer equation to calculate the loss function. The 
categorical Cross-Entropy loss function is used for the 
multiclass classification of the dataset. After applying all of the 
optimizers (Adam, Nadam, Adagrad, RMSProp, Adadelta, 
SGD, Adamax), Adam optimizer is chosen for the highest 
accuracy on the dataset. Since the batch size for instruction is 
32, and the decay is set to 0.1. Tables I and II depict the 
convolution 2D and convolution 1D models, respectively. 

C. MobileNetV2 

MobileNetV2 is a CNN architecture that tends to be 
efficient on mobile devices. MobileNetV2 has 32 filters on its 

initial fully convolution layer. There exist 19 residual 
bottleneck layers. It is utilized for image classification, object 
detection, quantization, and so on [32]. 

Two types of blocks are introduced in MobileNetV2. 

1) Residual block of stride 1. 

2) Block for downsizing with 2 strides. 

 
Both the blocks are made up of three layers, as illustrated in 

Fig. 4. With 1x1 convolution, the ReLU6 activation 
mechanism is used in the first layer. On the second sheet, a 
depth-wise is added, and the third layer is also a 1x1 
convolution, save for some non-linearity. The activation 
mechanism of ReLu is often included in the third layer [33]. 
MobileNetV2 performs well when the mathematical operations 
and the number of parameters are kept low. The MobileNetV2 
architecture is about 35% faster than the previous version, 
MobileNetV1. 

TABLE I. PROPOSED CONVOLUTION 2D MODEL 

Layer (type) Output shape Parameter 

Conv2d_4 (Conv2D) (None, 30, 30, 32) 320 

max_pooling2d_4 

(MaxPooling2D) 
(None, 15, 15, 32) 0 

conv2d_5 (Conv2D) (None, 13, 13, 64) 18496 

max_pooling2d_5 
(MaxPooling2D) 

(None, 6, 6, 64) 0 

dense_4 (Dense) (None, 6, 6, 10) 650 

dropout (Dropout) (None, 6, 6, 10) 0 

max_pooling2d_6 

(MaxPooling2D) 
(None, 3, 3, 10) 0 

flatten_2 (Flatten) (None, 90) 0 

dense_5 (Dense) (None, 4) 364 

Total params: 19,830 
Trainable params: 19,830 

Non-trainable params: 0 

a.
Shape and parameters are depended on Convolution 2D model layers. Various layers are implemented. 

TABLE II. PROPOSED CONVOLUTION 1D MODEL 

Layer (type) Output shape Parameter 

conv1d_2 (Conv1D) (None, 31, 100) 6500 

dropout_2 (Dropout) (None, 31, 100) 0 

max_pooling1d 

(MaxPooling1D) 
(None, 15, 100) 0 

conv1d_3 (Conv1D) (None, 14, 32) 6432 

dense_2 (Dense) (None, 14, 10) 330 

max_pooling1d_1 
(MaxPooling1D) 

(None, 7, 10) 0 

flatten_1 (Flatten) (None, 70) 0 

dense_3 (Dense) (None, 4) 284 

Total params: 19,830 

Trainable params: 19,830 
Non-trainable params: 0 
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a.
 The shape and parameters are determined by the layers of the Convolutional 1D model. Numerous 

layers have been introduced. 

 

Fig. 4. MobileNetV2 Architecture. 

The base layer of the MobileNetV2 platform has been 
frozen and replaced with the proposed trainable layer. The 
Relu activation feature is extended to 512 nodes in the 
proposed layer. In the output sheet, there are 4 nodes and a 
SoftMax activation mechanism for classifying faults. The loss 
function is determined using categorical cross-entropy, and the 
learning factor is set to 0.001. 

D. Performance Measures 

Precision, recall, f1-score, and accuracy evaluate the 
models' performance after completing the training and testing 
phase. Precision is the closeness of the measurements to each 
other, while accuracy is the proximity of the measurements to a 
particular value. The equations used to calculate the measures 
are stated in Eq. (1) and Eq. (2). The ability of a model to 
identify all of the data points of relevance in a dataset is 
referred to as recall. F1-score measures the rate of recognizing 
real threats and not being distracted by false alarms. The 
measures of Eq. (3) and Eq. (4). 

