
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 4, 2022 

329 | P a g e  

www.ijacsa.thesai.org 

Review of Industry Workpiece Classification and 

Defect Detection using Deep Learning 

Changxing Chen, Azween Abdullah, S.H. Kok, D.T.K. Tien 

School of Computer Science and Engineering, Taylor’s University, Subang Jaya, Malaysia 

 

 
Abstract—Object detection and classification denotes one of 

the most extensively-utilized machine vision applications given 

the high requirements put forward for object classification and 

defect detection with the rise of object recognition scenes. 

Notwithstanding, conventional image recognition processing 

technology encounters specific drawbacks. Its benefits and 

limitations were duly compared upon selecting several typical 

conventional image recognition techniques. Resultantly, such 

recognition approaches required multiple manual participation 

elements and extensive manpower with restricted object 

identification. As a branch of machine learning, deep learning 

has attained more optimal results in the image recognition 

discipline. In the classification and defect detection of industrial 

workpieces, over 70 literature reviews of deep learning 

algorithms across multiple application scenarios for classical 

algorithm model and network structure assessment based on the 

deep learning theory. Relevant network model performance was 

compared and analyzed based on network intricacies parallel to 

natural image classification. Six research gaps were found based 

on the reviewed algorithm pros and cons. The corresponding six 

research proposal in workpiece image classification was 

highlighted with prospects on the workpiece image classification 

and defect detection direction development. It provides an 

empirical solution for the selection of workpiece classification 

and defect detection deep learning model in the future. 

Keywords—Convolutional neural network; image processing; 

image recognition; defect detection; deep learning 

I. INTRODUCTION 

In line with the proposal of artificial intelligence [1], 
optimal computational intelligence performance in 
mathematical theory and computing power enriches the 
artificial intelligence theoretical framework and catalyzes 
artificial intelligence development. Perceivably, artificial 
intelligence constitutes a part of computer science following 
the emergence of industry 4.0. Artificial intelligence could 
enhance the level of organizational astuteness with substantial 
implications across multiple sectors Deep learning and 
artificial intelligence machine learning depict a broad range of 
application disciplines, such as image recognition, network 
security, speech recognition, and natural language processing 
with significant breakthroughs. Various artificial intelligence 
recognition systems have been consistently developed with 
distinct functions and forms for economic and social 
advantages [2]. The fundamentals of artificial intelligence 
imply machine learning with algorithms. Multiple image 
recognition techniques require flexible adoption based on 
distinct application prerequisites to fulfill various image 
recognition task requirements in the practical application 
process. Under the computer vision category, image 

recognition, which simulates human vision using computers or 
image-based instruments, facilitates computers to comprehend 
the recognized entities with algorithms to substitute human eye 
functions. Conventional image recognition method 
development proved relatively slow pre-artificial intelligence 
development. Such recognition techniques were previously 
based on the object feature descriptor for image recognition 
and matching with limited discussions on conventional image 
recognition approaches [3]. The deep learning theory was 
derived from the conventional neural network under the deep 
neural network. This theory has eventually become the 
mainstream of image recognition methods with a distinct 
object recognition concept simultaneously, it is widely used in 
pattern recognition [4, 5], image recognition has made 
breakthroughs upon introducing deep learning into the image 
processing field while resolving multiple problems that could 
not be managed by conventional approaches. 

Workpiece surface defect is one of the most important 
factors affecting the product quality of mechanical workpiece. 
The traditional manual visual inspection method is easy to be 
affected by manual experience and subjective factors, which 
lead to inaccurate test results and cannot meet the current 
inspection requirements and the on-line production 
requirements of automatic production line. Machine vision 
inspection has the advantages of high automation, high 
recognition rate and non-contact measurement. It has gradually 
become the mainstream method and development trend of 
surface defect detection. According to the current inspection 
and classification requirements of workpiece manufacturers, 
combined with the actual situation of the industrial site, starting 
from solving the actual impact, workpiece classification and 
defect recognition are carried out through machine vision. 
Machine vision classification and detection algorithm can solve 
the problems of many types and large quantities of workpieces. 

A substantial number of factory workpieces (common 
components in industrial manufacturing) are extensively 
employed in industrial production. The prerequisites for 
workpiece recognition speed and accuracy continue rising as 
opposed to manual workpiece classification strategies with low 
efficiency and accuracy. In this vein, classification detection 
denotes high subjectivity. The recent emergence of artificial 
intelligence technology and computer vision and its application 
has been extensively employed in industrial sites to catalyze 
industrial parts classification development. This study 
summarized the common conventional image recognition 
approaches, presented specific common image recognition 
techniques under deep learning, and compared the method 
performance and effects on other applications. 
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II. IMPORTANCE OF INDUSTRY WORKPIECE 

