
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

A Survey of Sink Mobility Models to Avoid the
Energy-Hole Problem in Wireless Sensor Networks

Ghada Al-Mamari
Faculty of Computing and

Information Technology
Information Technology Dept.

King Abdulaziz University
Jeddah, Saudi Arabia

Fatma Bouabdallah
Faculty of Computing and

Information Technology
Information Technology Dept.

King Abdulaziz University
Jeddah, Saudi Arabia

Asma Cherif
Faculty of Computing and

Information Technology (IT dept.)
Center of Excellence in Smart

Environment Research
King Abdulaziz University

Jeddah, Saudi Arabia

Abstract—Wireless Sensor Networks (WSN) refer to networks
where the sensors are deployed in an environment to sense and
select data. WSN sensor nodes have limited power and cannot be
recharged easily. Consequently, the faster sensor nodes to deplete
their energy budget are those close to the sink as they have to relay
all data emanating from any sensor in the network. Thus, a hole of
energy around the sink is created as the sink coverage nodes have
drained their initial energy thus leading to sink unreachability.
The WSN lifetime maximization problem has always been a hot
research topic. Collecting data in WSN using a mobile sink is an
efficient approach for achieving WSN longevity and preventing
the energy hole problem. However, finding the optimal trajectory
along with its appropriate flow routing is a challenging problem
since many constraints should be considered. This paper discusses
and compares several existing WSN-lifetime-maximization using
sink mobility solutions. These solutions are mainly classified
into two types: Linear Programming and Artificial Intelligence-
based solutions. The state-of-the-art solutions are compared in
terms of network topology, sojourn points and duration, buffer
size, and overhearing. Finally, a discussion of the WSN lifetime
maximization constraints is provided to define a promising sink
mobility model.

Keywords—Energy hole problem; mobile sink; wireless sensor
networks; linear programming; artificial intelligence

I. INTRODUCTION

Now-a-days, Wireless Sensor Networks (WSN) are used
to sense and collect data from many environments that are
not easy to reach. WSN consists of: (1) a sink node, which
oversees collected data from the wireless sensor nodes for
further processing, and (2) many sensor nodes usually scattered
in a harsh environment to collect data and deliver it to the sink
to serve a given application such as environmental monitoring
[1] and military applications [2]. Wireless Sensor nodes rely
on batteries power. Once they are scattered, it is hard to replace
or recharge the batteries. Therefore, maximizing the WSN
lifetime by optimizing nodes’ energy is crucial.

The sensor nodes close to the sink are always responsible
for forwarding other distant nodes’ data to the sink. Conse-
quently, due to this burdening, they are usually the earliest
nodes that deplete their energy, while the other sensor nodes
still have a good amount of energy [3]. Furthermore, if the
sensors that are closer to the sink drain their energy budget,
they create an energy hole around the sink. Fig. 1 illustrates
the energy hole problem caused by the batteries’ depletion

Fig. 1. Wireless Sensor Network and the Energy Hole Problem

of sensor nodes within the sink coverage (nodes with a red
border). If this energy hole occurs, the sink will become
unreachable, and hence, the network is no longer operable as it
won’t be able to deliver the sensed data to the sink for further
processing. To overcome this issue, many approaches have
been proposed such as assigning sensor nodes multiple trans-
mission power, nonuniform initial energy budget distribution,
and sink mobility [4] (see in Section II). This survey focuses on
maximizing WSN by exploiting sink mobility. Thus, the sink
can move and stop at many points in the network to receive
sensed data. Besides the sink mobility, the appropriate flow
routing is defined to balance the energy consumption between
sensor nodes.

This work considers only the algorithms that apply to
delay-tolerant networks. This means that, when the sink is at
location i, only the sensor nodes within the transmission range
of the sink at this location can transmit their data, while the
others have to delay their transmissions. So, in one round the
sink has to collect data from all the nodes and returns back
to its first location in D time which is the maximum delay-
tolerant time [5].

The remainder of the survey is organized as follow: Section
II presents some proposed approaches to overcome the energy
hole problem, and the main constraints that are considered
in WSN. Section III, IV and V discuss the most cited
linear programming-based (LP-based), artificial intelligence-
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based (AI-based) and other solutions that are neither LP-
based nor AI-based for maximizing the WSN lifetime using
a single mobile sink. Moreover, a comparative study among
these existing WSN-lifetime maximization approaches will be
conducted in Section VI. Finally, in section VII, we discuss
some additional constraints that impact the WSN lifetime in
order to define an optimal mobile sink solution that maximizes
the network lifetime and other future research directions.

II. MITIGATING ENERGY HOLE PROBLEM APPROACHES

WSN nodes have limited resources (e.g., transmission
range, buffer size, and batteries). Due to the battery constraint,
the sink coverage nodes are the first nodes that deplete their
energy due to the burdening of the relying task from the
distant nodes, causing the energy hole problem. Therefore, the
energy hole problem is addressed in many research works.
Many approaches had been proposed to mitigate the energy
hole problem as shown in Fig. 2 such as: assigning sensor
nodes multiple transmission power, nonuniform initial energy
budget distribution, and sink mobility [4].

First, in the multiple transmission power approaches, to
balance the energy consumption among sensor nodes in the
WSN, two or three hops away sensors can send data to the
sink directly by passing one or two hops away sensors. As
a result, the sink coverage nodes are highly alleviated from
the relaying task, and hence the WSN lifetime is improved.
[6] and [7] proposed two different routing protocols that both
aim at allowing the sensor nodes to either send a message
to its immediate neighbors or send it directly to the sink
node. Simulation results show that both protocols achieve
longer network lifetime especially compared to the nominal
transmission range solution. Regarding the nonuniform initial
energy budget distribution approach, the sensor nodes that are
closer to the sink are given a higher amount of energy than
distant nodes. So, the sink coverage nodes will not die quickly
because they have a higher energy budget. Nevertheless, their
lifetime is always constrained as they have to forward all the
remaining nodes data messages. Finally, the third approach
considers a mobile sink that moves between the sensor nodes to
relieves the sink coverage nodes from their heavy relaying task
and aims at balancing the energy consumption among WSN
sensor nodes such that every node will drain it energy budget

Fig. 2. Proposed Approaches to Mitigate the Energy Hole Problem

smoothly and uniformly throughout the network. In our survey,
we focus on work related to exploiting the sink mobility for
distribute the energy consumption hence maximizing the WSN
lifetime.