          
  

     
              (1) 

         
     

           
             (2) 

       
  

     
              (3) 

           
                

                 
            (4) 

In the Equations, TP represents true positive, TN represents 
true negative, and FP and FN represent false positive and false 
negative. 

IV. RESULT ANALYSIS AND DISCUSSION 

The proposed methods can successfully identify faulty 
machinery with high accuracy [34]. After processing collected 
data samples, all three elements (inner raceway, outer raceway, 
and ball) considered in our Dataset were found to have 0.011 
inches fault depth. 

A. MobilenetV2 Result Analysis 

Table III shows that the best training accuracy was at epoch 
number 17, where the accuracy was 99.86 percent, and the best 
validation accuracy was 99.64 percent. The model has a 99.83 
percent precision. 

Fig. 5 depicts the precision of training and testing for each 
epoch and the data loss graph for MobileNetV2 in the training 
and test sets. The graph shows that with increasing epochs, 
detection accuracy increases, and data loss gradually decreases 
for both training and test sets. 

The classification report for each class (normal, ball, inner 
and outer raceway) of the test dataset is shown in Fig. 6. The 
model shows high performance for all the classes individually. 

From the test data, the heat map is shown below in Fig. 7. 
The MobileNetV2 predicted 19229 properly in a normal class, 
where 222 samples are not correctly predicted. In the case of 
the class ball, 20572 samples are correctly predicted, where 
425 data are not correctly predicted. Similarly, in the case of 
inner class and outer class, 18571 and 17604 samples are 
correctly predicted, where 749 and 1155 samples are 
improperly classified. 

TABLE III. DATA LOSS AND ACCURACY OBTAINED FROM MOBILENETV2 

Epoch 
Training Set Testing Set 

Data loss Accuracy (%) Data loss Accuracy (%) 

1 0.5838 85.82 0.0624 98.60 

2 0.0527 98.74 0.0360 99.12 

3 0.0338 99.12 0.0291 99.20 

4 0.0262 99.23 0.0248 99.34 

5 0.0214 99.36 0.0213 99.34 

6 0.0186 99.40 0.0192 99.41 

7 0.0165 99.47 0.0184 99.41 

8 0.0155 99.54 0.0183 99.45 

9 0.0117 99.67 0.0168 99.44 

10 0.0129 99.61 0.0145 99.52 

11 0.0109 99.68 0.0149 99.51 

12 0.0098 99.74 0.0148 99.54 

13 0.0105 99.73 0.0134 99.52 

14 0.0107 99.67 0.0129 99.61 

15 0.0071 99.75 0.0142 99.45 

16 0.0134 99.54 0.0119 99.62 

17 0.0062 99.86 0.0119 99.64 

18 0.0070 99.85 0.0123 99.61 

19 0.0059 99.80 0.0119 99.64 

20 0.0061 99.85 0.0116 99.62 

b.
Data sample of the MobileNetV2 model's 20 epochs. 
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(a) 

 
(b) 

Fig. 5. (a) Accuracy for each Epoch, (b) Data Loss Graph, for MobileNetV2 

Architecture. 

 

Fig. 6. Classification Report for each Class. 

 

Fig. 7.  Heat Map for MobileNetV2. 

B. Convolution 1D result Analysis 

Table IV shows the accuracy of the training and test sets for 
Convolution 1D. The highest outcome seen in the training set 
is 99.97%, while the maximum accuracy demonstrated in the 
test set is 100 percent. Set 3 was used to train the model, and 
Set 2 and Set 1 were used for testing. 

TABLE IV. THE DATA LOSS AND ACCURACY OBTAINED FROM 

CONVOLUTION 1D. 

Epochs 
Training 

data loss 

Training 

Accuracy in % 

Test 

data loss 

Testing 

Accuracy in % 

1 9.96 43.88 3.34 89.60 

2 8.74 92.98 2.65 99.89 

3 6.64 99.03 2.45 100.0 

4 6.43 99.42 2.25 100.0 

5 4.62 99.48 1.76 99.96 

6 4.11 99.65 0.38 100.0 

7 2.68 99.71 0.29 100.0 

8 0.73 99.79 0.17 99.95 

9 0.35 99.87 0.13 100.0 

10 0.77 99.97 0.19 100.0 
a.