CLASSIFICATION 

Workpiece denotes a product manufacturing process 
component where the machining object in machining or 
generation (a single part or combination of specific ones) is 
assembled. The advent of artificial intelligence includes novel 
application prerequisites for the factory flow production mode 
given the perpetual improvement of labor cost on the industrial 
site and highly stringent product quality requirements. 
Automatic workpiece assembly is highly significant post-
artificial intelligence development as the conventional artificial 
assembly line production mode failed to complement advanced 
industrial production. As such, industrial automation must be 
established to optimize manufacturing industry 
competitiveness. Accelerated automation transformation and 
the optimization of conventional sectors remain as one of the 
fundamental points to catalyze industrial development. The 
artificial intelligence-industrial site integration is inextricably 
linked for high productivity, novel changes, and industrial 
development possibilities. Industrial assembly is highly 
essential in the entire production process as each industrial site 
requires distinct parts. On another note, a sophisticated 
industrial production line encompasses workpiece 
classification and detection. Notably, the robot arm completes 
the assembly, sorting, and other relevant tasks involving 
various industrial parts post-classification and detection. Some 
industrial part sorting proves unsuitable for workers to sort and 
detect due to industrial site risks when the application scenarios 
are sufficiently enriched as follows: the monitoring state in the 
parts-sorting process, sorting process control, and workpiece 
classification emergency treatment in the industrial site. High 
requirements are reflected for industrial part detection accuracy 
and equipment process control stability. 

The conventional manual workpiece sorting approach 
depends on manual operation for parts classification 
realization. This technique requires high worker’s proficiency 
with substantial product quality implications. Specifically, the 
equipment of refined workpieces hampers production sorting. 
As product sorting and detection period in the entire production 
cycle proves time-consuming, production optimization depends 
on whether the automatic product line sorting process could be 
actualized. The means of scientifically controlling the 
industrial site workpiece classification denotes a complexity 
that must be regarded and resolved by relevant personnel in 
encouraging continuous industrial development through 
automation and intelligence. Machine vision systems, with 
image processing as one of the pertinent technologies, are 
increasingly implemented to resolve classification issues. It is 
deemed necessary to recognize workpieces for target 
workpiece classification realization. Image recognition is a 
processing application technology in deep learning and a 
fundamental task in computer vision. The diversified industrial 
parts demand substantially challenges the manufacturer's 
production and classification level given the adverse 
environment and intricate background within the industrial 
field. It is considered challenging to recognize the image and 
resolve the problem with conventional image feature selection 
based on interference factors: light and workpiece placement 
background. The industrial workpiece images to be classified 

are typically complex and ambiguous in practical production 
and application, thus rendering it intricate to structure an 
appropriate workpiece image classification approach. 
Observably, image classification denotes one of the difficult 
problems to be resolved in image classification and detection 
tasks. 

III. GENERAL OPEN SOURCE WORKPIECE DEFECT 

DATASETS 

Image datasets to highlight workpiece defects and 
classification remain lacking to date given the novelty of image 
defect detection studies. Current online public datasets 
generally constitute daily necessities, faces, and animals. Most 
recognition-oriented publications are performed on 
conventional image classification datasets [6]. Conventional 
image processing algorithms are typically incorporated into 
traditional surface defects and classification techniques. 
Artificial design features and classifiers are commonly 
implemented compared to the clear classification in computer 
vision. Specific datasets were adopted to complement the deep 
learning neural network training. The image formats typically 
encompass JPG and BMP and JPEG and RGB. Specific 
datasets in industrial disciplines, such as polished workpieces 
and customized CNC lathe workpieces do not possess public 
datasets. The lack of corresponding image training sets would 
inevitably restrict the promotion of deep learning applications 
in workpiece recognition. Data incongruence and dataset 
annotation need to be resolved despite the presence of 
constructed workpiece dataset pictures. 

Current industrial dataset usage could accelerate the deep 
learning algorithm model development while public, reliable, 
and open-source industrial datasets could compare distinct 
deep learning detection algorithms. This section briefly 
elaborates extensively-utilized industrial datasets following the 
industrial workpiece classification strategy and the broad 
industrial dataset application for defect detection as shown in 
Table I. 

TABLE I. GENERAL OPEN SOURCE WORKPIECE DEFECT DATASET 

Dataset Literature 
Type 

Quantity 
Image Size 

Number 

of Images 

NEU surface 

defect database 
[7] 6 200*200 1800 

Severstal steel 

defect dataset 
[8] 4 1600*256 12568 

DAGM 2007 
dataset 

[9] 10 
Grayscale 8-bit 
PNG format 

11500 

Kolektor surface 

defect dataset 
[10] 50 

width: 500 px 

height: from 

1240 to 1270 px 

399 

Rail surface 

defect dataset 
[11] 2 variable size 195 

The dataset derived from the NEU surface defect database 
was gathered and generated by several Northeastern University 
teachers. Six surface defect types were demonstrated with each 
type entailing 300 picture samples with a total of 1800 gray-
scale pictures provided through the bounding box. The picture 
size was 200*200 pixels. The datasets implied rolling scale 
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(RS), cracking (CR), pitting surface (PS), plaque (PA), 
inclusion (in), and scratch (SC), As shown in Fig. 1. Multiple 
defect types inevitably appeared on the metal workpiece 
surface during the production process [12]. The dataset was 
employed to train and classify the surface defect deep learning 
algorithm [13]. Notably, the artificial feature extraction 
approach could be integrated with the deep learning algorithm 
for optimal workpiece classification accuracy amidst 
insufficient samples. 