It is worth noting that most of the reviewed papers agreed
on three main constraints that describe the behavior of sensors
and the sink in WSN, these constraints must be fulfilled to
make the WSN work correctly. The constraints for the sensor
node were defined as follows:

• The energy constraint: the total energy consumption
at a node i due to the reception and transmission of
data over the network lifetime T must not exceed its
initial energy.

• The flow conservation law between sensor nodes: for
any node, the sum of total incoming flow rates plus
the self-generated data rate must be equal to the sum
of the resulting outgoing flow rates at time t

As for the constraint related to the sink, it is defined as
follows:

• The total traffic going into a sink in a duration of time
must be equal to the amount of total generated data
from all sensor nodes in that duration.

III. LINEAR PROGRAMMING-BASED SINK MOBILITY
MODELS

After extensive research, we end up reviewing many pa-
pers that have proposed different sink mobility models using
different approaches. We classified these research works as
Linear Programming-based (LP-based), Artificial Intelligence-
based (AI-based), and other sink mobility models as shown in
Fig. 3.

In this section we will start discussing the LP-based mod-
els.

A. Exploiting a Single Mobile Sink

Many researchers proposed WSN maximization models
that used a single mobile sink to collect data from WSN sensor
nodes. These models are classified based on the decision-
making placement as centralized and distributed solutions.
They also vary based on their movement as discrete and semi-
continuous.

Y. Yun et al. [8] formulated a distributed algorithm for the
WSN-lifetime maximization problem. First, they convert the
WSN lifetime maximization problem into a network flow prob-
lem on an expanded graph. For each possible sink location,
correspond an expanded graph Gl, and a set of coverage nodes
are defined. A path links each node in Gl to the sink. For each
Gl, the sink takes T time to collect data from all sensors in that
graph. So, the problem of WSN lifetime maximization is to
maximize the number of sink tours T . The authors formulated
the main three constraints of WSN as a linear problem to
minimize the WSN maximum energy consumption. Then, they
divided the problem into sub-problems using the fractional
knapsack problem. Thus, they develop a distributed algorithm
to decide at each node whether data should be transmitted to
the sink or buffered locally. The distribution of the algorithm
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Fig. 3. Taxonomy of Reviewed Sink Mobility Models.

allows the solution to be built-in in network protocols, and
the decisions can be made at each sensor. The authors proved
the efficiency and convergence to the optimal value. Moreover,
they measured the Lyapunov drift at every iteration and proved
that the queue size is bounded from above, which is equal to
the maximum delay time D, and the average value of the total
queue size has increased along with iterations. As a result, the
increasing D will increase T ×D, which is the WSN lifetime.

On the other hand, many centralized sink mobility models
were proposed. For instance, [9] proposed a joint algorithm to
determine the sink movement and sojourn duration in a grid
network topology. The suggested algorithm states that, when
a sensor node is located at the same vertical or horizontal
line as the sink, there is a single unique path between them
which is the direct one. Otherwise, only the two routes are
considered with equal hop count revealed by the rectangle
boundary defined by a sensor i and the sink. To generate
the energy model of their algorithm, a pair of horizontal and
vertical dotted lines to enclose the nodes associated with the
column and the row of the sink in the network is defined
resulting in eight sub-areas of the grid as shown in Fig. 4:
UL (Upper Left), UR (Upper Right), HL (Horizontal Left), HR
(Horizontal Right), VA (Vertical Above), VB (Vertical Below),
LL (Lower Left), LR (Lower Right).

Given a grid topology of size L (L being equal to the
square root of the sensor nodes number), a sensor node i, its
sub-area, and position (i.e., column and row indexes (x, y)),
the energy consumption is calculated as follows:

cki



er[(x+ 1)(1 + L)− 1], if i ∈ HL

er[(L− x)(1 + L)− 1], if i ∈ HR

er[(y + 1)(1 + L)− 1], if i ∈ V A

er[(L− y)(1 + L)− 1], if i ∈ V B

er(1 + x+ y), if i ∈ UL

er(L− x+ y), if i ∈ UR

er(L+ x− y), if i ∈ LL

er(2L− x− y − 1), if i ∈ LR

er[(x+ 1)(1 + L)− 1], if i ∈ HL

er, if i = k

To find the optimal sojourn times at the grid cells that
maximize the network lifetime, this energy model is converted
to a linear programming model as follows:
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Max z =
∑
k∈N

tk

Such that
∑
k∈N

Ck
i × tk ≤ e0, K ∈ i

tk ≥ 0, K ∈ N

where the WSN lifetime denoted by z is the sum of all
sink sojourn duration tk (in seconds) at all sojourn points
k, e0 is the node’s initial energy (in Joules), and Ck

i is the
energy consumption of data transmitted in node i while the
sink sojourns at position k (in Joules/bit).

Finally, the authors implemented their solution using
LINGO [10] and provided visualization of the sink sojourn du-
ration and the nodes’ energy consumption during the network
lifetime. The results showed the sink sojourn duration follow a
pattern that is distributed between the four corners nodes of the
two-dimensional grid. This pattern achieves a balanced energy
consumption among sensor nodes, thus maximizing the WSN
lifetime. As a limitation, there is a computational overhead for
finding the optimal sojourn points and duration.

