
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 4, 2022 

466 | P a g e  

www.ijacsa.thesai.org 

Is Deep Learning on Tabular Data Enough? An 

Assessment 

Sheikh Amir Fayaz
1
 

Research Scholar 

Department of Computer Sciences 

University of Kashmir, J&K, India-190006 

Majid Zaman
2
 

Directorate of IT & SS 

University of Kashmir 

Srinagar, J&K, India-190006 

Sameer Kaul
3
 

Department of Computer Sciences 

University of Kashmir 

Srinagar, J&K, India-190006 

Muheet Ahmed Butt
4
 

Department of Computer Sciences 

University of Kashmir 

Srinagar, J&K, India-190006

 

 
Abstract—It is critical to select the model that best fits the 

situation while analyzing the data. Many scholars on 

classification and regression issues have offered ensemble 

techniques on tabular data, as well as other approaches to 

classification and regression problems (Like Boosting and 

Logistic Model tree ensembles). Furthermore, various deep 

learning algorithms have recently been implemented on tabular 

data, with the authors claiming that deep models outperform 

Boosting and Model tree approaches. On a range of datasets 

including historical geographical data, this study compares the 

new deep models (TabNet, NODE, and DNF-net) against the 

boosting model (XGBoost) to see if they should be regarded a 

preferred choice for tabular data. We look at how much 

tweaking and computation they require, as well as how well they 

perform based on the metrics evaluation and statistical 

significance test. According to our study, XGBoost outperforms 

these deep models across all datasets, including the datasets used 

in the journals that presented the deep models. We further show 

that, when compared to deep models, XGBoost requires 

considerably less tweaking. In addition, we can also confirm that 

a combination of deep models with XGBoost outperforms 

XGBoost alone on almost all datasets. 

Keywords—Deep learning; XGBoost; NODE; TabNet; DNF-

net; statistical significance test; tabular geographical data 

I. INTRODUCTION 

Deep learning has gained popularity in a variety of fields in 
recent years, including medicine, engineering, and agriculture. 
The exponential growth of data is most likely to blame. Deep 
learning algorithms have shown to be effective in a variety of 
domains, including audio [1], images [2], and text data [3]. 
Many architectures exist in these domains that are capable of 
converting raw data into meaningful exemplifications. Because 
the most common type of data is in tabular format, which 
consists of rows and columns with a variety of parameters, 
These types of data are used in real-world applications in a 
variety of fields, including medicine, agriculture, academia, 
and geography. Traditional and ensemble machine learning 
approaches, such as Logistic model tree (LMT), Decision tree 
(DT), Random forest (RF), Gradient Boosted decision tree 

(GBDT), and others, are used to process these tabular datasets, 
and these models still outperform deep learning on tabular 
data. When using a deep learning model on tabular data, there 
are a number of issues to consider, including missing data, data 
integrity i.e., mixed data (nominal, numerical, and categorical), 
data imbalance, data overfitting, and a lack of specific 
knowledge about the dataset's structure. When tabular data is 
taken into account, boosting machine-learning algorithms like 
XGBoost perform better, according to the ―no free lunch‖ 
(NFL) theorem [4] [5]. Since then, the authors [6] [7] have 
implemented deep learning on the tabular dataset in their 
research, and it has been demonstrated that the deep learning 
model outperforms GBDT. However, because each study was 
conducted on different datasets, one of the major flaws in their 
approach is that there was no benchmark dataset [8] [9]. So, 
based on these papers alone, it's difficult to claim that deep 
learning always outperforms traditional and ensemble 
algorithms like GBDT when dealing with tabular data [10]. 

Since the number of research studies using deep learning 
on tabular data is growing, there is no standard benchmark 
model in deep learning from which we can conclude that deep 
learning always outperforms traditional machine learning on 
tabular data. As a result, the main goal of this paper is to see if 
any deep learning model is a good fit for these types of tabular 
dataset problems. Furthermore, in this paper, we attempt to 
evaluate the proposed deep learning models on tabular datasets, 
as well as implement XGBoost on various algorithms, with a 
focus on a historical geographical dataset from India's Kashmir 
province [11]. 