The Severstal steel defect dataset provided by Severstal 
steel entails four strip steel surface defect types to locate and 
classify surface defects on steel plates. A total of 12568 
training and 5506 test sets were identified with an image size 
of 1600*256 [14]. This dataset was analyzed with a per-pixel 
basis evaluation [15] with the potential as a high-quality defect 
detection baseline. As such, the deep learning model 
demonstrated better generalization and higher prediction 
accuracy in forecasting steel plate surface defects with the 
Severstal dataset [16]. The deep learning algorithm trained the 
data and optimized the defect detection learning model for gap 
identification compared to the other algorithms. In this vein, 
the deep learning algorithm model was structured while 
enhancing detection accuracy. 

The DAGM 2007 dataset encompasses 10 defect image 
types with each containing 575 training images and 575 test 
images:  training and test sub-datasets with the same size and a 
distinct number of label images, as shown in Fig. 2. Every 
picture encompassed the images saved in grayscale 8-bit PNG 
format for weak supervised industrial optical detection learning 
and training. The variance between dataset images proved to be 
minimal. The recognition algorithm model requirements are 
considerably high in accurately classifying the defects despite 
the presence of label files [9]. The accuracy and speed 
assessment of the fabric defect detection model algorithm 
using the dataset [17] catalyzed the elevation from the low-
resolution feature map to the high-resolution fusion feature 
counterpart with iterations for optimal prediction outcomes. 

 

Fig. 1. The Six NEU Types of Surface Defect Images. 

 

Fig. 2. DAGM Dataset:10 Types of Surface Defect Images. 

The Kolektor surface defect dataset primarily gathered 
defect electronic commutator images, which were subsequently 
collected under uniform illumination. Labeled pictures were 
also provided, as shown in Fig. 3. The variance between the 
pictures proved to be minimal with only one defect picture in 
every defect type, such as a workpiece with small damages or 
cracks that are challenging to identify with human eyes. Only 
52 defect images were visible in the entire dataset [10], thus 
significantly facilitating workpiece defect detection tasks. 

 

Fig. 3. Kolektor Defect Picture and Labeled Defect Picture. 

The rail surface defect dataset implies the train track 
defects (train track surface crack image) marked by track 
surface inspection experts. The dataset encompassed 195 
challenging images with every image entailing at least one 
defect and complex and noisy background [18]. Test and 
prediction datasets could be offered for the deep learning 
algorithm model to completely detect complex background 
information defects. 

The detection and classification performance of the deep 
learning algorithm model correlates to image quality, which 
would then impact performance indicators involving model 
classification accuracy. Sample incongruence would also 
influence the classification outcomes with a substantial 
variance between training and test image quality [12]. 
Perceivably, the model prediction impact was associated with 
the model itself and the dataset [13]. More high-quality image 
data samples could facilitate optimal deep learning model 
algorithm development for high classification and detection 
performance. 
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IV. TRADITIONAL APPLICATION METHODS OF IMAGE 

RECOGNITION 

Image recognition denotes computerized image processing, 
analysis, and understanding to determine multiple target and 
object types. This approach implies a practical deep learning 
algorithm application [19], such as online workpiece 
recognition for grinding burn and wheel wear following a self-
clustering neural network [20].Feature matching was primarily 
utilized for workpiece object recognition in the preliminary 
stage. Computer key visual features [21] were employed for 
high detection rates. Meanwhile, Salve et al. recommended a 
means of shape measurement for object recognition [22]. Dalal 
et al. utilized the histogram of gradient (HOG) descriptor to 
compute each stage impact on its performance [23]. Effective 
gray and rotation invariant texture classification techniques 
were also incorporated in the early stage under the local binary 
mode [24]. Tuzel et al.’s research integrated region descriptors 
with target detection and texture classification [25]. As an 
astute classification system under machine vision, it essentially 
classifies the peeled open heart fruit core and shell [26]. 

K. Xia et al. structured a workpiece sorting system in line 
with a machine vision industrial robot to complete the sorting 
operation and fulfill subsequent requirements using image edge 
detection [27]. Some of the applications depicted in bottleneck 
identification, which varied from current intuitive approaches, 
structured a bottleneck identification model following the 
shortest completion delay time for the overflow load 
computation of every machine to fulfill each workpiece 
delivery and optimally determine bottlenecks [28]. Y. Guan et 
al. employed the affine scale invariant feature transformation 
(a-sift) technique to identify the rough matching feature points 
between the assessed and planned workpiece towards 
workpiece identification by making the identified affine change 
[29]. Hu’s invariant moment was implemented to complement 
the extracted contour with the target counterpart within the 
template image for target workpiece identification [30]. 

Regarding workpiece detection and recognition, 
conventional approaches typically require manual feature 
selection and extraction to outline the features as vectors and 
utilize the similarity measurement function to match the (i) 
workpiece feature vectors to be identified and (ii) template 
workpiece [31]. The advent of image recognition remains 
stunted given its inapplicability in big-scale industries 
following the low efficiency of conventional sliding window 
approaches and feature robustness. Table II compares six 
typical methods and their subsequent categories. 