It is worth noting that the previously-mentioned solutions
propose discrete mobility models. Other works such as [11]
and [12] proposed a semi-continuous novel flow routing solu-
tion to solve the Unconstrained-Mobile Base station (U-MB)
problem, wherein the base station is continuously roaming
anywhere in the WSN environment. This proposed algorithm
is driven from the Constrained-Mobile Base station (C-MB)
problem, where the base station can only move to predefined
points. Once the authors realize and prove the conversion from
the temporal optimization problem to the location-based one,
they drive a solution for the C-MB and prove that it converges
to the (1 − ϵ) optimal solution. To do so, they convert the
infinite number of mobile base station locations to a finite
number.

First, the base station movement space is narrowed down
to the smallest enclosing disk (SED) for all WSN nodes. Then,
the SED is divided into subareas as follows: The possible min-
imum distance Dmin and maximum distance Dmax between

Fig. 4. Divided Subareas, and Data Flows Received and Transmitted at Node
i [9]

Fig. 5. WSN with Four Nodes and their Divided Sub-Areas [11].

each node i within the SED and the base station is calculated.
Then, several Hi circles are drawn with a common origin at
the sensor node i. The first circle’s radius D[1] equals to Dmin,
and the second equals to D[1] × (1 + ϵ)h (as shown in Fig.
5). Generally speaking, since D[h] = (D[1]× (1 + ϵ)h), then
the energy cost can be discretized following the geometric se-
quence with a factor of (1+ϵ) for each circle. The intersections
between all circles of all nodes are the divided subareas. Each
sub-area is presented by the fictitious cost point (FCP), which
is the cost vector that embodies the upper bound of the cost of
any point within this sub-area to any other node in the network.
These FCP are not physical points, but they are fictionally used
to prove the (1− ϵ)-optimally of the algorithm.

Finally, the C-MB solution is applied using the FCPs in
the U-MB problem. This work proved that the total sojourn
duration for the base station in each sub-area is maximizing
the WSN lifetime is greater than the C-MB optimal lifetime
and (1+ ϵ) U-MB lifetime. This guarantees that the suggested
algorithm lifetime is at least (1 + ϵ) far from the optimal
lifetime obtained by the U-MB algorithm. We believe that the
proposed solution will be better if it considers the optimal path
for the base station mobility. Indeed, choosing the shortest path
will minimize the travelling time between FCPs and the nodes’
buffer size, thus maximizing the WSN lifetime.

B. Exploiting a Mobile Relay or a Special Property

Other researchers propose to use more than one mobile
entity to collect data, which we refer to in our survey as the
mobile relay. Moreover, some works exploit a special property
(such as recharging batteries) to make the mobile entity collect
data more efficiently.

In [13], the authors proposed a framework to investigate
the wireless sensor network lifetime maximization based on
the graph model using joint discrete sink mobility and routing
problem. First, they expanded the network as two graphs: on-
graph and off-graph. On-graph is when the sink is co-located at
a sensor node location, while off-graph is when the sink is not.
The authors proved that using predefined sink sojourn points
with variant sojourn duration for the sink is a simplified version
of the Maximizing the Network Lifetime (MNL) problem.
Consequently, they formalized a linear program solution for
the MNL problem using a single mobile sink (MNL-SMS)
for the on-graph case. Then, they formulate the Primal-dual
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algorithm for the set of paths between a node i and the
sink, and the set of paths that go through the node i in the
kth sink sojourn duration after reformulating it as a path-
flow. They used an extension of the Floyd–Warshall algorithm
to compute the all-pairs shortest path. The resulted paths
are organized into clusters, each containing paths with the
same end. Then, they run a search algorithm to find the
best sink sojourn duration tk that achieves minimum energy
consumption. Consequently, they generalized the primal-dual
algorithm to the MNL problem using multiple mobile sinks.

Finally, they proved that using a sink layout schedule will
maximize the WSN lifetime longer than maximizing the WSN
lifetime by any sink with a fixed layout and referred to this
problem as the TO MOVE OR NOT TO MOVE (TMNTM)
decision problem. Moreover, they found that the mobile sink
in the on-graph case relieves the forwarding load from the co-
located sensor node and thus saves the energy consumption
of that sensor node.However, the suggested algorithm still
has a high computational complexity even though it is an
approximated version from the Floyd–Warshall algorithm.

In [14], the authors investigated the WSN lifetime achieved
using either a mobile relay or a mobile sink and their trade-
offs. The mobile relay is a sensor node with unlimited energy
(i.e., batteries can be replaced or recharged). First, the authors
compute the WSN lifetime achieved by a static routing when
the sensor nodes are all static and know the relay node location.
In this case, the optimal data routing schedule is determined
by sorting the static nodes’ lifetime in ascending order. Then,
these nodes are visited accordingly to collect data. As for
the dynamic routing, where the static nodes don’t know the
relay node’s current location to send their data, the authors
proposed a linear programming model for the data routing
while assuming that the relay node is co-located with a static
node. The author proved that using the mobile sink will
maximize the network lifetime better than the relay node. But,
sometimes, it might not always be possible for the sink to
be mobile as in hostile terrains. In this case, using a mobile
relay will be efficient. Consequently, using a mobile relay
along with a mobile sink will maximize the WSN lifetime
four times compared to using a static sink. For achieving this,
the mobile relay has to stay two-hop away from the sink.
The authors constructed a joint mobility and routing algorithm.
When the sink modifies its position, it will select a new node
as an aggregation node marked to send its new position to
all sensor nodes in the network. Nodes in the one-hop radius
of the sink (P1) send data to the sink directly. Those outside
P1 require to know the location of the mobile relay to send
data to OM line, O being the position of the sink and M
that of the mobile relay. As such, this data will be sent to
the aggregation node through OM , then to the sink, which
is called an Aggregation Routing Algorithm (ARA). Finally,
the authors showed through simulation how using a mobile
relay with a mobile sink maximizes the WSN lifetime. This
approach is efficient because it applies to large-scale networks
with a high density of nodes. However, since two mobile
entities are used (a mobile sink and a mobile relay), building
a new routing incurs more communication and computation
overhead since the routing changes when their positions are
changing.