Data sample of the Convolution 1D 's 10 epochs. 

The data loss and accuracy graph are shown in Fig. 8. For 
the ten epochs, accuracy increases and data loss decreases from 
training data and test data. 

 
(a) 

 
(b) 

Fig. 8. (a) Data Accuracy, (b) Data Loss Graph, of Convolution 1D. 
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The scores of precision, recall, accuracy, and f1- score are 
shown in Fig. 9. The model provides perfect scores for each of 
the performance tests for all the data classes. 

 

Fig. 9. Classification Report of Convolution 1D. 

In Fig. 10, the heat map demonstrates the predicted and 
non-predicted test data. The Convolution 1D accurately 
predicted 19451 samples in a normal class; however it 
incorrectly predicted 0 samples. A total of 20997 samples are 
accurately predicted when it comes to the class ball, whereas 
no samples are incorrectly predicted. Additionally, 19320 and 
18759 samples from the inner and outer classes are accurately 
predicted, but no samples are incorrectly classified. 

 

Fig. 10. Heat Map for Convolution 1D. 

C. Convolution 2D Result Analysis 

In Table V, the result of Convolution 2D is stated. Both the 
training and validation sets have an accuracy of 100%. The 
model shows high accuracy on each epoch. Additionally, the 
data loss for the test set is much lower. 

The data accuracy and loss graph are seen in Fig. 11. It is 
seen that the data loss for the training set gradually decreases 
with the increased number of epochs. The accuracy rate stays 
consistently high for the test set, and the data loss stays 
consistently low on each epoch. 

The classification report in Fig. 12 illustrates that the 
Conventional 2D model shows a perfect performance score 
throughout all the classes of the test Dataset, the same as the 
Conventional 1D model. 

TABLE V. THE DATA LOSS AND ACCURACY OBTAINED FROM 

CONVOLUTION 2D 

Epochs 
Training 

data loss 

Training  

Accuracy in % 

Test 

data loss 

Testing  

Accuracy in % 

1 12.04 84.95 0.07 99.98 

2 10.67 99.78 0.06 99.95 

3 8.35 99.84 0.03 99.94 

4 7.55 99.92 0.03 100.0 

5 6.21 99.97 0.02 99.93 

6 3.00 99.99 0.03 99.98 

7 1.96 99.89 0.03 100.0 

8 0.97 99.97 0.02 100.0 

9 0.033 100.0 0.02 99.94 

10 0.031 99.99 0.02 100.0 

b.
Data sample of the Convolution 1D 's 20 epochs. 

 
(a) 

 
(b) 

Fig. 11. (a) Data Accuracy, (b) Data Loss Graph using Convolution 2D. 

 

Fig. 12. Classification Report of Convolution2D. 
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Fig. 13. Heat map for Convolution 2D. 

In Fig. 13, the heat map is illustrated the predicted and non-
predicted test data. The Convolution 2D successfully predicted 
19451 samples in a normal class, yet it wrongly predicted Nil 
samples. When it comes to the class ball, a total of 20997 
samples are properly predicted, while nil samples are wrongly 
predicted. Furthermore, 19320 and 18759 samples from the 
inner and outer classes are properly predicted, so the predicted 
rate is 100%. 

D. Result Discussion and Comparison 

The CNN algorithms used in the study all show promising 
results. MobileNetV2 shows the accuracy of 99.64% and 
lowest data loss of 0.01, whereas both the Convolutional1D 
and 2D show a perfect accuracy score of 100% at the 10th 
epoch with CPU time of 82.5secs/epoch and 93secs/epoch, 
respectively. The comparison among the performance of the 
algorithms' prediction is illustrated in Table VI. 