Although conventional image recognition techniques 
primarily outline objects with artificially-designed features, it 
is deemed impossible to manually extract rich image feature 
information from objects with intricate feature designs, thus 
challenging the recognition problem. As such, a data-driven 
approach (convolutional neural learning network) proves 
necessary for image feature data comprehension and 
processing. The image classification approach with a 
convolutional neural network could derive the target feature 
value from the (i) image that is challenging in manual feature 
extraction or the (ii) image dataset encompassing significant 
noises compared to the traditional image recognition 

counterpart. For example, the workpiece dataset in the 
industrial field demonstrated good robustness to the training 
and recognition image upon deriving this eigenvalue with the 
convolution neural learning network. The extracted feature 
sequence was simultaneously conveyed to the deep neural 
learning network, which could further elicit the fuzzy features 
in the image convolution features and forecast the labeled 
workpiece image. Workpiece image recognition under the 
convolutional neural network could integrate the two-step 
workpiece detection and recognition into one, efficiently 
determine the novel workpiece information encompassed in the 
image, and save model space and computation with vital and 
practical significance for project implementation. 
Convolutional neural network, a deep neural network with a 
convolution structure, has recently been incorporated into 
multiple image recognition scenarios. This network inputs the 
original image into the network. Every network node conveys 
the image data post-data pre-processing and outputs the 
probability distribution on the category label with layer-by-
layer weight iterative update and computation. 

TABLE II. TRADITIONAL METHODS OF TYPICAL IMAGE RECOGNITION 

Methods Reference 

Recognit

ion 

Object 

Advantages Disadvantages 

SVM 

classifier 
[32] tomato 

Detect with 

the least 
number of 

features 

Extensive color 

analysis was 

required 

Moment 

invariant 

method for 

edge 
detection 

[33] 
workpiec

e 

Able to 

measure the 

roughness of 

a rotating 
workpiece 

Specific 

measurement 
environments 

were required 

Template 

matching 

method 
[34] 

workpiec

e 

Simple, 

practical, and 
fast 

recognition 

speed 

The recognition 

effect was 

deemed poor for 

the workpiece 
with ambiguous 

feature points 

Feature 

extraction 

classification 
[35] 

workpiec

e 

Effectively 

resolve the 

problems of 
unclear 

features and 

inaccurate 
recognition in 

a complex 

environment 

The recognition 

robustness was 

deemed poor 
without fulfilling 

the universality 

of recognition 

ROI 

extraction 

method 

[36] 

Air-

bearing 

workpiec

e 

A block 

matrix was 

developed 
using 

reference 

pixels and 
tolerances 

Reference pixels 

were required 

Method 

based on 

Zernike 
Moments 

[37] 

Complex 

workpiec

e 

Insightful to 

detect ignored 

loading 

attachments 
and 

inaccurate 

assembly 
positions 

The identified 

object needed to 

be located 
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V. IMAGE RECOGNITION METHOD BASED ON DEEP 

LEARNING 

Deep learning constitutes a subclass of machine learning in 
traditional techniques. Object image feature extraction heavily 
relies on the manually-designed feature extractor, which 
requires expert designer knowledge to conduct intricate 
parameter adjustment process experiments in the model. 
Notably, the developed model could only determine objects in 
a particular environment with low generalization and 
robustness. The number of image feature parameters permitted 
in the feature extractor design is restricted following the 
developers’ manual adjustment of model parameters. As a 
branch of artificial intelligence, deep learning neural network 
reflected higher adaptability with the advent of artificial 
intelligence as opposed to conventional machine vision 
techniques This network is deemed more extensive in the 
universality of article recognition given that the deep learning 
algorithm primarily entails data-driven image feature extraction 
for a deeper, more efficient, and accurate representation of the 
image dataset using the image learning of big samples 
compared to the conventional method. A series of image 
recognition techniques under deep learning could attain highly 
precise and optimal recognition to resolve multiple intricate 
image recognition scenarios. This section emphasizes four 
classical segmentation approaches based on deep learning: 
AlexNet [38-40], Yolo [41-43], VGg net [44-46], and ResNet 
[47-49]. 

A. AlexNet 

Hinton’s and Alex Krizhevsky’s revolutionary AlexNet 
neural network (AlexNet) algorithm [38-40] championed the 
2012 Imagenet competition. Specifically, Imagenet entails a 
large image recognition database encompassing marked 
pictures. AlexNet focuses on the full connection layer function 
with a total of eight layers: five convolutions and three full-
connection. In a three-channel color map with 227 pixels in 
length and width (227*227*3), the image is incorporated into 
the first layer to be convoluted into 11*11*3. Every 
convolution kernel generates a novel pixel while all the 
convolution kernels subsequently slide through the 227*227*3 
pixel picture with a stripe of four. Following the convolution 
output layer resolution computation, the convolution pixel 
layer data is duly computed with a convolution output of 
55*55*96 in the first layer. The total convolution parameters of 
the first layer imply 35K as only the convolution kernel in the 
convolution layer entails neural network parameters post-
calculation. Meanwhile, the second-layer characteristic map is 
transmitted to the third counterpart until the seventh-layer 
output data is fully connected with 1000 neurons from the 
eighth counterpart. The outcome was generated through 
softmax, which was utilized as a 1000 input image category for 
the classification score with the following attributes: (1) 
AlexNet algorithm converted the traditional neuron activation 
function f(x)=(1+   ) to f(x)=max(0;x) with a rectified linear 
unit (relu) as an activation function that was extensively 
utilized in artificial neural network. The typical four-layer 
network with relus and tanh as an activation function attains 
the faster convergence speed effect involving relu in the 
CIFAR-10s experiment dataset compared to the conventional 
tanh activation function; (2) AlexNet utilized two techniques to 