Xie L et al. [15] step forward by proposing a mathematical

model to move the Wireless Charging Vehicle (WCV) which is
used to both collecting data and recharging the sensor nodes.
The main goal of designing their model is to minimize the
entire system’s energy consumption. This goal is reached by
the following: 1) minimizing the energy used to move the
WCV along the predefined path, which is equivalent to the
maximization of the ratio of the WCV vacation time to its
travelling time; and 2) minimizing the energy rate used to
charge the sensor nodes, which will vary depending on each
node and its distance to the WCV. Thus, to achieve these two
goals, the authors proposed a mobile WCV travel path that
minimizes the WCV energy while ensuring data collection
from nodes and recharging all sensor nodes in a balanced
manner. Beside the three main constraints in WSN they defined
their own: time constraint and energy criteria constraint. The
time constraint imposes that the WCV total travelling time
which depends on the path distance and the velocity of WCV
plus the total stopping time must be less than the WCV
vacation time. As for the energy criteria constraint, it dictates
to ensure that each sensor node energy which equals Emax at
the beginning of the network (t = 0) must be fully charged
back to Emax at any time of the renewable cycle before
its end. Based on these constraints, the authors developed
a time-dependent optimization problem. However, since the
time-dependent problem is an NP-hard problem, they solved
it by considering a special case of the problem that depends
on the WCV’s location (space-dependent) instead of the time
dependency and they replaced each time variable by a space
variable. Then, they proved that the time-dependent solution
is equal to the space-dependent solution by showing that for
any value achieved by a time-dependent feasible solution (in a
time t), there is a same value achieved by the space-dependent
feasible solution (in location p). That being said, the space-
dependent problem has an infinite number of stop points in the
WCV travelling path. So, to find the near-optimal solution, they
discretize the path into a finite number of segments and assign
a logical point to each segment. Then, the upper bound of each
segment is determined by calculating the best case (where a
node has a minimum energy consumption and is charged by
the maximum energy). On the other hand, the lower bound
corresponds to the worst-case (i.e., a node has a maximum
energy consumption and is charged by the minimum energy).
Afterwards, the gap between these two bounds is calculated;
if it is not small enough, then this segment is discretized
until reaching a gap within (1− ϵ) between upper bound and
lower bound. The authors proved that their algorithm finds the
threshold between collecting data and recharging the sensors,
and of course, this makes the WSN work continuously. A
summary of all these LP models is provided in Table I

IV. ARTIFICIAL INTELLIGENCE-BASED SINK MOBILITY
MODELS

In this section we will present several artificial intelligence
solutions proposed to solve the energy-hole problem. Some of
them are applied to the cluster-based network model while the
others consider a non-cluster based architecture.

A. Non-Cluster based Models

Anwit et al. [16] proposed a variable-length chromosome
genetic algorithm to find the optimal set of sink sojourn
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TABLE I. SUMMARY OF LP-BASED SOLUTIONS

Ref No. Key Concept Advantages Limitations

With Exploiting A Single Mobile Sink

[8] Distributed sink mobility algorithm, Ex-
ecute locally, in parallel at each node.

It is a distributed algorithm, that means
lower computation overhead

[9] A joint algorithm to defined sink move-
ment, and sink sojourn duration.

Balance the energy consumption Overhead of computation and commu-
nication is high

[11] Continuous sink mobility solution by
deriving a solution for (U-MB) problem
from the (C-MB) problem solution. (Shi
Y, 2012)

Near to the (1 − ϵ) optimal solution It has a polynomial complexity

With Exploiting A Mobile Relay or A Special Property

[13] A primal-dual algorithm that general-
ized the single mobile sink solution to
the multiple mobile sink problem. (Luo
J, 2010)

The algorithm gives jointly mobility and
routing solution for lifetime maximiza-
tion, and it applies to many network
topologies.

Has a computational complexity and it
is not suitable for line network

[14] Maximizing WSN lifetime using a mo-
bile relay by determining his optimal
mobility area to collect data. (Wang W,
2005)

It is appropriate to the large-scale net-
works that have a high density of nodes

Has a high overhead of computation
and communication since there are two
mobile entities.

[15] Moving wireless charging vehicle
(WCV) that used to recharge nodes and
collect data from them, by developing
a space-dependent algorithm.

They used WCV to recharge sensor
nodes while trying to maximize the
WSN lifetime.

The path must be predefined, the algo-
rithm only found the sojourn points that
maximize the WSN lifetime.

points and their locations. They applied their algorithm as
follows: First, they start by generating a variable number of
chromosomes from size (0.2× the number of sensor nodes in
the WSN (n) to size (0.5 × n). Each chromosome consists
of a sequence of IDs numbers of random sojourn points’
locations. After that, for each chromosome, they generate a
population with fixed-sized. To evaluate these chromosomes,
a balance between two factors is necessary. The first factor is
the chromosome length which equals the number of sojourn
points IDs in this chromosome. The second factor is the mobile
sink path length, which is the total distance that the mobile sink
cross when it moves through all these sojourn points. A high
number of sojourn points may produce a longer path while
there is a shorter path covering the same nodes. However, a
small number of sojourn points may result in a longer path that
uncovers some sensor nodes. So, to ensure the compromise
between these two factors, a Fitness Function is used to filter
all the unfit chromosomes that do not satisfy the threshold
between making the sink path short but covering all nodes.
the solution proceeds as follows:

1) One chromosome from two different populations is
selected using the roulette wheel selection algorithm.

2) After that, the multi-points crossover technique is
applied on these two selected chromosomes based on
a predefined probability.

