
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 4, 2022

541 | P a g e

www.ijacsa.thesai.org

A New Combination Approach to CPU Scheduling

based on Priority and Round-Robin Algorithms for

Assigning a Priority to a Process and Eliminating

Starvation

Hussain Mohammad Abu-Dalbouh

Department of Computer Science, College of Science and Arts, Qassim University, Unaizah, Saudi Arabia

Abstract—The main purpose of an operating system is to

control a group of processes, through a method known as CPU

scheduling. The performance and efficiency of multitasking

operating systems are determined by the use of a CPU scheduling

algorithm. Round-robin scheduling is the best solution for time-

shared systems, but it is not ideal for real-time systems as it

causes more context shifts, longer wait times, and slower

turnaround times. Its performance is mostly determined by the

time quantum. Processes cannot have priorities set for them.

Round-robin scheduling does not give more critical work greater

consideration, which may affect system performance in solving

processes. On the other hand, a priority algorithm can resolve

processes' priority levels. This means that each process has a

priority assigned to it, and processes with highest priority are

executed first. If which process should come first and the process

waiting time in CPU are not considered, this can cause a

starvation problem. In this paper, a new CPU scheduling

algorithm called the mix PI-RR algorithm was developed. The

proposed algorithm is based on a combination of round-robin

(RR) and priority-based (PI) scheduling algorithms for

determining which tasks run and which should be waiting. The

disadvantages of both round-robin and priority CPU scheduling

algorithms are addressed by this novel algorithm. When using

the proposed mix PI-RR algorithm, the performance measures

indicated improved CPU scheduling. Other processes should not

be affected by the CPU's requirements. This algorithm helps the

CPU to overcome some of the problems of both algorithms.

Keywords—Average turnaround time; average waiting time;

utilization; performance measures; operating system; process

I. INTRODUCTION

People can shop, learn, arrange appointments, play games,
and more due to technological advancements such as mobile
phones and computers. Because humans are typically unable to
utilize and maintain these devices due to their complexity,
operating systems have emerged to address these issues [1],
[2]. They are best described as a link between the user and the
computer hardware that makes managing and controlling the
computer system easier. Both the user and the system benefit
from the services provided by operating systems [3]. On the
user side, they provide user interfaces and assist in the
implementation of programs, file management, and
information exchange with other computers, while on the
system side, they allow multiple users to share resources and
protect system resources [4], [5].

In a multitasking context, CPU scheduling is a critical duty
for an operating system. A ready queue is maintained when
more than one procedure needs to be executed. In a two-
processor system, each processor has its own ready queue. The
operating system chooses a process from a list of those in the
ready queue, and assigns the CPU to it based on an algorithm
[6], [7]. To ensure fairness and avoid hunger while allocating
CPU to processes, close attention is essential. When making
scheduling decisions, the aim is to keep the average waiting
time, average turnaround time, and number of context flips as
low as possible.

The operating system is in charge of managing the
computer's hardware and software resources, as well as
performing many functions. Processor scheduling is regarded
as a fundamental task. All resources are scheduled before they
are used, so they are available to processes when they are
needed and at a new stage in the process life cycle [8], [9]. A
short-term scheduler (STS) [10] selects a process from the
ready queue for implementation, and scheduling is the essential
function of the operating system in a computer system. These
algorithms are used to schedule tasks in the CPU; each one
outperforms the others in some performance metrics, and has
its own set of benefits and drawbacks [11].

The job of a CPU scheduler is to select a process from a
memory list of ready-to-run processes. In the following
situations, the CPU scheduling choice for a scheduler must be
made:

 Switch a process from running to ready state.

 Switch a process from waiting to ready state.

 Send a process to terminate state.