resolve over-fitting issues: data enhancement and dropout. The 
original picture was cropped to be employed as network input 
in data enhancement while dropout was utilized to deter over-
fitting and promote effective fusing. Regardless, the network 
model computing cost is exorbitant despite the feasible 
computation following the use of a graphics processor (GPU) 
in the training process. 

B. YOLO 

The You Only Look Once (Yolo) revolutionary neural 
network algorithm [41-43] resolves object detection (a 
regression problem) to avoid several reiterated prediction 
works and complete the input from the original image to the 
output of the image category following a separate end-to-end 
network. Yolo entails specific prerequisites to incorporate the 
image input size into the network, scale the image size to the 
specified size, classify the picture into S × S grid, and make 
predictions in every small grid. Based on Fig. 4, the category 
probability forecasted by each grid and the confidence 
predicted by each box were multiplied until the score 
correlated to every box and category. The non-maximum 
suppression approach was then utilized to derive the 
classification outcomes. Essentially, Yolo is deemed beneficial 
as it disregards the extraction process of region proposal and 
rapidly identifies objects with minimal background error 
detection rates and inaccurate background knowledge. This 
algorithm implies high generalization, which is unlikely to 
crash when incorporated into fields or unforeseen inputs. 
Notwithstanding, the error-prone S × S grid at the frame 
regression stage leads to inaccurate object positioning. A large 
missed detection rate is identified in the presence of multiple 
small targets in a network. The subsequent Yolo version 
continues to rectify such complexities. Specifically, Yolo V3 
elevates detection performance, particularly in the multi-scale 
fusion approach, to resolve low detection performance post-
defect optimization. On another note, a cross-layer connection 
is presented to optimize small target detection performance. 

 

Fig. 4. Yolo Diagram Algorithm Process. 

C. VGG Net 

The VGG net [44-46] model is characterized by a 
substantial number of layers, including multiple network layers 
ranging in depth between 11 and 19. The deep learning-model 
performance correlation is examined to enhance the overall 
recognition performance by improving the network layer 
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depth. This model aims to transform the convolution of the 
larger core layer into multiple smaller-layered convolution 
cores. Vggnet-16 and Vggnet-19 are extensively employed to 
render the entire network to be highly effective. The VGG also 
denotes a five-layer convolution and two full-connection layers 
for image feature extraction and one full connection layer for 
feature classification akin to the AlexNet framework. Fig. 5 
illustrates the Vggnet-16 network structure diagram. The 
convolution layer kernel in the Vgg net structure is 3*3. Three 
groups of 3 *3 convolution layers connected with a 1*7*7 
kernel were employed with the same effect. In terms of model 
benefits, the number of parameters is duly reduced. The 
original parameter (C*7*7) was transformed into 3*C*3*3 for 
a convolution layer with C kernels. Despite the presence of 
more parameters and deeper levels, VGG requires lesser 
iterations to initiate convergence given the depth and small 
filter size function as the post rule while the pre-initialization 
operation is performed on some layers. Such advantages could 
increase the non-linear correction layer, mitigate gradient 
disappearance and over-fitting issues, and optimize the model 
training speed. The network structure attributes simultaneously 
facilitated it to regulate the number of parameters while 
eliciting more image features to prevent over-computation and 
structure intricacy. 

 

Fig. 5. Network Structure of VGG16 Adapted from [45]. 

D. ResNet 

The proposed ResNet [47-49] algorithm model resolves the 
deepening of network layers despite the initially-enhanced 
accuracy. This precision would worsen if the number of 
network layers continues to increase. In other words, the 
network model could alleviate the degradation problem in 
network training. Regarding the conventional deep learning 
algorithm, the layers to which the gradient could not be 
conveyed are not trained when the number of network layer 
increases. Thus, the effect is not as robust as the shallow 
network with adequate layers as the error rate would rise with 
the increase in layers. The ResNet algorithm model puts forth 
the residual module in resolving the degradation problem. 
Based on the notion underpinning this method, the network at 
layer N is derived from the network at layer N-1 with 
conversion. It is connected to the upper-layer network for 

gradient propagation, which subsequently resolves the gradient 
disappearance caused by the neural network passing through 
depth. Thus, the residual structure is presented. Following Fig. 
6, the output layer H (x) = F (x) is changed to H (x) = F(x) + x 
where the network loss function f (x, w) is extended to the 
multi-layer neural network using the back propagation gradient 
value formula. The front-layer network gradient becomes 
smaller with the increased number of layers ‘n’ in the neural 
network and the return of errors. Thus, the gradient would not 
disappear even with multiple network layers. On another note, 
ResNet could develop the residual module in the form of a 
small kernel with the other layers utilizing full convolution 
excluding the full connection layer for classification, which 
could substantially optimize the calculation speed. This 
residual block structure method is employed for reference as 
ResNet entails multiple algorithm types with a network depth 
of 50, 101, and 152. The ResNet model performance 
significantly varies with distinct sizes. Overall, this model 
needs to be structured based on the actual application context. 