3) Then, the mutation operation is performed to the
child chromosomes that were generated from the
crossover operation. In the mutation operation, the
gene position value to be changed is also selected
using a predefined probability.

At the end of this cycle, the children’s chromosomes are
compared to their parents’ chromosomes. If they are better,
they replace them in the new population. Otherwise, they
are rejected. This cycle repeats until a predefined termination
condition is reached. Finally, the simulation results showed that
the proposed algorithm outperforms the traditional Travel Sale-
man Problem (TSP) algorithm by reducing the path length and

the data collection time. However, the authors did not consider
the energy consumption at each node and its impact on the path
selection, which is the main goal of the sink mobility research.

In [17], a data collection strategy is proposed using a
mobile sink that moves based on an ant colony optimization
algorithm. First, the authors introduce a method to select
the rendezvous nodes that can communicate directly with the
mobile sink. These nodes are selected based on the entropy
weight method of many indicators (e.g., the relative residual
energy and density of the nodes) to select the optimal ac-
cess path for the mobile sink. This optimal solution should
minimize the WSN energy consumption and tolerate some
delay to compensate for energy consumption. The simulation
of the proposed algorithm showed the energy consumption is
balanced between all sensor nodes. Nevertheless, the main
limitation of this research is that the solution focuses on
minimizing the whole network residual energy amount instead
of maximizing the network lifetime.

Zhu et al. [18] proposed a WSN scheme inspired by the
honey-comb structure to collect data from the WSN sensor
nodes. First, they assumed that the first position of the sink is
the WSN’s centre point. Then, they divide the network into a
number of hexagons, each hexagon is called a partition. Each
partition must contain at least one sensor node and its side
length (a) must be bigger than or equal to the power two of the
sensor node’s sensing radius (r2). Besides, they established the
Cartesian coordinate system in the network with an origin O
located at the WSN’s centre point. After the network partition,
they gave each hexagon a partition ID and a direction value.
Like the Cartesian coordinate, the partition ID is represented by
two integers (m,n), where m is increasing along the x−axis
and n is increasing along the y − axis progressively. It is
worth noting that n increases by two for the vertical partitions
and by 1 for the non-vertical partitions. As for the direction,
each partition’s direction value is determined based on the sink
position. The sink position is at the Cartesian coordinate centre
point (0,0) and its direction value is 0. As the suggested scheme
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Fig. 6. Direction Value for Each Partition [18]

consists of many hexagons, each edge of the sink’s hexagon
is represented by a number n from 1 to 6. When the hexagon
partition is located on the (nth) side direction, the direction
value of these partitions is equal to the (nth) number. The
remaining partitions have a combined direction value, i.e. the
values of the surrounding partitions (e.g. the partition between
partitions 1 and 2 has the value 12 as shown in Fig. 6).

Regarding the sensor nodes, they will be assigned a com-
bined addressing values containing (i) partition ID, (ii) the
direction value, and (iii) the node ID which is a unique number
used to distinguish sensor nodes. Once every sensor is assigned
to a given partition, then there are three aspects of this data-
gathering scheme: 1) data forwarding between partitions, 2)
sink moving strategy and 3) updating the direction value. For
the data forwarding, the node will forward its data to the
sink partition through its direction value. For the sink moving
strategy, first of all, the sink has a counter to count the number
of received packets; if it reaches a threshold, then the sink will
move and change its location. There are three strategies for
sink movement:

1) The random movement (RM), where the sink selects
one of its partition’s neighbours randomly.

2) The data volume-based greedy movement (DGM),
where the sink has counters on each hexagon side,
used to count the number of the received data packets,
then the sink chooses the side with the highest counter
to move to.

3) The energy-based greedy movement (EGM), where
the sink employs an agent node for each hexagon side
to calculate the average residual energy for sensor
nodes on that side, then the sink will choose to move
to the side with the highest residual energy.

4) For the direction value update, the sink moves either
vertically (to sides numbered by 1 or 4) or non
vertically (to sides numbered by 2, 3, 5, or 6). When
the sink moves, it discloses its new location to some
partitions. Indeed, there is no need to broadcast the
new position to all sensors since the many partitions
will still locate at the same partition regarding the
sink position, thus achieving energy efficiency (see
Fig. 7).

Fig. 7. Updating Directional Value for Partitions in Sink Vertical Movement
Case. [18]

Finally, the author simulated their three proposed schemes
using MATLAB, then they compared them based on 1) sensor
nodes density, 2) ratio of the source nodes in WSN, and
3) the hexagon side length. The main performance criteria
are the average energy consumption, the maintenance cost,
packet collected, and packet loss rate. They found that their
HSDG scheme with DGM for the sink (HSDG-DGM) is
outperforming other data gathering schemes HSDG-EGM and
HSDG-RM in the energy-efficiency with low data loss. As
an advantage, this algorithm is energy efficient since the
broadcast and update of the sink’s new location is limited to a
given direction partition. Moreover, it avoids the routing void.
Indeed, when there is no sensor node to forward the data to in
a partition, the forwarding scheme states that the data packet
is transmitted to another neighbour partition.