The success of the scheduler is decided by an algorithm.
High-quality CPU scheduling algorithms rely on maximize
usage rate, throughput, turnaround time, waiting time, and
response time. In multi-processing systems, the user executes
multiple applications at the same time, each of which contains
multiple processes that require the CPU to complete its
responsibilities, but only one process can acquire the CPU at a
time. As a result, CPU scheduling is required, which allows
one function to use the CPU while another waits for other
resources, improving management reliability and efficiency
[12]. One of the most significant components of the device is

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 4, 2022

542 | P a g e

www.ijacsa.thesai.org

the CPU. Because most operations rely on it, we must
maximize its usage and throughput, while reducing turnaround
time, waiting time, and response time. CPU scheduling
techniques, which control how processes enter the CPU, can
meet all of these requirements [13]. There are numerous
scheduling algorithms, each of which is implemented in a
unique way. The FCFS algorithm, for example, assigns the
CPU to the first person who arrives. The SJF algorithm
allocates the CPU to the shortest task. The round-robin
algorithm assigns a time quantum to each process, calculates
its working time in the CPU, then leaves the process and
permits another to run. According to their priority, the priority
algorithm [8] determines which processes are allowed to access
the CPU. Many issues might arise during the execution of
scheduling algorithms [14].

This paper proposes a mix priority and round-robin
algorithm (mix PI-RR algorithm) for assigning a priority to a
process and eliminating starvation. This algorithm has the
optimal advantages of both priority and round-robin
algorithms. The rest of this paper is organized as follows:
Section II presents the literature review. In Section III, the
proposed algorithm is discussed and a flowchart is presented.
In Section IV, present the discussion and conclusion in the
final section.

II. LITERATURE REVIEW

To discover the best CPU algorithm for a given procedure,
it is possible to compare the three CPU algorithms based on
their waiting times. Each algorithm has been extensively tested
and the outcomes compared. In [15], the researchers developed
an improved round-robin scheduling approach based on the
clustering algorithm, which combined the advantages of
prioritizing short operations with low round-robin scheduling
overheads to reduce the average waiting time and turnaround
time. Using the k means technique, similar processes were
clustered. These researchers employed the CPU scheduling
approach in [16] to create a fast system with fewer resources.
They were able to improve the algorithm's efficiency and
reduce its runtime. The various scheduling algorithms were
designed and implemented by them. In [17], the researchers
recommended scheduling techniques to increase the operating
system's real-time performance.

In [18], the round-robin scheduling algorithm's time
quantum concerns were addressed. The researchers developed
the smart job first dynamic round-robin technique. Using a
dynamic time-quantum technique, the program required the
CPU schedule to sort processes in ascending order based on
burst time, assign system priority, and calculate a smart priority
factor (SPF) for each process. The team created a simulator to
evaluate the proposed algorithm.

In [19], the researchers released an enhanced version of the
Fittest Job First Dynamic Round-Robin algorithm (FJFDRR),
which incorporates the process arrival time as an algorithmic
element that various queues handle. The suggested approach
was compared against current scheduling algorithms in four
test cases using the ATAT, AWT, AR, and CS metrics. Based
on the number of processes provided, the statistics
demonstrated that the suggested technique had the best
appropriate context switch rate.

The researchers presented the Enhanced Round-Robin
(ERR) algorithm in [20], which aims to increase CPU
performance by reducing the average waiting time and
turnaround time. In three separate scenarios, the suggested
algorithm was compared to the RR and IRR algorithms. The
findings revealed that this approach performed better by
reducing the average WT and average TAT.

The researchers suggested the Modified Priority
Preemptive Scheduling Technique as a novel CPU scheduling
algorithm in [21]. Priority pre-scheduling is implemented in a
cyclical manner by the algorithm. The results indicated that the
novel technique handled the starving problem, while also
improving the speed of the standard preemptive algorithm.

In [22], the researchers proposed an approach for managing
loads and prioritizing selection of tasks.

The SJF algorithm must be used to rank jobs, followed by
the RR algorithm for execution. The findings demonstrated that
the ad hoc algorithm prioritizes higher priority jobs and
executes them rapidly, while contextual switching is reduced
for low priority processes, reducing the options between RR
and SJF.