 

Fig. 6. Residual Block Structure. 

VI. PERFORMANCE COMPARISON 

Based on recent research, image recognition technology 
could flexibly select multiple algorithms for recognition based 
on various application scenarios in actual recognition tasks 
regarding deep learning. Some might even need to integrate 
different recognition methods in obtaining the most optimal 
recognition accuracy. It is deemed pivotal to develop a set of 
robust and stable recognition algorithms with high market 
value and application possibilities following the intricate 
recognition environment, which is subject to more illumination 
or other interference. Fundamentally, relevant literature adopts 
four parameters to compute the following metrics (accuracy, 
precision, recall, and F1-score) as the evaluation indices of 
algorithm advantages and disadvantages. As the primary 
problem to be solved, accuracy could further optimize the 
empirical depth in the image recognition field with a highly 
positive effect on the efficient incorporation of multiple 
technologies and the development of relevant disciplines. This 
study primarily summarized the deep learning technology 
application to image recognition. Table III presents (i) the 
recent comparison of model precision and loss of value in deep 
learning algorithms, (ii) evaluations on the technological 
complexities encountered in the workpiece image classification 
application, and (iii) specific study gaps. 
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TABLE III. DEEP LEARNING ALGORITHM COMPARISONS 

Literature Model Object Accuracy Loss rate 

[50] 

LeNet-5 
Oil–water 

two-phase flow 
88% High (loss rate) 

VGG-16 
Oil–water 

two-phase flow 
98.3% Median (loss rate) 

AlexNet 

Oil–water 

two-phase flow 
99.3% Low (loss rate) 

[41] 
YOLO Insulator 90% 3.8% (class fault) 

Fast R-CNN Insulator 84% 4.1% (class fault) 

[48] 

ResNet-18 

Apple leaf 

99% 8.9% 

ResNet-34 
97% 1.23% 

VGG 
89% 2.43% 

[51] 

VGG-16 

Chest X-ray 

images 

97% 

NA 

ResNet 86.7% 

ResNet-50 98% 

AlexNet 96.5% 

ResNet-50+SVM 95.38% 

[40] 
Alexnet 

Power equipment 83.55% NA 

[52] 
YOLO 

Leucocyte 93.7% NA 

[53] 
YOLO 

Resistors and capacitors 92.57% 0.87% (error rate) 

[47] 

ResNet50 

PatchCamelyon 

98.8% 98.5% (AUC-ROC score) 

Vgg-16 95.9% 95.2% (AUC-ROC score) 

Vgg-19 97% 96.1% (AUC-ROC score) 

[54] 
ResNet-50 

Bacterial image 

99.9% 

 

0.02% (loss rate) 

ResNet-34 
99.3% 0.04% (loss rate) 

[55] AlexNet 
Wireless capsule 

endoscopy 95% 
NA 

[56] AlexNet MNIST 98% NA 

[57] 

GoogLeNet 

Colour images 

NA 90.31% (FMI) 

Alexnet NA 87.69% (FMI) 

VGG16 NA 89.78% (FMI) 

[58] Deep Transfer Learning Tongue images 95.92% NA 

[59] 
LeNet 

Microorganism image 98.66% NA 

[60] 
transfer learning 

approach 
Flower image 98.6%  98% (recall) 

[61] VGG16 Fundus images 91.3% NA 

[62] 
RS-oriented error-tolerant 

deep learning 

Noisy remote  sensing 

image 
95.9% NA 

[63] 
deep learning and image 

recognition 

Brake pad contour 

image 
98% NA 

[64] 
self-supervised super 

sample decomposition for 
transfer learning 

COVID-19 99.8% 99.7% (sensitivity) 

[65] Meta-learning Classical image 
92.48% 

NA 

Notes: NA - Not Available 
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The accuracy rate in Table III denotes the percentage of the 
number of correctly predicted samples in the total number of 
samples or the proportion of precisely-predicted outcomes in 
the total number of samples. The formula of accuracy is shown 
in (1), essentially, TP implies a positive prediction with an 
actual prediction that is true. The TN denotes a negative and 
true forecast. The FP demonstrates a positive forecast with an 
actual prediction that is false. The FN denotes the forecast to be 
negative with an actual prediction that is false. The FP and FN 
reflect prediction error values, which means that the pre-
determined target is not discovered. Several relevant detection 
indicators (accuracy) imply the proportion of accurate 
forecasting outcomes in all positive predictions. Recall rate 
denotes the proportion of accurately-predicted findings in all 
positive occurrences. In deep learning classification and 
detection tasks, the precision of appropriate techniques is 
typically assessed based on statistical findings. High TP and 
TN reflect high precision and optimal detection impacts of the 
deep learning model. 