This paper is structured as: Section 2 provides a basic 
background of deep learning and ensemble models on the 
tabular data. Next, Section 3 presents the experimental setup 
where dataset descriptions are presented and furthermore this 
section defines the implementation details with optimization 
parameters and statistical significance test. Section 4 defines 
the experimental results and model evaluation. Section 5 
defines the overall working of the paper. Finally, the 
conclusion and future strategies have been suggested in 
Section 6. 
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II. REVIEW OF LITERATURE 

In this section, we present studies that used deep learning 
approaches and ensemble approaches to predict rainfall using a 
tabular geographical dataset. This section is divided into two 
subsections: Section 1 contains several studies that use deep 
learning models on tabular datasets, and Section 2 contains 
some model ensemble approaches that use the same tabular 
geographical dataset and record individual performances. 

A. Deep Learning on Tabular Geographical Dataset 

Salman et al. [12] (2015) use a variety of deep learning 
techniques, including recurrence neural networks (RNN), 
convolutional neural networks (CNN), and conditional 
restricted Boltzmann machines (CRBM), to look for hidden 
patterns in the dataset. These techniques were used in the 
Indonesian region, with data collected from the national 
weather service center for environmental forecasting (NOAA). 
This study used a dataset that spanned 35 years, from 1973 to 
2009. Initially, RNN was applied to a dataset containing ESNO 
variables. RNN produces results with a higher level of 
accuracy, according to the findings. 

Emiley et al [13] (2016) present a deep learning 
architecture-based accumulated daily rainfall prediction. This 
research employs auto encoders to reduce non-linear attribute 
relationships and a multi-layer perceptron (MLP) for 
prediction. This hybrid architecture was then compared to 
previously implemented techniques, and it was discovered that 
the model performs better for daily rainfall prediction when 
using root mean square error (RMSE) and mean squared error 
(MSE) statistical approaches. This research was carried out in 
the Colombian city of Manziles, where the data was grouped 
into a daily time series spanning the years 2002 to 2013. 

Devi et al. [14] (2017) propose an artificial neural network 
(ANN) model for a reliable forecast mechanism. This method 
was used to analyze spatial and temporal data from the Nilgiris 
district in Tamil Nadu, India. Performance was measured using 
a variety of statistical parameters such as correlation 
coefficient, MSE, and so on. When compared to time delay 
neural network (NN) and other ANN models, the best model in 
this study is a wavelet Elman model. This research also 
develops a system for early landslide warnings based on the 
wavelet Elman model. 

According to Geetha et al. [15] (2018), using deep learning 
techniques for meteorological purposes on a time series dataset 
will significantly improve accuracy precision. This research 
uses deep learning architectures such as LSTM and ConvNet to 
analyze time series data from 468 months in various locations. 
Later, it was discovered that increasing the number of hidden 
layers improves the model's performance for daily rainfall 
prediction when using RMSE and MAPE statistical 
approaches. 

Yen et al. [16] (2019) proposed using Echo state network 
(ESN) and deep Echo state network (DeepESN) algorithms to 
apply deep learning models to rainfall prediction. This research 
uses hourly rainfall data from southern Taiwan from 2002 to 
2014, spanning a period of 12 years. When the DeepESN 
algorithm's correlation coefficient was compared to ESN and 
commercial neuronal network algorithms like BPNN and SVR, 

the study concluded that it is a reliable algorithm. It was 
suggested that DeepESN could be used globally on larger sets 
of data to predict rainfall based on the results obtained. 

Manoj et al. [17] (2020) proposed a hybrid deep learning 
model (BLSTM-GRU), for the monthly prediction of rainfall. 
The experiment was conducted using data obtained from 
Bhutan's National Center of Hydrology and Meteorology 
Department (NCHM). To test the data's predictive capability, 
various NN algorithms such as LSTM, CNN, BLSTM, and 
GRU were used. LSTM outperforms the other techniques with 
a MSE score of 0.0128, but the hybrid model BLSTM-GRU 
outperforms LSTM by approximately 41% with a MSE score 
of 0.0075. 

Zeelan et al. [18] (2020) claimed that deep learning models 
can learn from nonlinear data with less error. The Multi-layer 
perceptron (MLP) and Auto-encoder NN are used in this study 
to predict the rainfall. The accuracy parameters used in this 
study were RMSE and MSE, and these implemented models 
were later compared with other machine learning models on 
the same set of data, with the study concluding that MLP and 
Auto-encoder NN perform significantly and can be used as a 
solution to all available approaches. 

