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Graphical Abstract: 

 

Abstract—To diagnose Parkinson’s disease (PD), it is 

necessary to monitor the progression of symptoms. 

Unfortunately, diagnosis is often confirmed years after the onset 

of the disease. Communication problems are often the first 

symptoms that appear earlier in people with Parkinson’s disease. 

In this study, we focus on the signal of speech to discriminate 

between people with and without PD, for this, we used a Spanish 

database that contains 50 records of which 28 are patients with 

Parkinson’s disease and 22 are healthy people, these records 

contain five types of supported vowels (/a/, /e/, /i/, /o/ and /u/), The 

proposed treatment is based on the decomposition of each sample 

using Discrete Wavelet Transform (DWT) by testing several 

kinds of wavelets, then extracting the delta delta Mel Frequency 

Cepstral Coefficients (delta delta MFCC) from the decomposed 

signals, finally we apply the decision tree as a classifier, the 

purpose of this process is to determine which is the appropriate 

wavelet analyzer for each type of vowel to diagnose Parkinson’s 

disease. 

Keywords—Parkinson’s disease; discrete wavelet transform; 

delta delta MFCC; decision tree classifier 

I. INTRODUCTION 

Parkinson's disease is a severe health problem. According 
to the American Parkinson's Disease Association (APDA) [1], 
more than 10 million people worldwide are affected by 
Parkinson's disease. Due to the loss of certain groups of brain 
cells that produce neurotransmitters, including dopamine, 
causes symptoms such as impaired speech, movement, and 
sleep, as well as panic and anxiety attacks. 

Speech disorders include reduced speech intensity, 
fluctuating fundamental frequency, and irregular speech 
articulation which are signs that appear early in people with 
Parkinson's disease, allowing many studies to use the speech 
signal for the identification of Parkinson's disease [2-5]. 

However, the speech signal is one of the most complex 
signals to characterize, which makes it difficult to develop a 
system to understand different diseases such as Parkinson's 
disease [6-8], Alzheimer's disease [9-11], and COVID 19 [12-
15], etc. This complexity of the speech signal comes from a 
combination of several factors, the redundancy of the acoustic 
signal, the high inter-and intra-speaker variability, the effects 
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of coarticulation in continuous speech, and the recording 
conditions. To overcome these difficulties, many methods and 
mathematical models have been developed, including neural 
networks [16, 17], Support Vector Machines (SVM) [18, 19], 
stochastic Markov models, and in particular Hidden Markov 
Models (HMM) [20, 21]. 

These methods and models work from information 
extracted from the speech signal considered relevant. This 
extraction is performed by an acoustic analysis which leads to 
gathering this information under the term of the vector of 
acoustic parameters whose dimension and nature are 
determinant to reach good performances of the knowledge 
system of Parkinson's disease which is of interest to us in this 
article. The different types of acoustic parameters commonly 
cited in the literature are the coefficients: LPC [22], LPCC 
[23], LFCC [24], PLP [23], MFCC [6, 23], etc. Generally, the 
MFCC coefficients are the most used acoustic parameters in 
speech feature extraction [25-27]. 

However, for these systems of recognition of Parkinson's 
disease, research work has studied the improvement of the 
performance of this system by combining the MFCC 
coefficients with other types of acoustic parameters such as 
LPCC [28], PLP [28], energy [29], wavelets [29-31] and 
Empirical Mode Decomposition (EMD) [32]. 

In this study, far from static coefficients, for correct 
detection of Parkinson's disease through voice our contribution 
consists in proposing a new method of selection of relevant 
acoustic parameters based on the use of dynamic delta delta 
MFCC coefficients combined with wavelets, these differential 
coefficients referred as dynamic parameters provide useful 
information on the temporal trajectory of the speech signal. 
This information extracted by discrete wavelet transform and 
delta delta MFCC will be used in the classification block using 
a decision tree classifier. To evaluate the performance of this 
model we applied it to a database of five vowels (/a/, /e/, /i/, 
/o/, /u/), each vowel includes 28 people with Parkinson's 
disease and 22 are healthy people. 

The structure of the rest of the article is as follows: section 
II concerns a definition of the methods used, section III 
presents a description of the process used and the results 
obtained, and finally the conclusion in section IV. 

II. METHOD 

A. Feature Extraction 

For feature extraction, we are interested in the joint use of 
DWT and the second derivative of the MFCC (delta delta 
MFCC). This step allows extracting features that will be used 
by the decision tree classifier. 