         
     

           
               (1) 

Based on Table III, the deep learning algorithm model 
accuracy is fundamentally between 80% and 99%. The 
designed model evaluation accuracy is significantly enhanced 
compared to conventional techniques, thus implying the 
application effect of the deep learning model to be more ideal. 
Despite the diversification of model evaluation methods in 
theoretical and practical research, such studies remain 
considerably scattered given the primary utilization of the 
accuracy evaluation index for model assessment. Accuracy 
implies the accurately-forecasted image proportion in objective 
evaluation and classification. Although the high precision 
value in outcome detection or classification assumably reflects 
a high recall value, this evaluation index might prove 
contradictory in some cases. For example, an accurately-
forecasted outcome in prediction would demonstrate a 100% 
precision value albeit with a significantly low recall value. 
Meanwhile, all the outcomes returned with a recall of 100% 
would denote substantially low precision. Hence, most studies 
do not employ such evaluation predictors for model 
assessment. 

Despite there being no unified recognition technique for 
small target workpiece identification in workpiece recognition, 
relevant researchers have recommended multiple detection 
methods under deep learning to resolve the problems 
associated with small target detection. Notwithstanding, 
different study objects could ascertain whether precision or 
recall is high based on the required judgment following 
relevant research. 

Detection approaches have undergone continuous 
optimization to manage multiple classification and detection 
problems involving deep learning image datasets and fulfill the 
application requirements in actual scenarios. The high-
dimensional semantic features of image data could be elicited 
by convolution and non-linear layers, which is much better 
than traditional detection performance approaches. Image is 
more vulnerable to noise, thus significantly increasing 
workpiece classification and interpretation complexities in the 
industrial field. It is deemed pivotal to determine how to fully 

utilize the evaluation index information of in-depth learning in 
serving the workpiece identification and classification 
application requirements and alleviate data processing 
intricacies for optimal workpiece classification, detection, and 
interpretation within the industrial field. 

VII. RESEARCH GAP 

The research gaps are summarized in Table III. 

1) The recognition algorithm still requires a specific 

optimization level, specifically through image feature 

extraction, to further enhance the image recognition rate 

following experimental data, computing equipment, and 

research time issues. Such image features could be 

conveniently extracted by the convolution filter following [50]. 

Empirically, the accuracy of the three aforementioned deep 

learning network algorithms proves relatively high. 

Simultaneously, a small number of target image misrecognition 

would not impact the traffic pattern recognition outcomes. 

Literature [61] could substantially optimize the recognition and 

classification rate with the image feature extraction approach. 

2) The number of deep learning network parameters 

consumes much time, power, and hardware resources in the 

actual training process, which complicates the neural network 

application. The benefits of speed and accuracy in algorithm 

recognition are highlighted in [41]. Recognition accuracy could 

be further optimized given the increased number of trained 

images despite its time consumption and high cost. 

3) In terms of computing power limitation, a higher image 

resolution could enhance the number of extracted image 

features through the algorithm given the low image resolution 

in the training dataset. Following [47], an optimized classical 

depth learning algorithm model could significantly enhance 

low image resolution performance. Test time augmentation 

(TTA) was adopted to improve the image while the derived 

image prediction accuracy data proved better than other depth 

learning algorithm models. 

4) Concerning workpiece classification and recognition 

algorithms, the newly-proposed algorithm performance could 

be assessed and examined to accelerate the iterative update 

speed of the theoretical algorithm. The number and type of 

database samples failed to fulfill the prerequisites and match 

the workpiece defects generated by practical applications 

following the inadequate public datasets of some types based 

on the current workpiece defect database. Most of the 

algorithms could not be fairly compared given the absence of 

an agreed database standard [66]. Despite the presence of 

extensively utilized workpiece defect datasets, such as NEU 

[7], UCI [67], and Rail surface [68], the odious industrial 

setting poses substantial complexities to the workpiece defect 

image dataset of the actual industrial production line. 

5) Deep learning training requires sufficient training 

datasets in the workpiece image dataset production. It is 

deemed necessary to ascertain the means of training a model 

that could precisely detect images through a restricted number 

of sample datasets. Data optimization served to enhance 
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segmentation accuracy. The deep learning benefits minutely 

differed across multiple evaluation indicators with high 

precision. Fundamentally, the evaluation indices were not 

extremely low. 

6) Several deep learning algorithm models might not apply 

to specific application scenarios given the emergence of more 

relevant counterparts. It is deemed feasible to develop a novel 

deep learning algorithm to enhance the impact of workpiece 

classification and recognition. For example, [69] integrated the 

computational advantages of a 2D FCN network and the ability 

to resolve 3D spatial consistency without influencing 

segmentation accuracy. Given the palpable limitations, the 

resolution of recognized pictures and speed calculation require 

improvement as network calculation precision serves to 

increase with the number of computations. This accuracy could 

be improved [40] through integrations with other methods 

albeit with low precision in some image recognition scenarios. 

Despite the improved effects, some room for improvement is 

still available. Regarding parameter optimization, [65] 

proposed that tests could be performed on non-trained tasks. 

Meanwhile, classification could be realized even with minimal 

training: a direction worthy of the effort. 