Ari Yari et al. [19] (2021) present a rainfall prediction 
comparative analysis study. The authors use deep learning 
(DL) models and simple rainfall estimation approaches based 
on traditional machine learning algorithms. The study was 
conducted in five major cities across the United Kingdom 
(UK), with data collected spanning roughly 20 years (2000-
2020). The bidirectional LSTM network and stacked LSTM 
with two hidden layers performed best after the proposed 
model was evaluated. One of the study's major flaws was the 
model's inability to generalize the data. That is, the model 
over-fits the training data in most cases, which makes it 
difficult to record accurate, predicts in the testing and 
validation sets. 

Razeef et al. [20][21] (2020,2022) proposed a neural 
network approach to predict the rainfall on the time series data 
of UT of J&K, India. Rainfall was predicted using a Grey 
Wolf-based neural network model. The data in this study spans 
30 years, from 1990 to 2020, and includes variables such as 
maximum temperature, humidity, minimum temperature, wind, 
vapor pressure, and others. When using RMSE, PRD values, 
and MSE statistical approaches, it was discovered that the 
model performs better for daily rainfall prediction. This model 
was later compared to non-linear autoregressive models with 
exogenous inputs (NARX), and the study concluded that when 
both models are used together, non-linear time series data 
would perform better. 

According to the literature reviewed in this study, many 
deep learning models have been utilized for various time-series 
prediction applications, but they have yet to become a standard 
algorithm in the artificial intelligence arena. We must analyze 
the performance of these models using varied threshold 
datasets, and these techniques must be re-evaluated as a result. 

B. Model Ensembles on Tabular Geographical Dataset 

Zaman et al. [22] (2019) use an ensemble distributed 
decision tree (DDT) approach to improve classification 
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accuracy on a historical geographical dataset. The experiment 
was conducted on a tabular dataset containing approximately 
6000 records with five different parameters. When the DDT 
approach was used, there was no performance improvisation, 
according to this study. 

Patil et al. [23] (2020) use machine learning algorithms to 
forecast rainfall based on a variety of variables such as 
temperature, humidity, wind speed, and rainfall. These 
algorithms include linear regression and NN, and the type of 
data fed to it, according to the study, determines the accuracy 
of the algorithm. That is, when the dataset of different 
structures is used, we may get different accuracies and require 
some modifications. Furthermore, the accuracy of DT’s was 
found to be superior to other techniques used on the same type 
of data in this study. 

Sheikh et al [24] (2021) proposed a stepwise machine 
learning approach on the discrete data collected from the 
Indian Meteorological Department (IMD), Pune India. The 
implemented model, known as LMT, employs logistic 
regression functions at the DT's leaf nodes. The logistic 
functions on the leaf nodes combine the final output of the 
constructed DT into linear models, which were examined and 
revealed a significant improvement in accuracy performance. 
The accuracy of the constructed DT on the same set of data is 
66 percent, but when the logistic functions are applied to the 
leaf nodes, the accuracy jumps to 87 percent. The dataset used 
in this study was from J&K's Kashmir province, and it covered 
the years 2012 to 2017, with around 6000 data rows. 

Since there are other ensemble [25-29] and deep learning 
approaches such as NODE, TabNet, DNF-Net, and Boosting 
(XGBoost, CatBoost, GBDT) [30-33]. These models perform 
better on larger datasets, and we use the entire training dataset 
to train the model. 

III. EXPERIMENTAL SETUP 

A. Dataset Description 

In this study, we employed a variety of tabular datasets 
from diverse fields which are used in various classification and 
regression problems. Some of these datasets have 
heterogeneous features, while others have just homogeneous 