1) Discrete wavelet transform: For the discrete wavelet 

transform, it is the discrete version of the Continuous Wavelet 

Transform (CWT) that used Mallat's algorithm, it is based on 

the principle of multi-resolution that allows the separation of 

details and approximations of signals by using a pair of filters 

H and G that constitute respectively a low-pass filter and a 

high-pass filter. 

With the high-pass filters, we obtain the coefficients of the 
discrete wavelet decomposition (the details), and with the low-
pass filters, we obtain the approximation coefficients. This 
operation is applied again to the approximation, generating 
another detail and a new approximation as shown in Figure 1. 
There are several types of wavelets, in our case; we used the 
wavelets presented in the table I: 

2) Delta delta MFCC: Temporal changes in the cepstrum 

play an important role in human perception and it is through 

the derivatives of MFCC coefficients that we can measure 

these changes. 

TABLE I.  WAVELET FAMILIES USED 

Wavelets families Wavelets 

Daubechies db1, db2, and db3 

Coiflets coif1, coif2, and coif3 

Symplets sym1, sym2, and sym3 

Discrete Meyer dmey 

 

Fig. 1. Representation of the Mallat Algorithm for the Implementation of the 

DWT Decomposition, H is a Low Pass Filter and G is a High Pass Filter. 
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Usually, MFCC coefficients are referred to as static 
parameters, since they contain only the information about a 
given frame. To improve the frame representation, it is often 
proposed to introduce new parameters into the parameter 
vector. The reference [33] proposed the use of dynamic 
parameters that present cepstral transition information in the 
speech signal. In particular, it proposed second-order 
differential coefficients, also called delta delta coefficients, 
derived from cepstral coefficients. Let dt be the first-order 
differential coefficient (delta MFCC) of frame t, then the 
corresponding second-order differential coefficient (delta delta 
MFCC) ddt is calculated by the following formula: 

 
N

t +n t -n

n =1

t N
2

n =1

n d -d

dd =

2 n




  (1) 

The coefficients delta delta MFCC, also called acceleration 
coefficients are obtained using the second derivative of static 
Mel Frequency Cepstral Coefficients (MFCC), the latter is a 
representation defined as the discrete cosine transform of the 
logarithm of the spectrum of the energy of the speech segment. 
The spectral energy is calculated by applying a bank of evenly 
spaced filters on a modified frequency scale, called the Mel 
scale. The Mel scale redistributes the frequencies in a non-
linear scale that simulates human perception of sounds. Figure 
2 illustrates the steps involved in obtaining the delta delta 
MFCC coefficients. Based on the results obtained in [26], we 
use only the first 12 delta delta MFCC coefficients. 

B. Feature Classification 

1) The decision tree classifier: A decision tree is one of 

the most popular techniques in machine learning. Indeed, 

decision tree learning is part of supervised learning, it is 

generally a classifier presented in the form of a tree structure 

[34]. 

A decision tree consists of a set of rules allowing a segment 
of a data set into homogeneous groups. Each rule associates the 
conjunction of tests with the descriptive variables. The first 
vertex is called the root of the tree, the following variables, 
which correspond to non-terminal nodes, are segmentation 
variables; each branch corresponds to a modality of the 
variable considered at this level of the tree. This process is 
repeated on each node of the tree, the nodes that are not pure 
are segmented until pure leaves are obtained. 

Here we try to classify a population of individuals 
containing healthy people and people with Parkinson's disease 
pronounce these five vowels (/a/, /e/, /i/, /o/, /u/) into two 
classes with respect to a label {1 (healthy), 0 (sick)} from the 
recordings. The decision tree-learning algorithm is described 
below: 

Algorithm 1: Decision tree 

Data: a sample Ω of m labeled records 

Initialization: empty tree; current node: root; current 
sample: Ω  

 Repeat 

 Decide whether the current node is terminal 

 If the current node is terminal then  

 Label the current node with a leaf 

 Otherwise  

 Select a test and create the subtree 

 End if  

 Current node: a node not yet studied 

 Current sample: sample reaching the current node 

 Until a decision tree is produced  

Output: decision tree 

2) Holdout method: All classification results are obtained 

using the "holdout" method. This method is a commonly used 

practice for evaluating machine-learning models. It works by 

first dividing the data randomly into two parts; one of larger 

size is used for training and the other part is reserved for error 

rate estimation. Another version of this method, called "data 

shuffle", consists in repeating L times the random division of 

the data into two parts; one for training and the other for 

testing, and then calculating the average of the L estimates of 

the error rates evaluated on the test data parts. The advantage 

of this method is that all data are used for both training and 

testing. The holdout is a simple method to understand and 

generally results in a less biased model estimate than other 

methods. 