In the Cyber-Physical System, the researcher presented a
scheduling strategy for high-priority random jobs [23]. A fog
group is used in idle time to process the most recent available
time and execution time before assigning the system to a
random high-priority task. This method speeds up the dispatch
of high-priority random jobs, allowing them to be performed
more quickly.

A number of CPU scheduling algorithms have been
developed in recent years to ensure predictable processor
allocation. Often, the best features of each algorithm have been
combined to create the ideal algorithm for a given situation.
The upgraded round-robin (IRR) CPU scheduling algorithm,
invented by Mishra, is an improved round-robin scheduler. It is
comparable to round-robin (RR), but is a little better [24]. IRR
chooses the first process from the ready queue and gives it the
CPU for up to one QT. When a process completes its QT, it
checks the remaining CPU burst time of the presently
executing process.

III. PROPOSED ALGORITHM

The round-robin algorithm does not consider the
importance and significance of processes; it simply solves the
queue, so the process order that the CPU performs causes a
decrease in the CPU efficiency. The priority algorithm has
some disadvantages because it solves the process priority for
which process come first, so it performs the process with the
highest priority and does not consider the arrival time or size of
the process. It also ignores CPU bursts that can cause
starvation. Therefore, this study created a mix of the two
previous algorithms to decrease the disadvantages for the
operating system environment. Mix PI-RR algorithm and
flowchart of the proposed Mix PI-RR algorithm is shown in
“Fig. 1 and 2”.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 4, 2022

543 | P a g e

www.ijacsa.thesai.org

Priority

Algorithm

Round Robin

Algorithm

Proposed Mix Priority and

Round Robin Algorithm

(Mix PI-RR Algorithm)

Fig. 1. Mix PI-RR Algorithm.

Start

Add all processes in the

ready queue

Define a priority

specifications of the

process

Define a Time Quantum

Arrange the processes

based on the priority

Is the

 process has the

highest

priority

The redundancy

column < 3

Burst time < Time

Quantum

Yes

No
Execute For Time

Quantum

Execute till

completion
Yes Termination

End

No

Change the process

priority to the lowest

priority in the queue

No

Fig. 2. Flowchart of the Proposed Mix PI-RR Algorithm.

The proposed algorithm adds two more columns to the
original columns in the round-robin as follows:

Priority column: The CPU gives some processes higher
priority than others. The number of times to repeat this is listed
in the second column. If the procedure is prioritized three times
then, in the central processing unit, the original priority is
updated and the lowest priority is assigned. Following this, the
processes will be carried out in accordance with the arrival
time of the central processing unit (CPU). Finally, when the
CPU receives the lowest priority process, the priority will be
activated again. Then, it will be implemented three times
before being assigned the lowest priority in the central
processing unit (CPU).

NOTE 1: If more than one process had the same priority
after a change, we looked at the redundancy column, and then
we implemented the process with the fewest repetitions.

NOTE 2: If they were equal in the redundancy column, the
arrival time to the central processing unit was taken. To break
ties, processes with equal priority were completed on a FCFS
basis.

NOTE 3: If a process was running and another process
arrived with the highest priority, it did not interrupt the work of
the process, but waited until the end of the quantum time.

IV. DISCUSSION

Preparing a successful proposal for a newly inspired
algorithm in such a pure field is not a simple undertaking.
Given the difficulties of this research topic, it was necessary to
propose a new optimization technique with novel aspects.
Apart from the innovation, the authors' findings were supported
by a dataset and a comparison of some criteria between
algorithms. As a result, the three samples from the literature
were utilized as examples in this study, and the average TAT
and average WT of both the proposed and presented algorithms
were compared. The average TAT and average WT are
examined and compared to the current round-robin scheduling
algorithm in different cases. Some scenarios were
demonstrated, the results of each iteration were studied, and the
final outputs were compared using the round-robin algorithm
to verify the quality and efficiency of the suggested mix PI-RR
algorithm.

Sample 1: The first dataset, which contained seven
processes, was used in this sample from the benchmark
datasets used in the studies. In addition to explaining how the
suggested algorithm works, this research developed a Gantt
chart for the method. For the following collection of processes,
Table I shows the length of the CPU-burst period in
milliseconds. We assigned the time quantum as 3 ms for each
process. Tables II and III show gantt chart of sample 1 and
turnaround time and waiting time of sample 1, respectively.