features. There are approximately seven tabular datasets that 
have already been used by various academics in their 
publications, and we have used one additional dataset that has 
yet to be used by any researcher. In the experimental 
operations, roughly 80000 samples were taken, and the datasets 
range from 7 to 1600 parameters. The seven datasets are 
obtained from TabNet, NODE, and DNF-Net studies, and each 
dataset has been well-trained and preprocessed in its respective 
paper. These datasets include Blastchar [34] (Source: Kaggle), 
Higgs Boson [35] (Source: Kaggle), Microsoft MSLR 
[36](Source: MSLR-WEB10K), Forest Cover Type [37] 
(Source: Kaggle), Epsilon [38] (Source: PASCAL Challenge 
2008), YearPrediction [39] (Source: Million Song Dataset) and 
Gas concentrations (Source: OpenML) [40]. These datasets 
have also been adjusted and relative values were calculated, 
resulting in a standardized data with a zero mean value and unit 
variance. As a result, we won't go into detail about these 
datasets in this study; instead, we'll just establish the historical 
geographical dataset that we will be implementing latter. The 
historical geographical dataset has been collected from three 
different locations in Jammu and Kashmir's UT. These three 
locations are in the province of Kashmir, but they are quite far 
apart. The data spans five years, from 2012 to 2017. At these 
locations, the average annual rainfall is around 1700 mm. The 
data consists of 5491 records with a total of 9 explanatory 
characteristics, including minimum temperature (°C), 
maximum temperature (°C), station ID, season, year, humidity 
at various intervals, and the target parameter rainfall, which 
shows the quantum of rainfall measured in millimeters [41-43]. 

In Fig. 1, the reader can find a brief description of the data. 
It has gone through an ETL (Extract, Transform, and Load) 
process to achieve data integrity, normalization, and 
standardization. 

To normalize the dataset's range of parameters, we use the 
function (1), as given below: 

   
    

 
              (1) 

The data was scaled using the R tool's built-in function 
'Scale.' We also use relative values of each attribute to 
normalize the training data. The tabular (Table I) and graphical 
(Fig. 2) representation of the dataset is shown. 

 

Fig. 1. Historical Geographical Dataset Description. 
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TABLE I. TABULAR REPRESENTATION OF GEOGRAPHICAL DATASET WITH RELATIVE VALUES 

MA

X 

Relative Frequency 

(MAX) 
MIN 

Relative Frequency 

(MIN) 

Hum

12 

Relative Frequency 

(Hum12) 

Hum

3 

Relative Frequency 

(Hum3) 
Rf 

Relative 

Frequency (Rf) 

20 0.010562739 8 0.00910581 60 0.024767802 93 0.032052449 0 0.685303223 

19 0.008195229 1.6 0.008923693 50 0.024039337 92 0.032052449 0.4 0.014751411 

27.5 0.008013112 11.2 0.008741577 53 0.023675105 88 0.029867055 0.6 0.012930249 

29 0.00764888 9 0.008741577 51 0.023128756 91 0.029684939 0.2 0.012019669 

14 0.007102531 0.2 0.008741577 55 0.022764524 89 0.029684939 1.2 0.011291204 

22 0.006920415 0.4 0.008559461 54 0.022764524 87 0.029502823 0.8 0.009287926 

16 0.006738299 10.2 0.008377345 59 0.022218175 85 0.027317429 1.4 0.008195229 

 

Fig. 2. Graphical Representation of Geographical Dataset with Relative Values. 

A total of 70% of the data is used for training, while 15% is 
used for validation and testing, i.e. 3844 samples were 
randomly selected for training, 823 samples for validation, and 
the remaining 823 samples were selected for testing. 

Thus, the overall description of the tabular datasets used in 
this paper is shown in Table II. 

B. Implementation Details 

1) Optimization process: To pick the model 

hyperparameters during the optimization phase, we used the 

HyperOpt parameter-tuning package. To optimize the results 

on the validation set, this technique first uses Bayesian 

optimization, followed by hyperparameter search on each 

dataset utilized in this study. There were around 7-9 main 

hyperparameters, which in the case of a deep learning model 

include the number of nodes, layers, and, most importantly, 

the learning rate. 

To optimize the hyperparameters all the datasets used in 
this study were initially divided into three individual splits, 
which include training split, testing split and validation split. In 
partitioning process, we use stratified random sampling 
partitioning to split the data. The below tabular representation 
(Table III) shows the individual splits of the datasets in order to 
optimize the model. 

Around 1000 steps of search were performed on each set of 
data in order to maximize the validation set's findings, and only 
the set of hyperparameters with the smallest loss for the final 
configuration were chosen. 