To assess classifier performance, the following parameters 
are used: 

TN +TP
Accuracy =

TN +TP + FP + FN
 (2) 

TP
Sensitivity =

TP + FN
  (3) 

TN
Specificity =

TN + FP
  (4) 

Where TP: true positive; TN: true negative; FP: false 
positive; FN: false negative. 

III. METHODOLOGY AND RESULT 

We have implemented our algorithm in Matlab version 
R2019a. The tests were performed on a PC with the following 
configuration: 
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CPU: Intel(R) Core(TM) i3-3110M CPU @ 2.40GHz 

Memory: 4,00 Go 

Operating System: Windows 10 64bit. 

A. Data Collection 

This study takes into account two subgroups of this group: 
the Healthy Control (HC) group with 22 speakers and the 
Parkinson's disease (PD) group with 28 speakers. All utterers 
included in this Italian corpus were registered in Bari (Puglia 
region), Italy. Each recording session took place in a controlled 
environment, taking into account factors such as room 
temperature, distance from the microphone, time of day, and 
having a conversation with the subject to warm up their vocal 
muscles. The sampling frequency was 16 kHz; more 
information is available in [35]. Table II includes the 
demographic information of the corpus. 

B. Methodology 

The objective of this part of Parkinson's disease detection is 
to design and experiment with a system based on extensive use 
of wavelet types combined with acceleration coefficients (delta 
delta MFCC) as features and the decision tree as a classifier, as 
illustrated in Figure 3. 

For the feature selection and extraction domain, which is an 
important step in the recognition process of Parkinson's 
disease, we consider the use of the wavelet transform, which is 
a time and frequency analysis tool that allows obtaining 
variable temporal and frequency resolutions. 

TABLE II.  AGE DEMOGRAPHIC DATA FROM THE ITALIAN CORPUS, 
ARRANGED BY GENDER AND CLASS 

 

Female Male Total 

PD HC PD HC PD HC 

Subjects 9 12 19 10 28 22 

Age range 40-80 60-72 50-77 60-77 40-80 60-77 

 

Fig. 2. Delta Delta MFCC Extraction Process. 

 

Fig. 3. The Process used to Diagnose Parkinson’s Disease. 

Our model for the diagnosis of Parkinson's disease will be 
applied to a corpus containing 28 subjects with Parkinson's 
disease and 22 healthy subjects for each vowel (/a/, /e/, /i/, /o/, 
/u/). It is based firstly on the decomposition of the signal into 
two sub-bands of approximate frequency and details by the use 
of a wide range of wavelets (Debauchies, Coiflets, Symlets, 
and Discrete Meyer) on the first seven scales. 

Susceptible to better characterize our system, extracting the 
first 12 coefficients delta delta MFCC that are parameters 
widely used to encode the dynamic information of cepstral 
parameters. This extraction is only performed on the low-
frequency band (approximation) for each type of wavelet and 
from the first scale up to the seventh scale. 

The main objective of the feature selection step is its direct 
contribution to the performance of the overall system this step 
allowed us to extract the features that will be then used by the 
decision tree classifier with the cross-validation method 
"holdout" that serves to decompose the base of each vowel (/a/, 
/e/, /i/, /o/, /u/) into 80% as a learning base and the whole base 
as a test base. 

C. Experiments and Results 

In this part of our work, we implemented our Parkinson's 
disease detection system where we introduced the DWT 
method and the delta delta MFCC coefficients as a feature 
vector, we changed the wavelet types for each first seven 
scales, then we measured the impact of each of these changes 
on the Parkinson's disease recognition performance by the 
decision tree classifier performance evaluation metrics. 