Gharaei et al. [19] proposed Energy-Efficient Mobile sink
Sojourn Location Optimization (EMSLO) algorithm. Their
algorithm consists of two phases: 1) Evaluating sensor nodes
residual energy, and 2) Optimizing sink sojourn points. First,
to evaluate the sensor nodes in the network, the remaining
alive time for each sensor is calculated by dividing the residual
energy by the energy consumption rate. After that, the sensor
with the minimum lifetime is chosen to be the Critical Node
(CN). Next, all nodes are given a weight calculated by dividing
the CN lifetime by its lifetime. Accordingly, the CN is the start
point of the sink sojourn location, to find the next point, the
genetic algorithm is used to select the sensor nodes with the
minimum cost. This cost is calculated by a function based
on two factors: 1) The variance of residual energy of sensor
nods. 2) each sensor weight that has been calculated before
depending on CN lifetime. Finally, the authors simulate their
scheme and found that their model decreases the variance of
sensor residual energy, which means a good distribution of
energy consumption. Moreover, they compare their model to
EPMS [20] and DCHS [21] in terms of WSN lifetime, and
found that their model EMSLO maximizes the WSN lifetime
more than others. Moreover, they compare their algorithm to
CMS2TO [22] and CM2SV2 [23] to prove that optimizing
the sink sojourn location is better than optimizing the sojourn
duration or the speed of the sink, and the result emphasizes
that.
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B. Cluster based Models

Lu et al. [24] and Jong et al. [25] both inspired from
bees and queen honeybee behaviour respectively. First, in [24]
they proposed a path optimization strategy for the mobile
sink in WSNs using an artificial bee colony algorithm. They
improve the data gathering ability by obtaining the optimal
trajectory design of the mobile sink. First of all, they cluster
the nodes in the grid and select some nodes as cluster heads by
the traditional method LEACH [26]. These cluster heads are
considered as the rendezvous points of the mobile sink. Then,
they transform the WSN energy consumption problem into a
minimization of the total hops between all rendezvous points
and the sensor nodes by establishing the constraints’ criterion
that makes the WSN lifetime maximized. Moreover, they
optimize the artificial bee colony (ABC) algorithm to solve
this problem. As the ABC algorithm, where employed bees
are randomly selected to search for the initial food sources,
the authors proposed a formula to select the initial rendezvous
points. After selecting the initial individual, they compare
their finesses to a newly generated individual to determine
which one is better. If the new individual is better, then they
replace the old with it, if not then increase the cumulative
factor by one. This cumulative factor is used to indicate the
quality of this individual, the more quality they have, the
higher its probability to be selected. Then the food source
or the rendezvous points will be selected using the roulette
method based on their probabilities. Besides, the authors used
the Cauchy mutation detection operator based on the current
solution. By using this operator, the feasible solution diversity
is increased, and the randomness of the solution is avoided.
Moreover, the convergence to the optimal solution is achieved,
which will increase the accuracy of the solution.

Jong et al. [25] proposed a scheme to maximize the WSN
lifetime inspired by the migration process of the Queen called a
QHBM algorithm. First of all, based on the nature of the Queen
migration such as travel for food, depending on scout bees to
look for new food sources or places, follow the scout bees with
high sign (excitement), stop to rest at several points, and repeat
all of these tills decide where to build its hive. By applying
this scenario in the network, let the Queen be a sink. For the
sensor nodes, they are clustered randomly. Each cluster has
some CH sensor nodes selected randomly too. These CH nodes
are responsible for forwarding the cluster sensor nodes data to
the sink, if their residual energy becomes below a threshold,
they will send an alert to the sink to start its journey and
leave this cluster, so this cluster could replace the weak CH
nodes and assign the nodes with the highest residual energy
as the new CH nodes. In the proposed algorithm, these CH
nodes will take place of bee scouts, they will lead the sink to
come over. To mimic the honeybee migration, by knowing that
the Queen honeybee travel to one of the 8 cardinal directions
poles, and between every two poles, there is a sector containing
bees scouts. Moreover, let the residual energy of the CH nodes
become the sign (excitement) of the scout bees. Consequently,
the proposed algorithm steps will be as follows:

1) Set the variables: sink initial position, sink commu-
nication radius, the confidence factor.

2) Assign the scouts from the CH nodes.
3) Group the CH nodes located in the same sector.
4) The sink calculates the average residual energy of the

CH nodes in each sector.
5) Then the sink calculates each sector probability, After

that, the sink selects the sector that has the highest
probability, which means that this sector has the CH
nodes with the highest residual energy.

6) After selecting the sector, the sink compares the
probability of the two adjacent sectors of the selecting
one, then selects the pole in the edge of the sector
with the highest probability as a destination.

7) Finally, the sink start its journey after receives an alert
from the CH nodes.

The authors proved that their proposed algorithm is maxi-
mizing the WSN lifetime compared to a static sink since the
re-position of the sink is alleviating the energy-depletion on
the same nodes. Moreover, QHBM algorithm is alleviating the
routing overhead since the sink only communicates with the
CH nodes, so only these nodes require the update of the sink
position. Additionally, the QHBM provides a balanced energy
consumption since there is a scanning phase, where the sink
looks for the CH nodes that have the highest residual energy to
travel to. As a limitation, the authors did not find the optimal
value of the sink communication radius, and the confidence
factor is still calculated randomly.

Kumar et al. [27] proposed an Energy-Aware sink Mobility
model (EASM). First of all, they proposed to logically divide
the grid into a number of sub-grids, each sub-grid has an
ID number, and this ID number is embedded also in each
sensor node ID that belongs to it. After that, to determine
the movement direction of the sink, the sink first calculates
the average residual energy of its one-hop neighbors at each
sub-grid. Then, it categories these sub-grids into 4 levels
of energy called: Adequate Level, Operation Level, Warning
Level and Danger Level. If the energy level of the sojourn
grid reaches the warning or danger level, then the sink has to
move by calculating each sub-grid’s average residual energy
then selecting the grid with the maximum residual energy level
as a destination. After the sink reaches the new sub-grid, it
applies the Breadth-First Search (BFS) technique to generate
a spanning tree that connects all sensors in that sub-grid to the
sink with the shortest path. Finally, the authors simulate their
algorithm and compare it to a static sink and Energy-Aware
Sink Relocated model in terms of the number of alive sensors,
average residual energy, and amount of collected data. They
found that their algorithm EASM is outperforming the others.