2) Metrics evaluation and statistical significance test: In 

the case of classification issues using discretized data, we 

simply utilize cross-entropy loss metrics to evaluate the 

datasets. It calculates the impurity at each stage of the data and 

the total entropy loss in the end. Furthermore, when the data is 

continuous in nature, such as in regression situations, 

statistical parameters such as RMSE, mean signed difference 

(MSD), and MAE are used. We reported the performance of 

each dataset on their respective test sets based on these 

metrics. We also have Friedman's testing for statistical 

significance in addition to these cross entropy and RMSE, 

MAE measurements. Friedman's testing has the advantage of 

assuming that data is not evenly distributed. Using Friedman's 

hypothesis, we compare all of the classifiers to the baseline 

classifier. The null hypothesis is rejected at a certain level of 

confidence (90 percent in this study) if the p-value for any 

model pair is less than 0.05; otherwise, the hypothesis is not 

rejected. 
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TABLE II. TABULAR DATASETS DESCRIPTION 

Dataset Parameters 
Records 

(Approx.) 
Source 

Research 

Paper 

Hyperparameters and search spaces used for configuring each 

algorithms implemented 
Ref 

Blastchar 20 7000 Kaggle DNF-Net 

 Discrete uniform distribution for n. formulas and Number of layers. 

 Learning rate with log-distribution. 

 Batch size with Uniform choice. 

[34] 

Higgs Boson 30 80000 Kaggle TabNet 

 Log-Uniform distribution for Learning rate 

 Discrete uniform distribution for feature dimensions, n steps and 

output dimensions. 

 Uniform distribution for relaxation factor, Batch size and bn epsilon. 

[35] 

Microsoft(MSLR) 126 75000 
MSLA-

WEB10K 
NODE 

 Log-Uniform distribution for learning rate. 

 Discrete uniform distribution for Num Layers, tree output 

dimensions and tree depth. 

 Uniform choice for Batch size. 

[36] 

Forest Cover 

Type 
50 55000 Kaggle TabNet 

 Log-Uniform distribution for Learning rate 

 Discrete uniform distribution for feature dimensions, n steps and 

output dimensions. 

 Uniform distribution for relaxation factor, Batch size and bn epsilon. 

[37] 

Epsilon 1700 50000 

PASCAL 

Challenge 

2008 
NODE 

 Log-Uniform distribution for learning rate. 

 Discrete uniform distribution for Num Layers, tree output 

dimensions and tree depth. 

 Uniform choice for Batch size. 

[38] 

Year Prediction 90 51500 

Million 

Song 

Dataset 
NODE 

 Log-Uniform distribution for learning rate. 

 Discrete uniform distribution for Num Layers, tree output 

dimensions and tree depth. 

 Uniform choice for Batch size. 

[39] 

Gas 

Concentration  
129 13900 OpenML DNF-Net 

 Discrete uniform distribution for n. formulas and Number of layers. 

 Learning rate with log-distribution. 

 Batch size with Uniform choice. 

[40] 

Historical 

geographical 

Dataset 
9 5491 IMD New Dataset --- 

[41-

43] 

TABLE III. TABULAR REPRESENTATION WITH TRAINING TESTING AND VALIDATION SPLITS 

Dataset Records Training Testing Validation 

Blastchar 7000 (100%) 5600 (80%) --- 1400 (20%) 

Higgs Boson 80000 (100%) 50000 (62%) --- 30000(38%) 

Microsoft(MSLR) 75000 (100%) 60000 (80%)  15000 (20%) 

Forest Cover Type 55000 (100%) 38500 (70%) 8250 (15%) 8250 (15%) 

Epsilon 50000 (100%) 40000 (80%) --- 10000 (20%) 

Year Prediction 51500 (100%) 41200 (80%) --- 10300 (20%) 

Gas Concentration 13900 (100%) 9730 (70%) 2780 (20%) 1390 (10%) 

Historical geographical Dataset 5491 (100%) 3844 (70%) 823 (15%) 823 (15%) 

IV. EXPERIMENTAL RESULTS 

A. How Effectively can Deep Learning Models Generalize to 

other Datasets? 

The performance of deep learning models on the 
aforementioned datasets is proposed in this study, and the 
individual outcomes are compared to the XGBoost technique. 
The performance of each algorithm on each dataset is 

presented in the table below. The mean and standard error of 
each model's performance on the datasets are shown in the 
Table IV. The best performance of the dataset is presented for 
each model, and it was discovered that the model with the 
lowest value is considered to have the best performance. 
Friedman's testing was utilized to perform a statistical 
significance test between the models with a 90% confidence 
level. 
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TABLE IV. RESULTS AND PERFORMANCE OF EACH TABULAR DATASET BASED ON EACH MODEL USED IN THIS STUDY. FOR YEARPREDICTION MSE IS USED 