TABLE I. PROCESSES OF SAMPLE 1

Process
CPU Burst

time

Arrival

time
Priority

Number of times

repeat

P1 9 0 3 ///

P2 9 2 2 ///

P3 12 4 4 ///=7

P4 8 5 1 ///

P5 7 6 5 ///

P6 9 6 7 ///

P7 12 6 6 ///=7

TABLE II. GANTT CHART OF SAMPLE 1

P1 P2 P4 P4 P4 P2 P2 P1 P1

0-3 3-6 6-9 9-12 12-14 14-17 17-20 20-23 23-26

P3 P3 P3 P5 P5 P5 P7

26-29 29-32 32-35 35-38 38-41 41-42 42-45

P7 P7 P6 P6 P6 P3 P7

45-48 48-51 51-54 54-57 57-60 60-63 63-66

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 4, 2022

544 | P a g e

www.ijacsa.thesai.org

TABLE III. TURNAROUND TIME AND WAITING TIME OF SAMPLE 1

Process Turnaround Time (ms) Waiting time

P1 26 17

P2 18 9

P3 31 19

P4 9 1

P5 36 29

P6 54 45

P7 45 33

Average 31.285 21.875

Sample 2: For the following collection of processes,
Table IV shows the length of the CPU-burst period in
milliseconds. We assigned the time quantum as 5 ms for each
process, which contained eight processes. Tables V and VI
show gantt chart of sample 2 and turnaround time and waiting
time of sample 2, respectively.

TABLE IV. PROCESSES OF SAMPLE 2

Process
CPU Burst

time

Arrival

time
Priority

Number of times

repeat

P1 15 0 4 ///

P2 18 0 1, 8 /// , /

P3 15 0 2 ///

P4 14 0 3 ///

P5 12 0 7 ///

P6 20 0 8

P7 7 0 5 //

P8 8 0 6 //

TABLE V. GANTT CHART OF SAMPLE 2

P2 P2 P2 P3 P3 P3 P4 P4

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40

P4 P1 P1 P1 P7 P7 P8 P8

40-44 44-49 49-54 54-59 59-64 64-66 66-71 71-74

P5 P5 P5 P2 P6 P6 P6 P6

74-79 79-84 84-86 86-89 89-94 94-99 99-104 104-109

TABLE VI. TURNAROUND TIME AND WAITING TIME OF SAMPLE 2

Process Turnaround Time (ms) Waiting time

P1 59 46

P2 89 71

P3 30 15

P4 44 30

P5 86 74

P6 109 89

P7 66 59

P8 74 64

Average 69.625 56

TABLE VII. PROCESSES OF SAMPLE 3

Process
CPU Burst

time

Arrival

time
Priority

Number of times

repeat

P1 9 0 10 //

P2 12 0 9 ///

P3 15 0 6 ///

P4 17 0 3 ///=10

P5 12 0 2 ///

P6 14 0 8 ///

P7 16 0 7 ///,=10,/

P8 13 0 4 ///

P9 6 0 5 //

P10 15 0 1 ///

TABLE VIII. GANTT CHART OF SAMPLE 3

P10 P10 P10 P5 P5 P5 P4 P4

0-5 5-10 10-15 15-20 20-25 25-27 27-32 32-37

P4 P8 P8 P8 P9 P9 P3 P3

37-42 42-47 47-52 52-55 55-60 60-61 61-66 66-71

P3 P7 P7 P7 P6 P6 P6 P2

71-76 76-81 81-86 86-91 91-96 96-101 101-105 105-110

P2 P2 P1 P1 P4 P7

110-115 115-117 117-122 122-126 126-128 128-129

TABLE IX. TURNAROUND TIME AND WAITING TIME OF SAMPLE 3

Process Turnaround Time (ms) Waiting time

P1 126 117

P2 117 105

P3 76 61

P4 128 111

P5 27 15

P6 105 91

P7 129 113

P8 55 42

P9 61 55

P10 15 0

Average 83.9 71

Sample 3: For the following collection of processes,
Table VII shows the length of the CPU-burst period in
milliseconds. We assigned the time quantum as 5 ms for each
process, which contained ten processes. Tables VIII and IX
show gantt chart of sample 3 and turnaround time and waiting
time of sample 3, respectively.