A comparative study between the extracted features based 
on delta delta MFCCs is performed to visualize the distinctive 
behavior of the subject with Parkinson's disease and the healthy 
subject for the five vowels. Figures 4-8 show the 12 delta delta 
MFCC coefficients as extracted features for a healthy person 
and a person with Parkinson's disease. The feature patterns are 
obtained from 50 speech samples for each vowel (/a/, /e/, /i/, 
/o/, /u/) from people with Parkinson's and healthy people. 
Almost all speech signals follow the same pattern. Figure 4 
clearly distinguishes the variation in the speech pattern of a 
healthy person and a person with Parkinson's disease for the 
vowel /a/ based on the wavelet of discrete Meyer at scale 5 the 
latter is the one that gave us a better Accuracy. Figures 5, 6, 7, 
and 8 present the delta delta MFCC coefficients respectively 
for the vowels /e/, /i/, /o/, and /u/, we based on these wavelets 
with these scales respectively discrete Meyer at scale 5, 
Coiflets level 3 at scale 6, discrete Meyer at scale 7 and 
discrete Meyer at scale 6 because it is those that gave us 
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important results that are displayed in Tables III, IV, V, VI, 
and VII a notable variation is observed between the healthy 
speech signal and that of Parkinson's disease. Thus, the 
proposed feature-based on delta delta MFCC can be a good 
marker for the prediction of Parkinson's disease. 

 

Fig. 4. Delta Delta Coefficients Extracted from the Vowel /a/ for: (a) 

Healthy Person, (b) Person with Parkinson's Disease. 

 

Fig. 5. Delta Delta Coefficients Extracted from the Vowel /e/ for: (a) 

Healthy Person, (b) Person with Parkinson's Disease. 

 

Fig. 6. Delta Delta Coefficients Extracted from the Vowel /i/ for: (a) 

Healthy Person, (b) Person with Parkinson's Disease. 

 

Fig. 7. Delta Delta Coefficients Extracted from the Vowel /o/ for: (a) 

Healthy Person, (b) Person with Parkinson's Disease. 

 

Fig. 8. Delta Delta Coefficients Extracted from the Vowel /u/ for: (a) 

Healthy Person, (b) Person with Parkinson's Disease. 

The following tables show the different results obtained for 
the five vowels according to accuracy, specificity, and 
sensitivity. 

For the vowel /a/, the results obtained in Table III show that 
the wavelet by using discrete Meyer at scale 5 offers better 
modeling for the classification of healthy people and people 
with Parkinson's disease with high accuracy of 97.5%. While 
for the vowel /e/, Table IV is still with the same wavelet, and 
on the same scale of 5, the best accuracy of 92.5% is achieved. 

In contrast to the experiment for the vowel /i/, in Table V 
we register a slight performance low of the accuracy of 87,5% 
by using the wavelet of Coiflets level 3 at scale 6 and discrete 
Meyer at scale 7. 

For the vowel /o/, according to the results shown in Table 
VI, we find that the wavelet of discrete Meyer at scale 7 gives 
accuracy up to 92,5% for the discrimination between healthy 
patients and patients with Parkinson's disease. For the vowel 
/u/, Table VII shows an important result with an accuracy of 
90% by using the wavelet of discrete Meyer at scale 6. 
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TABLE III.  ACCURACY, SPECIFICITY, AND SENSITIVITY FOR THE VOWEL /A/ USING THE DECISION TREE CLASSIFIER 