TABLE VI. COMPARISON OF THE ALGORITHMS 

CNN 

Models 
Ep 

Tr_ 

loss 

Tr_ Acc 

in % 

T_ 

loss 

T_Acc 

% 

CPU_T 

secs/Ep 

M_NetV2 20 0.006 99.86% 0.01 99.64% 108.65 

Cn_1D 10 0.77 99.97% 0.19 100.0% 82.5 

Cn_2D 10 0.03 99.99% 0.02 100.0% 93.0 
a.

Convolution 1D and Convolution 2D Perform better with highest accuracy and low CPU time than 

MobileNetV2. Here, Epochs is abbreviated ‘Ep’, Training loss is abbreviated ‘Tr_loss’, 

Training accuracy is abbreviated ‘Tr_Acc’, Test loss is abbreviated ‘T_loss’, Training 
Accuracy is abbreviated ‘T_Acc’. CPU Time is abbreviated ‘CPU_T’, 

All three algorithms of the proposed system achieve very 
high performance in detecting faults in machinery. However, 
fault detection has been done in the past using other machine 
learning algorithms [35-37]. A comparison of the performance 
of such algorithms with the proposed system is made in 
Table VII. From the comparison, it is observed that even 
though CNN and GAN algorithms achieve an accuracy of over 
97%, it is much lower than the accuracy achieved by the 
algorithms proposed in the study. 

The proposed system successfully detects a fault in 
industrial machinery up to 100%. Compared to the existing 
techniques, the performance is much higher. It is essential to 
detect faults with the highest accuracy in industrial machinery, 
as even a minor increase in fault detection accuracy might 
prevent a tragic accident. Since the machines used in industrial 
work generally contain a lot of small or big parts, at the same 

time, machines themselves can be huge, maintaining it can be 
difficult for humans. The proposed fault detection system can 
be used to make the process automatic and efficient. Using the 
system, the sound vibration from the machinery can be 
processed by MobileNetV2, Convolution 1D, and Convolution 
2D to detect faults in the machines to avoid future hassles. 

TABLE VII. COMPARISON OF THE PROPOSED SYSTEM WITH EXISTING 

SYSTEMS 

Models 
Proposed 

System 

Existing 

System 

1 [38] 

Existing 

System 

2 [39] 

Existing 

System 

3 [40] 

Existing 

System 

4 [27] 

MobileNetV2 99.64% - - - - 

Convolutional 

1D 
100% - - - - 

Convolutional 

2D 
100% - - - - 

SVM - 97.3% - - - 

CNN - 98.1% - - - 

SVM + PCA - 74.4% - - - 

Stack 

Denoising 
Auto Encoder 

- - 91.67% - - 

GAN - - 97.96% - - 

DNN - - 94.4% - - 

ANN - - - 95%  

ANN + 10-

fold Cross 
Validation 

- - - 93.54% - 

CNN - - - - 

71.67% 

86.67% 

98.33% 
a.

A comparison between the proposed study and existing related work. Proposed study offers better 
findings than existing related studies. 

V. CONCLUSION 

As scientific and technical knowledge increases, 
mechanical equipment becomes more sophisticated and 
automated. Mechanical equipment relies significantly on 
spinning mechanical components like bearings and lead screws 
to work properly. Damaged or failed bearing components will 
cause equipment failure and fatalities. As a result, monitoring 
the bearing components' performance is essential. This article 
presented a viable method for bearing defect detection based 
on accelerometer sensors and the wavelet transformation 
(DWT) signal processing methodology, with a ZigBee-based 
wireless sensor network architecture for effectively sending 
data to a diagnostic server. MobileNetV2 architecture pre-
trained model compares the model with two custom CNN 
models: 1D and 2D deep CNN architectures. A bearing dataset 
collected by accelerometers sensors is used to validate the 
models that consist of 4 types of fault signals. Upon the four 
classes, we have achieved a satisfactory result. With 
MobileNetV2, the system was able to identify problems with 
99.64% accuracy and 99.83% precision. It achieves up to 
100% accuracy and precision when utilizing the Convolutional 
1D and 2D architectures. In the future, the proposed 
architecture may be tested with more parameters besides 
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implementing hybrid transfer learning models and the most 
reliable IoT framework. 
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