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Abstract—The soft-sensor method of carbon content in fly 

ash is to predict and calculate the carbon content of boiler fly ash 

by modeling the distributed control system (DCS) data of 

thermal power stations. A novel data-driven soft-sensor model 

that combines data pre-processing, feature engineering and 

hyperparameter optimization for application in the carbon 

content of fly ash is presented. First, extract steady-state data by 

data mining technology. Second, twenty characteristics that may 

affect the carbon content in fly ash are identified as variables by 

feature engineering. Third, a LightGBM prediction model that 

captures the relation between the carbon content in fly ash and 

various DCS parameters is established and improves the 

prediction accuracy by the Bayesian optimization (BO) 

algorithm. Finally, to verify the prediction accuracy of the 

proposed model, a case study is carried out using the data of a 

coal-fired boiler in China. Results show that the proposed 

method yielded the best prediction accuracy and closely 

approximates the non-linear relationships between variables. 
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I. INTRODUCTION 

The unburned carbon content in fly ash reflects the 
combustion efficiency of a coal-fired boiler. The combustion 
condition of coal can be better evaluated by analyzing the 
unburned carbon content in fly ash [1]. Real-time monitoring 
of carbon content in fly ash helps keep the carbon content in fly 
ash within a reasonable range, thus reducing the cost of power 
generation and improving the economy of generating units. 

Currently, the methods for detecting the carbon content of 
fly ash are divided into two categories: physical measurement 
methods and soft-sensor methods. Physical methods commonly 
include the loss-on-ignition method [2], Laser-induced 
breakdown spectroscopy

 
[3], microwave absorption method. 

[4] etc. Physical solutions are not widely available due to 
technical or cost reasons [5-6]. Machine learning methods have 
been widely used in human life, industrial production and 
power generation [7-9]. Distributed control system (DCS) is a 
computer control system for centralised management and 
decentralised control of the production process [10]. The 
distributed control system contains many sensors, which record 
the information of system operation. By analyzing this 
information, we can predict the operation status of the system 
[11]. The soft-sense method organically combines the 
production process knowledge through mechanism analysis, 

which can quickly and accurately reflect the carbon content in 
fly ash under different working conditions, and has a high 
economy. 

Currently, there are three main problems with soft-sensor 
methods for the carbon content in fly ash: 

1) The boiler combustion process is a multivariable 

variable, nonlinear and highly coupling thermal process [12]. 

For example, the DCS records variables such as air volume, air 

pressure, and air temperature for each coal mill outlet. These 

variables are highly correlated with boiler combustion 

prediction modeling, resulting in a certain amount of variable 

redundancy, affecting the model estimation accuracy, and 

increasing the computational complexity. Therefore, it is 

necessary to apply feature engineering to reduce the impact 

caused by redundant variables. 

2) Most current research tests have limited data and 

working conditions. They do not effectively represent the 

complete operational status of the boiler. 

3) The accuracy of these algorithms is limited. 

II. RELATED WORK 

Zhou et al [13]. established an artificial neural networks 
(ANN)-based soft-sensor model for the carbon content in the 
fly ash of a 300MW utility tangentially firing coal burned 
boiler and verified the validity of the model by multi-state 
thermal experiments. Wang et al [14]. proposed building a 
prediction model with support vector regression(SVR) for 
carbon content in fly ash and showed through experiments that 
the carbon content in fly ash model using SVR has reliable 
generalization and is suitable for online modeling. In machine 
learning, finding appropriate data processing methods, such as 
removing noise data and extracting suitable features, will help 
to improve the accuracy of prediction [15]. To address these 
issues, Zhu et al [16] performed a sensitivity analysis of the 
related features for the carbon content in fly ash, using the 
Garson algorithm for variables selection before modeling. 
Wang [12] collects the factors influencing the carbon content 
in fly ash constitute the initial variables, and the optimal 
variables are selected by the random forest-based variable 
selection method. The machine learning model contains many 
super parameters, such as penalty, learning rate and loss 
function. A suitable combination can effectively improve the 
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prediction accuracy of the model [17]. Feng [18] improves the 
model generalization ability by using the genetic algorithm to 
optimize the values of each neural network parameter. Peng 
[19] proposed an adaptive perturbation quantum particle swarm 
optimization algorithm (AQPSO) with a support vector 
machine to jointly predict the carbon content in fly ash and 
improve the prediction accuracy of the SVR model by 
ADQPSO. 