 Accuracy Specificity Sensitivity 

Scale 
wavele

t 

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 

Db1 
67,

5 

67,

5 

62,

5 

77,

5 
85 83 80 

67,

9 

32,

1 

53,

6 

82,

1 

71,

4 

63,

6 
50 4.5 

72,

7 

45,

5 

63,

6 

63,

6 
75 

82,

1 

Db2 65 
67,
5 

70 
77,
5 

90 
72,
5 

72,
5 

31,
8 

31,
8 

68,
2 

25 
72,
7 

72,
7 

45,
5 

68,
9 

45,
5 

39,
3 

77,
3 

67,
9 

60,
7 

75 

Db3 
67,

5 
65 70 

77,

5 
90 

87,

5 

77,

5 

72,

7 

40,

9 

63,

6 

45,

5 

81,

8 

68,

2 

59,

1 

32,

1 

32,

1 

53,

6 

78,

6 

35,

7 

71,

4 

64,

3 

Coif1 70 65 75 80 90 
89,

3 

77,

5 
50 9,1 

40,

9 

36,

4 

72,

7 

68,

2 
75 50 

89,

3 

82,

1 

82,

1 

78,

6 

78,

6 
50 

Coif2 65 65 
77,
5 

77,
5 

95 
87,
5 

90 
68,
2 

68,
2 

63,
6 

13,
6 

59,
1 

72,
7 

36,
4 

35,
7 

46,
4 

67,
9 

85,
7 

89,
3 

78,
6 

92,
9 

Coif3 70 65 70 80 95 85 80 
45,

5 

68,

2 

59,

1 

40,

9 

63,

6 

68,

2 

72,

7 

53,

6 

42,

9 

64,

3 

85,

7 

92,

9 

67,

9 

57,

1 

Sym1 
67,

5 

67,

5 
65 

77,

5 
90 

77,

5 

72,

5 

45,

5 

45,

5 

63,

6 
4,5 

36,

4 

36,

4 

68,

2 

64,

3 

71,

4 

35,

7 
75 

85,

7 
25 

60,

7 

Sym2 
67,
5 

67,
5 

70 
77,
5 

90 
87,
5 

70 
59,
1 

72,
7 

36,
4 

50 
68,
2 

77,
3 

68 
53,
6 

42,
9 

67,
9 

82,
1 

82,
1 

67,
9 

72 

Sym3 
67,

5 
65 70 80 90 80 80 

40,

9 

72,

7 

59,

1 

13,

6 

63,

6 

68,

2 

77,

3 

67,

9 

39,

3 

60,

7 

85,

7 

85,

7 
50 

28,

6 

dmey 65 65 
67,
5 

82,
5 

97,
5 

82,
5 

95 
27,
3 

54,
5 

36,
4 

54,
5 

54,
5 

68,
2 

59,
1 

71,
4 

50 75 
82,
1 

96,
4 

71,
4 

89,
3 

TABLE IV.  ACCURACY, SPECIFICITY, AND SENSITIVITY FOR THE VOWEL /E/ USING THE DECISION TREE CLASSIFIER 

 Accuracy Specificity Sensitivity 

Scale 

wavele
t 

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 

Db1 65 
62,
5 

62,
5 

62,
5 

87 80 
77,
5 

18,
2 

72,
7 

59,
1 

77,
3 

68,
2 

77,
3 

68,
2 

75 
35,
7 

35,7 
42,
9 

67,
9 

64,
3 

 

Db2 
62,

5 
60 60 60 85 80 

67,

5 

45,

5 

72,

7 
50 

54,

5 

81,

8 

81,

8 

77,

3 

93,

3 

28,

6 
42,9 

53,

6 

46,

6 
75 

39,

3 

Db3 
62,

5 

57,

5 
65 

62,

5 

82,

5 
80 70 9,1 4,5 50 

18,

2 

72,

7 

77,

3 

77,

3 

78,

6 

89,

3 
46,4 

64,

3 

42,

9 

67,

9 

42,

9 

Coif1 65 60 
57,

5 

62,

5 
85 80 70 

13,

6 
50 50 

13,

6 

81,

8 

77,

3 

77,

3 

85,

7 

53,

6 
50 

89,

3 

60,

7 

67,

9 

35,

7 

Coif2 
62,
5 

60 60 
62,
5 

77,
5 

77,
5 

70 
40,
9 

72,
7 

40,
9 

28,
6 

72,
7 

63,
6 

45,
5 

75 
35,
7 

53,6 
72,
7 

64,
3 

64,
3 

57,
1 

Coif3 65 
62,
5 

62,
5 

62,
5 

82,
5 

82,
5 

77,
5 

77,
3 

54,
5 

72,
7 

31,
8 

68,
2 

81,
8 

77,
3 

32,
1 

64,
4 

39, 
3 

60,
7 

74,
1 

46,
4 

53,
4 

Sym1 65 60 60 60 
87,

5 
80 

77,

5 
9,1 

40,

9 

27,

3 

72,

7 
4,5 

72,

7 

63,

6 
75 

53,

6 
64,3 

35,

7 

82,

1 

71,

4 

32,

1 

Sym2 
62,
5 

57,
5 

67,
5 

62,
5 

82,
5 

80 
67,
5 

54,
5 

72,
7 

50 
18,
2 

72,
7 

72,
7 

54,
5 

42,
9 

32,
1 

46,5 70 
64,
3 

67,
9 

60,
7 

Sym3 65 
57,
5 

65 
62,
5 

80 80 70 
40,
9 

72,
7 

59,
1 

68,
2 

77,
3 

63,
6 

68,
2 

67,
9 

35,
7 

46,4 
32,
1 

42,
9 

46,
4 

64,
3 

dmey 70 70 
62,

5 
60 

92,

5 

82,

5 
80 

45,

5 

45,

5 

68,

2 

54,

5 

72,

7 

36,

4 

68,

2 

78,

6 

78,

6 
39,3 

32,

5 

35,

7 

85,

7 

89,

3 
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TABLE V.  ACCURACY, SPECIFICITY, AND SENSITIVITY FOR THE VOWEL /I/ USING THE DECISION TREE CLASSIFIER 