VIII. RESEARCH PROPOSAL 

1) Workpiece image classification algorithms could strive 

to fuse image feature extraction into one step and enhance 

recognition accuracy. Regarding the recognition target 

limitation, the extracted image required a strong expression 

while the recognition and classification rate proved relatively 

low. This situation adversely influenced the recognition of 

intricate or unclear images given its complexity in feature 

image extraction. The algorithm model could be learned in 

depth from the noise dataset with the possible identification of 

low feature target images in line with [62], thus broadening the 

deep learning application range. Specifically, [63] employed 

the edge feature extraction approach to determine the internal 

and external features of the recognition target image contour. 

The image features were distinguished post-feature point 

extraction. The deep learning algorithm model was 

subsequently presented for feature training towards high 

recognition accuracy. Meanwhile, [56, 57] utilized the deep 

learning method to fuse image features and resolve the target 

image feature ambiguity or relatively indistinguishable 

recognition rates. 

2) Given the presence of issues involving extensive 

training and prediction periods, future workpiece image 

classification algorithm studies could consider how to mitigate 

network model redundancy, optimize the number of network 

layers, and shorten the computation time while simultaneously 

ensuring recognition accuracy to some extent. Based on [48], 

shallow networks could also reflect optimal recognition 

accuracy and low error rates with even better recognition 

impacts than deep networks. Palpable target detection errors or 

reiterated identification in employing the same algorithm for 

target detection and limited training time resembles the 

drawbacks highlighted in conventional neural networks 

following [52, 53]. 

3) Deep learning algorithm could further enhance 

recognition accuracy with optimal hardware and image 

acquisition.AS affirmed by [59], low resolution and multiple 

datasets could be utilized for the deep learning algorithm to 

realize classification. The usage of more epochs improved 

training accuracy while surface accuracy could be optimized 

by the number of iterations. Regarding the disadvantage, the 

loss value would be too high in the iterative process. The same 

deep learning method demonstrated minimal variance in 

recognition accuracy under multiple levels, specifically in 

small target images, with improved computer algorithms [54]. 

4) Further enhance network generalization (particularly in 

restricted datasets), optimize small dataset detection, and 

integrate the conventional recognition. The means of 

developing an algorithm with strong applicability require 

further examination for thousands of object types. Regarding 

limited sample collection, a more widely-disseminated 

collection database was established in the public counterpart 

following [51] and a dataset in line with their actual application 

scene by gathering six chest X-ray image databases. The 

gathered database should be relevant to the research. Detection 

algorithm with convolution neural network to improve 

microfeature extraction and segmentation capacity and model 

accuracy in the follow-up. As deep learning technology was 

employed for dataset pre-processing albeit with relatively ideal 

experimental effects. 

5) It is also rendered possible to optimize moving image 

recognition, develop a recognition model towards dataset 

expansion, and enhance the recognition model adaptability to 

the actual industrial setting in the process of moving image 

recognition. For example [55] could further determine the 

range of textures and features, such as color while [58] 

employed the deep transfer learning technique to assess tongue 

images and resolve the complexities in gathering adequate 

marker image samples. The recommended approach implied 

better classification accuracy. Essentially, [70] outlined the 

mapping relationship between image classification input 

feature vector and image category and structured a moving 

image recognition model. 

6) The incorporation of deep learning algorithm benefits 

into specific fields or different but relevant disciplines or 

problems has garnered more attention towards completing or 

improving the learning effect of target fields or tasks. 

Ensemble learning is a promising and experimentally-proven 

technology. Based on [60], deep learning approaches 

significantly influence intricate tasks, such as image feature 

extraction, segmentation, and semantic classification. 

Meanwhile, [64] mitigated the network complexity by pruning 

the redundant depth algorithm model parameters to derive a 

small and efficient classification model, enhance the runtime 

reasoning speed of neural network, and elicit the favored 

classification effect with minimal calculation and 
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computational workload in the future. The incorporation of 

meta-learning into deep learning denotes a viable method. 

IX. CONCLUSION 

This study reviewed the recent development of deep 
learning in image recognition, emphasized specific deep 
learning image method types, summarized and compared 
similar algorithm performance, examined the advantages and 
disadvantages of every deep learning algorithm based on 
different application scenarios, and flexibly selected deep 
learning classification methods to effectively improve the 
recognition effect. highlighting six research proposals for 
workpiece image recognition and defect detection. Empirical 
solutions are provided for the selection of future deep learning 
models for artifact classification and defect detection. 

Many actual influencing factors and complex situations are 
present in workpiece recognition. In other words, it is 
challenging to apply the model derived by conventional 
methods to the actual circumstance. Research on the deep 
convolution neural network given its prevalence in computer 
vision tasks has made a significant breakthrough, thus proving 
the potential of deep learning in image classification. There are 
also limitations in the research of workpiece recognition, in 
terms of theoretical experiments on images, there is no research 
on image acquisition and recognition of workpieces in practical 
application scenarios, and it is necessary to build recognition 
systems to carry out research on practical workpiece 
recognition applications based on multiple factors such as light, 
angle and placement position. 

In the future work, more methods will be reviewed to 
enhance the generalization ability of the model and improve 
the practical application ability of the model in the industrial 
field, which is also the improvement direction proposed by the 
future in-depth learning research work. At the same time, it can 
effectively and reducing the dataset is also one of the priorities 
of the future work. 
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