LightGBM [20] is an ensemble learning algorithm, 
Developed by Microsoft in 2017. It is an advanced 
implementation of the distributed gradient boosting decision 
tree (GBDT) framework. The GBDT [21] algorithm is the core 
of LightGBM, which iteratively sums weak estimators to 
generate robust estimators by computing the negative gradient 
of the loss function. Lightgbm integrates GOSS (Gradient-
based One-Side Sampling) algorithm and EFB (Exclusive 
Feature Bundling) algorithm based on GBDT. GOSS algorithm 
can lead to a more accurate gain estimation than uniformly 
random sampling, and the EFB algorithm provides a nearly 
lossless approach to reduce the number of effective features 
[20]. LightGBM algorithm extensively applied in many 
regression problems [22-23]. 

Hyperparameters play a valid role in the accuracy of 
regression prediction algorithms. In practice, it is necessary to 
continuously adjust the hyperparameters, train the model under 
different sets of hyperparameters, and determine the best 
hyperparameters by comparing the model's performance. 
Therefore, finding the appropriate hyper-parameters has 
become a critical issue in machine learning [24]. 

Bayesian optimization (BO) is a very effective global 
optimization algorithm. BO is very suitable for solving highly 
complex optimization problems. Their objective functions 
could not be expressed, or the functions are non-convex, 
multimodal, and computational expensive [25]. BO can 
actively select appropriate evaluation points according to the 
relevant results of the current unknown function to avoid 
unnecessary sampling. At the same time, Bayesian 
optimization can use historical search information to improve 

search efficiency. [26]. BO has achieved better results than 
other hyperparameter tuning methods in the Black-Box 
Optimization Challenge 2020 [27]. 

III. PROPOSED WORK 

In this study, a new soft-sensor method for measuring the 
carbon content of fly ash is proposed by analyzing and 
experimenting with a total of 3,272,872 DCS data from an 
electric boiler from October 23 to November 30, 2020. The 
method combines data mining, feature engineering, 
LightGBM, and BO algorithm. A flowchart of the applied 
methodology is proposed in Fig.1. By comparing with other 
feature selection methods, and prediction models, experiments 
show that the prediction results of the presented approach are 
closer to the actual working conditions of the carbon content of 
fly ash, which improves the soft-sensor accuracy and ensures 
the reliability and accuracy of the soft-sensor method. 

The data processing part is the operation of apparent outlier 
removal and re-sampling of the acquired DCS data. 

A. Apparent Outlier Removal 

First, the raw data was examined, and remove the data are 
outside the reasonable range. For example, the actual load 
recorded by the DCS has some invalid data at the beginning 
due to plant shutdown, etc. As shown in Figure 2, the data in 
the red area are unreasonable. By removing apparent outliers, 
the natural distribution of the variables can be captured. 

The load changes drastically since thermal power units 
need to adjust the power generation capacity according to the 
grid load during operation. The thermal power units are 
constantly changing the working conditions, such as steady-
transition-steady. This will result in a miss correlation between 
data. This effect can be minimized by data-resampling the data 
in an appropriate period. In this study, the datasets were re-
sampled into 6-minute intervals. The actual load’s scatter plot, 
before and after re-sampling, is shown in Fig.3, Fig.4. The re-
sampled data is smoother and more similar to regular 
operation, as is shown in Fig.4. 
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Fig. 1. Methodology Flowchart. 
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Fig. 2. Raw Load Data Scatter Plot. 

B. Data Re-sampling 

Feature engineering [28] is scoring each potential feature 
based on specific feature selection metrics and selecting 
representative variables from a given dataset to improve the 
final prediction. Feature engineering is crucial in the model 
design, as irrelevant or redundant data features will harm the 
model's performance. By reducing the number of variables, 
noisy and irrelevant data are removed, and the algorithm can 
run fast as the number of variables is reduced. There are 
generally three feature selection methods: filter method based 
on statistical information, wrapper method, and embedded 
method [29]. This study uses the correlation matrix(based on 
the filter method) and wrapper method to deal with variables. 

 

Fig. 3. Scatter Plot before Re-sampling. 

 

Fig. 4. Scatter Plot after Re-sampling. 

According to the characteristics of multivariable variables, 
nonlinear and highly coupling thermal process, Firstly, the 
features with strong coupling are found through the correlation 
matrix, and the variables with low correlation with the carbon 
content of fly ash are eliminated. The essential variables are 
further extracted by the wrapper method to reduce the 
computational complexity of the model. 