AND CROSS ENTROPY IS USED FOR ALL OTHER DATASETS. THE VALUES WITH LOWER VALUE IS BETTER AND THESE VALUES ARE THE AVERAGES OF DIFFERENT 

TRAINING RUNS WITH STANDARD ERROR OF MEAN (SEM) 

Model  Blastchar Higgs Boson 
Microsoft 

(MSLR) 

Forest Cover 

Type 
Epsilon 

Year 

Prediction 

Gas 

Concentration  

Historical 

Geographical 

Dataset 

NODE 21.36 ± 0.23 21.21 ± 0.67 54.62 ± 3e-2 4.25 ± 0.17 10.26 ± 1e-2 76.88 ± 0.16 2.25 ± 0.22 14.76 ± 0.12 

DNF-Net 27.91 ± 0.18 23.71 ± 0.88 55.78 ± 3e-2 4.01 ± 0.09 12.42 ± 4e-2 82.06 ± 0.15 1.45 ± 0.08 15.36 ± 0.18 

TabNet 23.66 ± 0.16 21.15 ± 0.22 55.09 ± 2e-2 3.02 ± 0.15 11.96 ± 3e-2 82.89 ± 0.11 1.86 ± 0.10 14.62 ± 0.16 

XGBoost 20.41 ± 0.23 21.83 ± 0.34 54.39 ± 2e-2 3.21 ± 0.11 11.23 ± 2e-2 75.68 ± 0.08 2.06 ± 0.32 13.45 ± 0.19 

Simple 

Ensemble 
21.22 ± 0.15 22.49 ± 0.41 54.44 ± 3e-2 4.15 ± 0.16 11.38 ± 4e-2 78.65 ± 0.16 2.41 ± 0.18 13.67 ± 0.15 

Deep 

Ensemble 

& XGBoost 

20.13 ± 0.16 22.36 ± 0.51 54.21 ± 1e-2 2.86 ± 0.05 11.35 ± 1e-2 75.01 ± 0.22 1.66 ± 0.06 12.13 ± 0.15 

Deep 

Ensemble 

w/o 

XGBoost 

24.36 ± 0.31 22.45 ± 0.55 55.53 ± 3e-2 3.57 ± 0.11 10.88 ± 1e-2 79.01 ± 0.17 1.91 ± 0.17 14.15 ± 0.14 

There are some observations based on the results, as given 
in the table. To begin with, the models almost outperform 
unknown datasets on original datasets. On each dataset, the 
XGBoost model nearly outperformed all deep learning models 
such as NODE, DNF-Net, and TabNet. As we can see, the 
XGBoost model outperforms deep learning models in 5 of the 
8 datasets, and these datasets had significant p-values (< 0.05), 
indicating that the results were significant. We can also see that 
the deep learning model has not consistently performed. The 
authors claimed in their study that deep learning models 
outperform other models, but this was only true for the datasets 
included in their study. As a result, when distinct datasets are 
involved, this conclusion is unjustifiable. We can also observe 
that the Deep ensemble and XGBoost model beats individual 
models in the majority of cases, i.e. it outperforms 5 individual 
models out of 8, and the p-value in these 5 cases was 
substantially less than 0.05, indicating that the null hypothesis 
is rejected. 

Now, in order to evaluate these models and see which one 
is better for a given dataset, we compared the relative 
performance of each model (NODE [44], TabNet [45], DNF-
Net [46][47], and so on) to the best model for that dataset. For 
example, assume we used the historical geographical dataset in 
table (Table IV) and compared the relative performance of the 
models to choose the model with the best performance (Deep 
Ensemble & XGBoost in this case). We discovered that Deep 
Ensemble & XGBoost had the best relative value gain of 2.46 
percent, with XGBoost coming in second with 3.86 percent, 
TabNet with 8.67 percent, DNF-Net with 10.55 percent, and 
NODE with 13.23 percent. The tabular representation of 
average relative performance deterioration on unseen datasets 
is shown (Table V). 

With these findings, we discovered that deep learning does 
not always outperform other methods. When compared to 
XGBoost, Deep Ensemble, and XGBoost, the deep learning 
model performs the worst when trained on datasets other than 
those used in the original studies. Only two choices exist for 
the lowest performance results. Either there is a selection bias 

or there is a difference in hyperparameter optimization. 
Furthermore, the results in the original papers reflect the results 
that we have reported, excluding the possibility that 
implementation errors were the cause of our observation. 