 Accuracy Specificity Sensitivity 

Scale 

wavele

t 

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 

Db1 77,5 75 65 
72,
5 

77,
5 

77,
5 

72,
5 

54,
5 

54,
5 

63,
6 

63,
6 

72,
7 

59,
1 

77,
3 

67,
9 

71,
4 

53,
6 

60,
7 

57,
1 

57,
1 

42,
9 

Db2 77,5 75 65 70 
77,

5 
65 75 

59,

1 

13,

6 

18,

2 

77,

3 

54,

5 

45,

5 

68,

2 

53,

6 

85,

7 
75 

21,

4 

67,

9 

53,

6 

60,

7 

Db3 77,5 75 
62,
1 

65 75 
72,
5 

67,
5 

31,
8 

4,5 50 
59,
1 

77,
3 

63,
6 

45,
5 

78,
6 

67,
9 

46,
4 

57,
1 

21,
4 

53,
7 

60,
7 

Coif1 75 
67,
5 

70 75 70 75 75 
54,
5 

63,
6 

77,
3 

72,
7 

54,
5 

81,
8 

77,
3 

71,
4 

60,
7 

39,
3 

50 
57,
1 

53,
6 

42,
9 

Coif2 80 75 
67,
5 

60 
72,
5 

77,
5 

65 
59,
1 

13,
6 

18,
2 

77,
3 

54,
5 

63,
6 

54,
5 

53,
6 

85,
7 

75 
21,
4 

67,
9 

46,
4 

57,
1 

Coif3 77,5 75 
67,

5 

67,

5 
70 

87,

5 

77,

5 

45,

5 
50 

36,

4 
50 50 

81,

8 

63,

6 

89,

3 

67,

9 

57,

1 

53,

6 

46,

4 

42,

9 

85,

7 

Sym1 77,5 75 65 70 
77,

5 
80 

77,

5 
50 9,1 

54,

5 

63,

6 

77,

3 

81,

8 

63,

6 

85,

7 

60,

7 

57,

1 

67,

9 

39,

3 

35,

7 

67,

9 

Sym2 77,5 75 65 70 
77,

5 

72,

5 
65 

59,

1 
50 

22,

7 

68,

2 

77,

3 

72,

7 

81,

8 
75 

67,

9 

67,

9 

46,

4 

39,

3 

53,

6 

46,

4 

Sym3 77,5 75 
62,

5 

67,

5 
75 75 

67,

5 

59,

1 
50 

27,

3 
50 

72,

7 

22,

7 

13,

6 
75 

67,

9 

71,

4 

67,

9 

46,

4 

67,

9 

71,

4 

dmey 
81,3

3 
75 

67,

5 
65 

77,

5 

77,

5 
87,

5 

13,

6 

63,

6 

63,

6 

68,

2 

59,

1 

40,

9 

68,

2 

82,

1 

60,

7 

39,

3 

39,

3 

67,

9 
50 

78,

6 

TABLE VI.  ACCURACY, SPECIFICITY, AND SENSITIVITY FOR THE VOWEL /O/ USING THE DECISION TREE CLASSIFIER 

 Accuracy Specificity Sensitivity 

Scale 
wavele

t 

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 

Db1 
82,

5 
75 70 

67,

5 
75 

77,

5 

77,

5 

63,

6 

63,

6 

18,

2 

68,

2 

68,

2 

81,

8 
50 

64,

3 

57,

1 

67,

9 
46,4 

60,

7 

32,

1 
75 

Db2 80 75 70 70 75 
82,

5 

77,

5 

77,

3 

54,

5 

81,

8 

63,

6 

68,

2 

54,

5 

63,

6 

35,

7 

71,

4 

53,

6 
50 

57,

1 

64,

3 

67,

9 

Db3 80 
72,

5 
70 65 

77,

5 
70 75 

22,

7 

59,

1 

59,

1 

63,

6 

59,

1 

36,

4 

77,

3 

85,

7 

64,

3 

39,

3 
25 

53,

6 
75 

46,

4 

Coif1 
77,

5 

72,

5 
70 

67,

5 
75 

77,

5 

72,

5 

63,

6 

54,

5 

81,

1 

54,

5 

77,

3 

72,

7 

81,

8 

60,

7 

32,

1 

35,

7 
50 

35,

5 

60,

7 

32,

1 

Coif2 
72,

5 
75 75 65 

77,

5 
80 

67,

5 

18,

2 

72,

7 

72,

7 

63,

6 

54,

5 

81,

8 

31,

8 

89,

3 

35,

7 

53,

6 
42,9 

67,

9 

64,

3 

60,

7 

Coif3 75 90 
72,

5 

72,

5 
75 

82,

5 
79 

63,

6 

40,

9 

63,

6 

68,

2 

72,

7 

77,

3 

63,

6 

60,

7 

85,

7 
50 60,7 50 

53,

6 

67,

9 

Sym1 84 75 70 70 75 
77,

5 

72,

5 

54,

5 

63,

6 

72,

7 

63,

6 

72,

7 

77,

3 

77,

3 
75 

64,

3 

46,

4 
53,6 50 

60,

7 

46,

4 

Sym2 80 75 70 70 
77,
5 

82,
5 

77,
5 

54,
5 

77,
3 

45,
5 

59,
1 

40,
9 

77,
3 

59,
1 

64,
3 

21,
4 

64,
3 

46,4 
64,
3 

67,
9 

64,
3 

Sym3 
77,

5 
80 70 65 75 75 

72,

5 

63,

6 

54,

5 

40,

9 
9,1 

81,

8 

81,

8 

81,

8 

67,

9 

71,

4 

60,

7 

64, 

3 

46,

4 

64,

3 

39,

3 

dmey 
72,

5 

72,

5 
70 65 

77,

5 
80 

92,

5 

40,

9 

40,

9 

77,

3 

40,

9 

72,

7 

45,

5 

72,

7 

78,

6 

28,

6 

39,

3 
57,1 

64,

3 

85,

7 

85,

7 
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TABLE VII.  ACCURACY, SPECIFICITY, AND SENSITIVITY FOR THE VOWEL /U/ USING THE DECISION TREE CLASSIFIER 