C. Remove Redundant Features 

The correlation matrix (CM) is a table that is constructed to 
quantify the dependence between variables, as shown in 
equation (1), and the correlation coefficient indicates the 
positive or inverse relationship between the target variables 
[30]. The correlation matrix identifies and deletes redundant 
features in the dataset. Fig.5 shows one of the generated 
correlation matrices, which presents the correlation between 
the six features, The features from top to bottom are 'air 
temperature', 'air volume', 'steam temperature', 'steam 
temperature 2', 'air temperature 2', and 'air pressure'. If the 
correlation coefficient between the two variables is more 
significant than 0.95, they are compared with the carbon 
content in fly ash, and the variable with the smaller correlation 
coefficient is removed. For Fig.5, the features ' air temperature', 
'air volume', and 'steam temperature ' were removed. In this 
way, the number of 71 DCS variables was reduced to 45. 
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             (1) 

where r is the correlation coefficient, 
ix is value of feature 

x,
iy is value of feature y ,

avex is mean value of the feature x ,

avey is mean value of the feature y. 

 

Fig. 5. Part of the Correlation Matrix. 
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D. Extract Important Features 

The wrapper method is a feature selection method 
according to a specific prediction model, and this method uses 
recursive feature elimination (RFE). It is a greedy optimization 
algorithm that selects the best feature subset by repeated 
iteration. For the last step, the 45 variables selected by the 
correlation matrix are then used to determine the best 
performing 20 variables by the wrapper method. 

E. Establishment of the Prediction Model 

Before modeling, we will process features through 
correlation matrix and wrapper method, eliminate variables 
with highly coupling through correlation matrix, and select 
essential features subset by wrapper method, to reduce the 
computational complexity and further improve the 
expressiveness of the model. 

LightGBM has many hyperparameters, and a reasonable 
choice of hyperparameters can improve prediction. While 
using the lighthGBM model to predict the carbon content of fly 
ash, the BO algorithm is used to continuously adjust the 
hyperparameters of the lighthGBM model to improve the 
prediction accuracy of the modelThe process of generating the 
optimal model BO_LightGBM is shown in Fig.6. During the 
model satisfaction assessment, cross-validation is set 5, the 
evaluation function is a root mean squared error. 

Training 
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End

Start

BO LightGBM

Model satisfaction 
evaluation

NO

Generate optimal 
models

Yes

 

Fig. 6. Hyperparameter Tuning Flow Chart. 

IV. VALIDATION AND RESULTS 

A. Performance Metrics 

The regression evaluation indexes in regression analysis 
have mean squared error (MSE), root mean squared error 
(RMSE), mean absolute percentage error (MAPE), and 

coefficient of determination(R
2
). RMSE MSE , In this 

study, RMSE, MAPE, and R
2
 were selected as performance 

metrics, and these indices can be calculated as Eq. (3)(4)(5). R
2 

is adapted to measure the approximation degree of the data to 
the prediction value, the closer R

2
 is to 1, the better the fitting 

effect of the model. The smaller MSE, MAPE means the more 
accurate the prediction. 
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where iy
 are the actual values,

ˆ
iy

 are the predicted 

values,and iy
is the mean of iy

(i=1,2,..., n). 

B. Performance Comparison of Feature Processing Methods 

Methods frequently used in feature processing are Random 
Forest (RF) [31] and Pearson correlation coefficient (PCC) 
[32]. The experiment compares the method proposed in this 
paper with RF and PCC. The optimal 20 features of the three 
methods are modeled for prediction while ensuring that the 
selected data are consistent with the boiler's steady-state 
operating conditions. In this process, the correlation matrix 
eliminates the features with high correlation, retains 45 features 
with low coupling, and then uses the packaging method to 
retain 20 features. The processed results of each of the three 
methods are used as input to the LightGBM model. The 
experimental results are listed in Table I. 

The random forest method model is less effective, as shown 
in Table I. The model treated with PCC outperformed the RF. 
After using the correlation matrix to process the features, the 
R

2
, MAPE, and RMSE were significantly optimized, and after 

further processing of features by wrapper method, the R
2
 was 

improved to 0.822, MAPE was reduced to 16.5%, and RMSE 
was reduced to 0.509. It is proved that the fitting effect of the 
model using the method proposed in this paper is further 
enhanced, and the error is further reduced, which effectively 
solves the problem of high correlation and strong coupling 
between variables. 