Wang et al. [28] proposed a path planning model for the
mobile sink to minimize the energy consumption of the sensor
nodes and make the sink travel path as short as possible.
Namely, to create this path, a number of Rendezvous Points
(RP) were selected after four phases: 1) tree formation, 2) RP
candidate, 3) RP selecting and 4) Finding the shortest path.
The tree formation is done simply by applying the spanning
tree algorithm. While for the RP candidate, they follow the
bottom-up manner and check the buffer remaining space for
each sensor while considering the amount of data that comes
from its child sensors. If a node with a full buffer capacity
is found, then this node will candidate to be one of the final
RP. After that, each candidate RP with its sub-tree will be
evaluated by Depth-First Search (DFS) based on hop count
and distance. Finally, by connecting these RP and finding the
TSP, the travel path of the mobile sink is created. Moreover,
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the authors proposed an enhancement of their model to further
reduce the travel path length. Their enhancement is done by
finding better RP by replacing it or combining two of them
depending on some calculation of its RP and RP-1 and RP+1.

Finally, the authors evaluate their model in terms of the
dropped packet, energy consumption, computational time and
buffer exploitation. They proved that their model exploits the
RP buffer better than other models (CB-E [29] and WRP [30]).
Consequently, the number of dropped packets is minimized.
Moreover, they proved that their model is energy and compu-
tationally efficient.

Table II summarizes the AI-based solutions. It provides the
key concept, advantages and disadvantages of each work.

V. OTHER SINK MOBILITY MODELS

Some of the proposed models are dependent on the sinks
statistical and operational decisions made for moving. Shah
et al. [31] proposed a model using Mobile Ubiquitous LAN
Extensions (MULEs). MULEs also are not suitable for a real-
time data system. First of all, the authors consider that the net-
work consists of (i) several Access Points, which are uniformly
distributed, (ii) several sensor nodes, randomly distributed, and
(iii) several MULEs. Additionally, they assumed that:

• The MULEs move with 0.25 probability to any of the
four main directions of the grid (North, South, East,
West) with every global clock trick.

• The MULEs can’t communicate or exchange data with
other sensor nodes or access points unless they are co-
located at the same grid points.

• Due to the limitation in MULEs’ and sensor nodes’
buffer size, any amount of data transferred to them
will be dropped, if it is full.

They relied on Markov chains and its transition probabili-
ties to estimate the average values of the inter-arrival time of
the MULE to a sensor, the number of steps that the MULE
takes to complete one round, and the average number of data
amount that MULE picks up and transfer to the AP. After
that, to measure the performance, they consider the following
criteria: Data Success Rate and Buffer Size (keep it as small
as possible) From the performance result, the authors found
that:

• The sensor buffer size is increasing linearly with the
grid size.

• Data latency at sensor nodes is increasing linearly with
the sensor nodes’ buffer size.

• MULEs buffer size is increasing with the square of
the grid size.

• Data latency to reach the access point is increasing
linearly with the grid size.

As a result, if the grid size increases, it is required to
use multiple MULEs and multiple access points, to achieve
a high success data rate while keeping an appropriate buffer
size. Indeed, using a large buffer size will lead to energy
consumption, which is against the goal of maximizing the

WSN lifetime. As benefits of using MULEs, it can increase
scalability, flexibility, and robustness for the WSN. But it
may have some drawbacks because of its unpredictable and
constrained movement. Indeed, sometimes the MULE is unable
to reach the sensor nodes due to the change in terrain that
causes limitations in the MULEs movement.

Gosh et al. [32] proposed a new sink mobility approach
based on the sensors request. First of all, they assume that
the sink has a limited queue with size n. When a sensor
node’s buffer becomes near to be full, it sends a request to
the sink to move and collect data directly through a single
hop. On the sink side, the sink save these request on its queue
and serve them based on two scheduling schemes: 1) First
Come First Serve (FCFS), 2) Nearest Job Next (NJN). The
main contribution of the authors is joining new schemes to
the previous two. Thus, additionally there will be 3) Earliest
Deadline First-First Come First Serve (EDF-FCFS), and 4)
Earliest Deadline First-Nearest Job Next (EDF-NJN).

First, it is important to point out that each request has to
be served before its deadline. Moreover, each request has a
service time, which is the time taken to completely transmit
the data from the sensor’s buffer to the sink. There is also a
movement time, which is the time taken by the sink when it
moves between the sensors based on the serving queue order.
Due to the different sensor locations and the nodes’ geometric
distribution, the order of serving the sensors’ requests is a
critical thing, since the sink moving time will be considered.
Accordingly, the authors first apply the first two schemes:
FCFS and NJN, if all requests in the queue will be served
before their deadlines, then this queue order is good and there
is no need to change it. Else, if there is a request i that
will miss its deadline, the two newly proposed approaches
will be applied: EDF-FCFS and EDF-NJN. According to these
approaches, if there is a request i that will miss its deadline,
then this request will reverse the order with the request (i−1),
if it is still, then reverses it with (i− 2), if it is still, then this
request will not be served and dropped from the queue. Finally,
the author evaluated the four schemes and compared it based
on the number of not-served request and the response time.
They proved that their adapted schemes (EDF-FCFS and EDF-
NJN) have outperformed the originals (FCFS and NJN) with
less number of not-served requests and faster responses. But,
still, these schemes are not suitable for large scale networks.

Table III summarizes the previously-mentioned solutions.

VI. DISCUSSION

We compare in Table. IV the research works that were
discussed earlier are based on the following criteria:

• Network Topology: many types of networks have been
investigated including (i) grid (regular) network, (ii)
random network, and (iii) scale-free network. The net-
work topology of the reviewed papers varies between
grid and random. Some of the random typologies are
clustered by (i.e. See SectionIV-B)

• Sink Sojourn Points: sojourn points are points where
the sink stops to collect data from the sensor nodes.
Most of the reviewed papers under LP models are
using predefined sojourn points while the AI-based
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TABLE II. SUMMARY OF AI-BASED SOLUTIONS

Ref No. Key Concept Advantages Limitations

Non-Cluster Based Models

[16] A genetic algorithm to find the optimal
number of sink sojourn points and their
locations

It is used to find the shortest path The energy consumption at each node is
not considered, which of course impact
on the path selection.