Scheduling is a fundamental operating system feature.
Almost all computer resources are pre-programmed before they
are used. One of the most important computer resources is the
central processing unit (CPU). Its scheduling is crucial to the
architecture of an operating system. Which processes run and
which processes wait are determined by CPU scheduling. CPU

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 4, 2022

545 | P a g e

www.ijacsa.thesai.org

scheduling is critical because it has a significant impact on
resource usage, system performance, and CPU efficiency.
Process execution is made up of a cycle of CPU execution
(CPU burst) and I/O wait (I/O burst), with CPU burst coming
first, then I/O burst, then another I/O burst, and so on. The
most recent CPU explosion ends with a system request to stop
the process.

Due to their significant waiting time, long response time,
large turnaround time, and low throughput, existing round-
robin CPU scheduling algorithms cannot be used in real-time
operating systems. Furthermore, existing priority CPU
scheduling algorithms are inadequate for real-time operating
systems since they create starvation, and do not take into
consideration which processes come first and the time spent
waiting for them to run in the CPU.

The proposed mix priority and round-robin algorithm (mix
PI-RR algorithm) is an algorithm that obtains the optimal
advantages of both priority and round-robin algorithms.
Round-robin scheduling does not give any process priority or
additional consideration based on other processes, and
processes cannot have priorities set for them. Therefore,
delayed execution of important processes may affect the
performance of the whole system. On the other hand, in the
priority algorithm, each process is assigned a priority.
Processes with highest priority are executed first. However,
this occurs without taking into account which process comes
first and the time the process has been waiting in CPU to run,
and this can cause starvation. Therefore, this paper introduced
the mix PI-RR algorithm to assign a priority to important
processes, without causing starvation.

The average waiting and turnaround times depend on the
number of processes in the ready queue; as number of
processes increases, time cost increases. In addition, long burst
times of the processes increase the time cost. To emphasize the
efficiency of the proposed algorithm, samples datasets varying
in number and burst times of processes are used. The proposed
mix PI-RR algorithm enhances CPU performance in general,
the results revealed that wait time and turnaround time were
reduced. Furthermore, the CPU algorithms enabled the user to
obtain good results without increasing the time. Tables X and
XI show the average turnaround time and average waiting time
of the proposed mix PI-RR algorithm and current round-robin
algorithm. As observed from the average turnaround time and
average waiting time, the performance of the proposed mix PI-
RR algorithm was better than the current round-robin
algorithm. It is clearly observed that average turnaround time
and average waiting time of the processes are optimum for
proposed Mix PI-RR algorithm compared to round robin
fundamental algorithm. The comparison between the proposed
mix PI-RR algorithm and the current round-robin algorithm is
shown in “Fig. 3 and 4”.

TABLE X. COMPARING AVERAGE TURNAROUND TIME

 Average Turnaround Time (ms)

 Sample 1 Sample 2 Sample 3

Proposed Mix PI-RR Algorithm 31.285 69.625 83.9

Round Robin 48.8571 90 106.9

TABLE XI. COMPARING AVERAGE WAITING TIME

 Average Waiting Time (ms)

 Sample 1 Sample 2 Sample 3

Proposed Mix PI-RR Algorithm 21.875 56 71

Round Robin 39.428 67.375 94

Fig. 3. Comparing Average Turnaround Time.

Fig. 4. Comparing Waiting Time.