TABLE I. PREDICTION RESULTS AFTER FEATURE PROCESSING 

Method R2 MAPE RMSE 

RF 0.71 19.22% 0.644 

PCC 0.78 17.47% 0.573 

CM 0.814 16.69% 0.523 

CM+Wrapper 0.822 16.50% 0.509 
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C. Comparison of Model Prediction Performance 

To validate the superiority of the proposed method, three 
methods, including LM- Garson-BP [16] AQPSO-SVR [19] 
FPA-RF [12], the three latest methods are compared as 
benchmarks. 

 LM-Garson-BP: The LM-Garson-BP methods used 
sensitivity analysis to select the feature variables and 
then used BP neural networks for predictive modeling 
and genetic algorithms to optimize the connection 
weights, number of neurons, and number of hidden 
layers. 

 AQPSO-SVR: The AQPSO-SVR method first adds 
adaptive perturbation to the quantum particle swarm 
optimization (QPSO) algorithm and uses this improved 
algorithm to find the optimal hyper-parameters of the 
support vector regression (SVR). 

 FPA-RF: The FPA-RF method first uses the random 
forest method to filter features, then uses the random 
forest as a prediction model and uses the flower 
pollination (FPA) algorithm to optimize the 
hyperparameters of the random forest. 

MAPE, RMSE, and R
2
 are selected as evaluation indexes. 

The experimental results are shown in Table II, and the 
prediction comparison results are listed in Fig. 7 and Fig. 8. 

 

Fig. 7. Prediction Comparison of LightGBM Model and BO_LightGBM. 

 

Fig. 8. Prediction Comparison of different Combined Models. 

TABLE II. PREDICTION RESULTS OF DIFFERENT MODELS 

Model R2 MAPE RMSE 

LM-Garson-BP [16] 0.722 19.69% 0.658 

AQPSO-SVR [19] 0.786 18.22% 0.560 

FPA-RF [12] 0.696 19.37% 0.652 

LightGBM 0.822 16.50% 0.509 

BO_LightGBM 0.831 16.02% 0.494 

Table II shows the performance comparison between the 
proposed method and other methods. The obtained results are 
representative. The method proposed in this paper achieves the 
lowest MAPE, RMSE, and the highest R

2
. The method in this 

paper reduces RMSE by 2.9%~24.9% and MAPE by 
2.9%~18.6% compared with the above methods, indicating a 
further reduction of errors and improvement of measurement 
accuracy. The R

2
 was improved by 1.1%~15.1%, indicating 

that the prediction curves were better fitted and the method in 
this paper was more accurate and reliable. Specifically, LM-
Garson-BP, AQPSO-SVR, and FPA-RF all use heuristic 
algorithms for hyperparameter tuning and combine with 
regression models for prediction, which improves the 
prediction accuracy of the corresponding models to some 
extent. 

From the perspective of hyper-parameter tuning, The BO 
algorithm can find the next evaluation position based on the 
information obtained for the unknown objective function when 
facing a complex optimization problem with hyperparameter 
tuning that is non-convex, multimodal, and computational, to 
reach the optimal solution the fastest [25]. The BO algorithm 
avoids the issues of ineffective use of iterative feedback 
information and the slow search speed of the algorithm. From 
the perspective of the prediction model, the LightGBM 
algorithm objective function adopts the second-order Taylor 
expansion, which can fully learn the model, add regular terms, 
reduce the complexity of the model, prevent overfitting, 
support parallel and distributed computing, and effectively 
improve the prediction accuracy. Therefore, the prediction 
results are better compared to the four models compared. 

V. CONCLUSION 

In this study, a data-driven approach integrating various 
machine learning algorithms and data mining techniques is 
used for the first time to analyze the relationship between the 
carbon content of fly ash and various operating parameters of 
boilers. This method has practical significance for guiding 
boiler production; collecting data for 37 days of complete 
working conditions and comparing our feature processing 
method with the PCC method, the RF method. The 
performance of the model is compared with LM-Garson-BP, 
AQPSP-SVR, and FPA-RF models. The results demonstrate 
that the method used in this paper exhibits better prediction 
results. 

In future work, consider combining DCS data and coal type 
characteristics to improve accuracy by more data information. 
In addition, due to the high correlation between DCS data and 
time, it is worthwhile to study more deeply how to mine 
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valuable information from these unstructured time series data 
and find the intrinsic correlation between the time series data. 
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