B. Model Evaluation: Is it required to apply both the 

XGBoost and Deep Models in Combination? 

In this section, we will see which model performs better in 
all scenarios when compared to other models. We employed 
four types of models in table (Table V), including deep models 
(TabNet, DNF-Net, and NODE), XGBoost, Deep ensemble 
with XGBoost, and Deep ensemble without XGBoost. When 
comparing the performance of deep learning models to 
XGBoost and combined Deep ensemble & XGBoost Models 
on various data types, we discovered that deep learning models 
perform poorly in most circumstances. The question now is 
whether we require a combined XGBoost and Deep model. To 
answer this, we can see that in 6 of the 8 examples, the 
combined ensemble and XGBoost show significant results. 
Simple ensemble did not produce any improvised results, 
although competing with deep learning model results. 
Furthermore, when we look at the Deep ensemble models 
without XGBoost, we can observe that it did not do well in any 
situation when compared to any other model. As a result of this 
analysis, we can conclude that for tabular datasets, we require 
both deep ensemble and XGBoost in combination. 

TABLE V. AVERAGE VALUES OF ALL THE MODELS IMPLEMENTED ON 

EACH DATASET WITH LOWER VALUE TREATED AS BEST 

Model Average Relative performance (%) 

Deep Ensemble w/o XGBoost 7.10 % 

XGBoost 3.86% 

Deep Ensemble & XGBoost 2.46% 

TabNet 8.67% 

DNF-Net 10.55% 

NODE 13.23% 

Simple Ensemble 4.23% 
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In real-world situations, time and resources are limited 
when it comes to training a model for a new dataset and 
optimizing its hyperparameters. As a result, it's fascinating to 
learn how difficult it is to do so for each model. Calculating the 
number of computations required by the model is one way to 
assess this. Floating point operations per second (FLOPS) is a 
common unit of measurement. However, because each 
parameter set has a different FLOPS number, comparing 
various models in this way when optimizing model parameters 
has become impossible [47]. 

V. DISCUSSION 

This study was based on deep models that had already been 
deployed by several academics on a tabular dataset [12-14]. 
Deep models were applied to tabular datasets (Forest 
CoverType, Higgs, Gas Concentration, Epsilon [30], MSLR 
[31], Year Prediction [32], Blastchar [33], and so on) by the 
authors in their publications, and they argued that deep models 
exhibit some promising outcomes. However, their research was 
limited to a single dataset. We used one more tabular dataset 
(Geographical dataset) in this research and attempted to 
construct all of the deep learning and ensemble models. On all 
of the datasets utilized in this study, we also investigated 
various possible tradeoffs that are required in real-time 
applications, such as hyperparameter tuning, metrics 
evaluation, and Statistical Significance test. Our results reveal 
that the performance is similar to what the authors have shown 
in their respected publications, but when we tried to compare 
the performance of different datasets on the models used by the 
authors in their study, the deep learning results were not as 
good as the original datasets. We next looked at XGBoost and 
ensembles of deep models with XGBoost and without 
XGBoost, and discovered that the XGBoost model outperforms 
deep models. However, as seen in the table, the ensemble of 
XGBoost models with Deep models outperforms the XGBoost 
model alone. Furthermore, optimizing a new dataset using deep 
models is a difficult procedure, whereas optimizing a new 
dataset using ensemble models with XGBoost is quite simple 
[48]. 

VI. CONCLUSION AND FUTURE STRATEGIES 

This research demonstrates that using various deep learning 
algorithms on tabular data does not improve performance. We 
also used XGBoost on these datasets, which produced some 
promising results when compared to deep models, and we used 
ensemble deep learning with and without XGBoost to see how 
it affected the performance of each dataset. On these tabular 
datasets, an ensemble of XGBoost models without deep 
learning never performed well, but when we looked at the 
overall performance using an ensemble of deep models with 
XGBoost, the results were astounding. This ensemble deep 
model with XGBoost beats all previous models, and our 
enhanced models pave the way for future study on tabular 
datasets in terms of comparing performance and assisting 
researchers in determining the best technique for optimizing 
hyperparameters. Our findings will also aid in the development 
of new models (such as CatBoost, where learning rates are 
uniformly distributed) that are simple to optimize and can 
compete with the performance of ensemble deep models such 
as XGBoost and many others. 
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