V. CONCLUSION

The algorithm presented here outperforms several other
algorithms; in general, it outperforms the RR and priority-
based methods. No algorithm is ideal in every circumstance. It
is impossible to watch a precise scheduling algorithm in action,
yet precise performance can be viewed in real-time operating
system operations. Several elements, such as changeable
capacity, have a substantial impact on performance. This study
introduced a real-time operating system and real-time tasks.
We highlighted RR and priority drawbacks like high average
turnaround, high context switching, high response time, high
turnaround time, and low throughput, as well as the failure to
take into account the process that should be first and how long
processes have been waiting. After analyzing RR and priority
algorithm’s performances and drawbacks, we proposed a new
algorithm, named mix priority and round-robin (the mix PI-RR
algorithm), which deals with the drawbacks of simple round-
robin and priority algorithms. This new approach performed
better than a simple RR and priority, by taking the best features
of each algorithm and combining them to create the ideal
algorithm for a given situation in terms of average waiting time
and average turnaround time. This study justified the mix
between priority and round-robin to help the CPU overcome
indefinite blocking or starvation (leaving some lower priority
processes waiting in CPU) in priority algorithms, and using
queue up to solve the processes regardless of the importance
and priority of the process for the CPU in the round-robin

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 4, 2022

546 | P a g e

www.ijacsa.thesai.org

algorithm. The results of this evaluation highlight ways in
which instructional material should be clarified. It will be
important for the proposed algorithm to be more efficient and
effective than current CPU scheduling algorithms. Finally,
further research is needed to compare it with other algorithms.
In future work, simulations of CPU scheduling strategies are
recommended. The most efficient way to evaluate a scheduling
algorithm is to code it and include it in an operating system;
then, the algorithm's correct working capabilities can be
determined in real-time systems. Further research and studies
in the future should be carried out to discover other scheduling
algorithms that are optimal in certain situations and, hence,
deliver the highest level of user satisfaction.

ACKNOWLEDGMENT

The researcher would like to thank Qassim University,
Kingdom of Saudi Arabia. This study was supported in part by
a grant from Deanship of Scientific Research, Qassim
University.

REFERENCES

[1] P. B. Galvin, G.Gagne and A. Silberschatz, Operating system concepts.
John Wiley & Sons. 2003.

[2] U. Shafi, M.A. Shah, A. Wahid, K. Abbasi, Q. Javaid, M. Asghar and M.
Haider, A novel amended dynamic round robin scheduling algorithm for
timeshared systems. Int. Arab J. Inf. Technol., 17(1), 90-98. 2020.

[3] M. Aijaz, R. Tariq, M. Ghori, S.W. Rizvi and E.F. Qazi, Efficient Round
Robin Algorithm (ERRA) using the Average Burst Time. In 2019
International Conference on Information Science and Communication
Technology (ICISCT) (pp. 1-5). IEEE. 2019.

[4] S. Mody and S. Mirkar, Smart Round Robin CPU Scheduling Algorithm
For Operating Systems. In 2019 4th International Conference on
Electrical, Electronics, Communication, Computer Technologies and
Optimization Techniques (ICEECCOT) (pp. 309-316). IEEE. (2019,
December).

[5] H. B. Parekh and S. Chaudhari, Improved Round Robin CPU scheduling
algorithm: Round Robin, Shortest Job First and priority algorithm
coupled to increase throughput and decrease waiting time and turnaround
time. In 2016 International Conference on Global Trends in Signal
Processing, Information Computing and Communication (ICGTSPICC)
(pp. 184-187). IEEE. (2016, December).

[6] Amit Kumar Sain, “Dynamical Modified R.R. CPU Scheduling
Algorithm", International Journal of Computer Trend and Technology,
Volume 4, Issue 2, PP. 90-93, ISSN:2231-2803. 2013.

[7] M.A. Alworafi, A. Dhari, A. Al-Hashmi and A.B. Darem, An improved
SJF scheduling algorithm in cloud computing environment. In 2016
International Conference on Electrical, Electronics, Communication,
Computer and Optimization Techniques (ICEECCOT) (pp. 208-212).
IEEE. (2016, December).

[8] A. Joshi and s. Gosswami, Modified Round Robin algorithm by using
Priority Scheduling. Advances in Computational Sciences and
technology, 10(6), 1543-1549. 2017.