 Accuracy Specificity Sensitivity 

Scale 
wavele

t 

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 

Db1 75 75 65 65 
67,
5 

77,
5 

72,
5 

72,
7 

50 
54,
5 

72,
7 

63,
6 

31,
8 

59,
1 

57,
1 

78,6 
53,
6 

46,
4 

53,
6 

67,
9 

57,
1 

Db2 
77,
5 

77,
5 

62,
5 

65 75 
67,
5 

72,
5 

63,
6 

31,
8 

4,5 
40,
9 

72,
7 

72,
7 

77,
3 

25 78,6 
92,
9 

50 
57,
1 

50 
57,
1 

Db3 75 
77,

5 

62,

5 

62,

5 

72,

5 
80 

72,

5 
9,1 

45,

5 

81,

8 

72,

7 

81,

8 

40,

9 

81,

8 

89,

3 
78,6 

28,

6 

32,

1 

53,

6 

42,

9 

57,

1 

Coif1 
77,
5 

77,
5 

62,
5 

65 
72,
5 

72,
5 

70 50 
54,
5 

40,
9 

68,
2 

50 
81,
8 

45,
5 

78,
6 

35,7 
57,
1 

53,
6 

57,
1 

57,
1 

60,
7 

Coif2 
72,
5 

72,
5 

62,
5 

62,
5 

72,
5 

72,
5 

70 
27,
3 

50 
68,
2 

68,
2 

72,
7 

59,
1 

63,
6 

75 75 
42,
9 

35,
7 

53,
6 

53,
6 

42,
9 

Coif3 
72,

5 

67,

5 

62,

5 

62,

5 
70 80 

72,

5 

63,

6 

59,

1 

68,

2 

68,

2 

72,

7 

81,

8 

77,

3 

60,

7 

39, 

3 
50 

35,

7 

57,

1 

53,

6 

57,

1 

Sym1 75 75 65 
67,

5 
70 

77,

5 
70 9,1 

36,

4 

45,

5 
50 

63,

6 

72,

7 

59,

1 

64,

3 
82,1 

60,

7 
50 50 

46,

4 

32,

1 

Sym2 
77,
5 

77,
5 

62,
5 

65 
72,
5 

67,
5 

72,
5 

59,
1 

54,
5 

68,
2 

4,5 
52,
2 

72,
7 

27,
3 

67,
9 

60,7 
46,
4 

82,
1 

85,
7 

35,
7 

71,
4 

Sym3 75 
77,

5 

62,

5 

62,

5 

72,

5 
80 

72,

5 

59,

1 

31,

8 

45,

5 

54,

5 

77,

3 

63,

6 

59,

1 

35,

7 
78,6 

53,

6 

42,

9 

32,

1 

32,

1 

46,

4 

dmey 75 80 
52,

5 

62,

5 
75 90 

72,

5 

27,

3 
50 

68,

2 

72,

7 

77,

3 

54,

5 

68,

2 

85,

7 
75 

42,

9 
25 

53,

6 

64,

3 

85,

7 

In Table VIII we have listed, but not exhaustively, the 
different works on Parkinson's disease recognition systems. 
The performances are difficult to compare because they vary 
according to several elements such as the type of data, the 
choice of the learning models, the way the parameters are 
obtained, etc. In this section, we will compare our results with 
those of some works. 

TABLE VIII.  COMPARISON OF PERFORMANCE WITH RECENTLY PUBLISHED 

WORK 

Study Method Accuracy 

Zayrit et al [29] 
DWT-genetic algorithm 

and  SVM  

91,18 (k-fold cross-

validation) 

Benba et al [26] 
MFCC- MLP kernel of 

SVM 
82,50 (LOSO) 

Sakar et al [36] KNN+SVM 

55,00 (LOSO on 

training database) 

68,45 (LOSO on the 
testing database) 

Belhoussine drissi et al 

[30] 
DWT-MFCC-SVM 86,84 

Eskidere et al [37] 
Random subspace 
classifier 

74,17 (10-fold CV) 

Li et al [38] SVM+FS 82,5 

Ali et al [39] Multimodal approach 70 

Ali et al. [40] LDA–NN–GA 95.00 

Proposed method. 
DWT-delta delta 
MFCC- decision tree 

classifier 

vowel /a/  97,5  

Zayrit et al [29] evaluated the /a/ vowel in the Turkish 
corpus by a vector of 21 prosodic features including LPC, 
ZCR, energy, Shannon entropy, and MFCC. The recognition 
accuracy of PD using the SVM classifier was around 91.18%. 
The researchers in [26] also conducted experiments using a 
Turkish corpus where the accuracy was 82.50%. This accuracy 
rate was shown for cepstral features applied with the SVM 
classifier. Sakar et al [36] reported a PD recognition accuracy 
of 68.45% using prosodic features in an SVM-based 
classification. They used the vowel /a/ from the Turkish 
corpus. Belhoussine drissi et al [30] reported a recognition 
accuracy of 86.84% for PD using cepstral features in an SVM-
based classification. They used a database of 38 recordings, 18 
of which were from healthy individuals and 20 from patients 
with Parkinson's disease from the Turkic corpus. References 
[37], [38], [39], and [40] extracted the spectral, and prosodic 
features used respectively Random subspace classifier, Support 
Vector Machines (SVM) as classifiers, Multimodal approach 
and LDA-NN-GA classifiers, they achieved recognition 
accuracy of PD respectively 74.17%, 82.5%, 70%, and 95%. In 
this article, the results show that the joint use of the wavelets 
and the delta delta MFCC coefficients as features brings a 
significantly important improvement to the performance of the 
Parkinson's disease diagnostic system with an accuracy of up to 
97,5%. 

IV. CONCLUSION 

The work presented in this article is part of a project to 
recognize Parkinson's disease from the voice, in an educational 
context. The objective is to detect the state of each person if 
he/she is healthy or suffering from Parkinson's disease. To 
achieve this goal, we first proposed a comprehensive and 
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efficient system for automatic recognition of people's states 
from a Spanish corpus of the five sustained vowels (/a/, /e/, /i/, 
/o/, and /u/) produced by 28 subjects with Parkinson's disease 
and 22 healthy subjects, Our process starts with the 
transformation of the speech signals by several types of DWT 
based on the approximation of the first seven scales which will 
be injected into the delta delta MFCC block to extract the 12 
coefficients at each time. These coefficients are applied in the 
classification using the decision tree classifier. 

The results show that the proposed feature is superior, 
providing a maximum accuracy of 97.5% for the database that 
contains the vowel /a/. There is a significant improvement over 
recent studies. The complete study showed that the proposed 
combination of wavelets with delta delta MFCC could be used 
to effectively detect PD. 
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