[9] S. Zouaoui, L. Boussaid and A. Mtibaa, Priority based round robin
(PBRR) CPU scheduling algorithm. International Journal of Electrical &
Computer Engineering (2088-8708), 9(1). 2019.

[10] A. Najim and Al-Tahhan, Hybrid Algorithm for CPU Scheduling by
Using Dynamic Time Quantum", Future Research Journal, Al-Hadba
university Collage, PP. 99-136, ISSN 1680-9300. Iraq . (April 2014),".

[11] Neelakantagouda Patil (October 2015)," A Knapsack Based CPU Process
Scheduling Using Neelsack Algorithm", (IJSEAS) International Journal
of Scientific Engineering and Applied Science,Volume-1, pp. 138-144,
Issue-7, ISSN:2395-3470, India.

[12] William Stallings, “Operating Systems Internal and Design Principles”,
5thEdition, ISBN-10: 0-13-230998, 2006.

[13] Silberschatz, A., Peterson, J. L., and Galvin, B., “Operating System
Concepts”, Addison Wesley, 7th Edition, ISBN-10: 0471694665, 2006.

[14] E.O. Oyetunji, A. E. Oluleye,” Performance Assessment of Some CPU
Scheduling Algorithms”, Research Journal of Information Technology,
1(1), pp. 22-26, 2009.

[15] M Mostafa, S., & Amano, H. (2020). Dynamic Round Robin CPU
Scheduling Algorithm Based on K-Means Clustering Technique. Applied
Sciences, 10(15), 5134.

[16] Farooq, M. U., Shakoor, A., & Siddique, A. B. (2017, March). An
efficient dynamic round robin algorithm for cpu scheduling. In 2017
International Conference on Communication, Computing and Digital
Systems (CCODE) (pp. 244-248). IEEE.

[17] Zouaoui, S., Boussaid, L., & Mtibaa, A. (2019). Priority based round
robin (PBRR) CPU scheduling algorithm. International Journal of
Electrical & Computer Engineering (2088-8708), 9(1).Technologies and
Optimization (Trends and Future Directions)(ICRITO) (pp. 397-400).
IEEE.

[18] Gupta, A. K., Yadav, N. S., & Goyal, D. (2016). Design and Performance
Evaluation of Smart Job First Dynamic Round Robin (SJFDRR)
Scheduling Algorithm with Smart Time Quantum. American Scientific
Research Journal for Engineering, Technology, and Sciences (ASRJETS),
26(4), 66-78.

[19] Manuel, J. I., Baquirin, R. B., Guevara, K. S., & Tandingan, D. (2019,
February). Fittest Job First Dynamic Round Robin (FJFDRR) scheduling
algorithm using dual queue and arrival time factor: a comparison. In IOP
Publishing Ltd, IOP Conf. Ser.: Mater. Sci. Eng (Vol. 482, p. 012046).

[20] Khatri, J. (2016). An enhanced Round Robin CPU scheduling algorithm.
IOSR Journal of Computer Engineering (IOSR-JCE), 18(4), 20-24.

[21] Chandiramani, K., Verma, R., & Sivagami, M. (2019). A Modified
Priority Preemptive Algorithm for CPU Scheduling. Procedia Computer
Science, 165, 363-369.

[22] Tripathi, S., Prajapati, S., & Ansari, N. A. (2017, May). Modified optimal
algorithm: for load balancing in cloud computing. In 2017 International
Conference on Computing, Communication and Automation (ICCCA)
(pp. 116-121). IEEE.

[23] Zhang, J., Chen, C., Zheng, H. K., & Luo, Q. Y. (2019, June). A High
Priority Random Task Fuzzy Scheduling Algorithm for CPS. In 2019
Chinese Control And Decision Conference (CCDC) (pp. 482-487). IEEE.

[24] Y. Berhanu, A. Alemu and M.K. Mishra, Dynamic time quantum based
round robin CPU scheduling algorithm (Doctoral dissertation). 2017.