[17] A data collection strategy Using ant
colony optimization algorithm to move
the sink.

It is used to find the best path between
the sojourn points.

It minimizes the whole network residual
energy consumption, instead of maxi-
mizing the network lifetime.

[18] Sink mobile through a WSN scheme
inspired by the honey-comb for data
collection

Energy efficient, and avoiding the rout-
ing avoid

[19] Use genetic algorithm to select sink
sojourn points after calculating the cost
for each sensor nodes

Easy to implement, applicable for high
density WSN.

Cluster Based Models

[24] Moving the sink using Bee colony opti-
mization algorithm.

Avoid the randomness of the solution
Using the Cauchy mutation detection

[25] QHBM algorithm inspired by the migra-
tion process of the Queen Honey Bee

Due to the scanning phase in the al-
gorithm, it provides a balancing energy
consumption

Many variables need to be restricted,
such as the confidence factor which is
calculated randomly.

[27] First, divided the grid to sub grids, then
calculate the average residual energy
and determine the energy level for each
sub-grid. After that if the sojourn sub-
grid energy level decreased to 4th, the
sink mobile to the sub grid with the
highest energy level.

Efficient for high density WSN.

[28] Applying the spanning tree, then go
bottom-up and check the buffer to find
sojourn points.

It ensures transmission and exploits the
whole amount of buffers.

TABLE III. SUMMARY OF OTHER SINK MOBILITY MODELS SOLUTIONS

Ref No. Key Concept Advantages Limitations

[31] MULEs mobility routing, Based on the
Markov chains transition probabilities.

Easy to implement The MULE is unpredictably and phys-
ically moved so it is affected by the
changes in its environment.

[32] Sink Mobility based on two sachems of
serving sensor request EDF-FCFS and
EDF-NJN.

Easy to implement Many packet will be loose because the
sink has a limited queue size, and the
request has a deadline. Hence, it is not
scalable.

solutions define the sojourn points randomly (e.g.,
[16]), actively (e.g., [18]), or based on sensor query
(e.g., [32]).

• Sink Sojourn Duration: it refers to the time the sink
takes at a sojourn point to complete collecting data
from the sensor nodes. The WSN lifetime is actually
the sum of all sink sojourn duration. So it is important
to find the trade-off between maximizing the sojourn
duration while taking into account the delay-tolerance
time.

• Buffer size: it is the size of the sensors’ temporary
storage that is used to store data until the sink comes.
All reviewed papers assume that the buffer size is
infinite, though it id an unrealistic assumption.

• Overhearing: in WSN, the nodes are always listening
to the traffic in their transmission range, hence con-
sume an additional amount of energy. However, none
of the reviewed papers has considered the overhearing
while it is an important source of energy consumption
that should be taken into account in WSN.

VII. FUTURE RESEARCH DIRECTIONS

We provide in the following some insights on possible
future research directions to pave the way towards building
more realistic and robust solutions for the energy hole problem.

A. Considering Additional Constraints

Based on the aforementioned comparative analysis, we
deduce that two constraints are always considered in all
WSN-lifetime-maximization solutions namely (i) the energy
constraint and (ii) the flow conservation law. Consequently,
it is highly recommended to consider more constraints that
impact the WSN lifetime such as:

• Buffer Size: The buffer size is an important criterion
as it constrains the senor capacity to store received
and generated data packets which has an impacts
on the sink sojourn duration at each sojourn point.
Besides, a higher buffer size leads to a higher energy
consumption. So, finding the optimal sojourn dura-
tion that takes into account the size of the buffers
that avoid data rejection is one of the main goals
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TABLE IV. COMPARISON OF SINK MOBILITY MODELS

Taxonomy Reference No. Network Topology Sojourn
Points

Sojourn
Duration

Buffer
Size

Overhearing

LP

[8] Random ✓ X X X
[9] Grid ✓ ✓ X X
[11] Random ✓ ✓ X X
[13] Grid ✓ ✓ X X
[14] Random ✓ ✓ X X
[15] Random ✓ X X X

AI

[16] Random ✓ X X X
[17] Random ✓ X X X
[18] Random ✓ ✓ X X
[19] Random ✓ X X X
[24] Grid ✓ X X X
[25] Random ✓ ✓ X X
[27] Random ✓ ✓ X X
[28] Random ✓ X X X

OM [31] Grid ✓ X X X
[32] Random ✓ ✓ X X

for WSN-lifetime-maximization [33] [31]. However,
this constraint is generally ignored when solving the
energy hole problem.

• Overhearing Energy Consumption: Since we deal with
wireless sensor networks, ignoring the overhearing
is unrealistic and gives flawed results for the WSN
lifetime as it inevitably consumes energy. However,
none of the reviewed papers considers overhearing.
Thus, it is important to devise new models that take it
into account when searching for the optimal sojourn
duration for the sink using techniques that reduce the
overhearing as in [34].

• Link Capacity: Similarly to the buffer size, the link
capacity constrains the number of received and trans-
mitted data packets, which consequently impact the
energy consumption since it is calculated per data unit.
As such, new models that consider this constraint are
required in the field.

B. Reducing Latency

Even though the reviewed models are applicable for delay-
tolerant WSN, reducing latency is important to avoid the data
loss due to the buffer size limitation. Many approaches have
been suggested to reduce the latency by using multiple mobile
sinks that cover the WSN simultaneously, which allows to
collect data faster. However, this solution has a higher cost
which is undesirable in WSN [35].

Another alternative is to use a powerful mobile sink that
can move between sensor nodes at a higher velocity. Similarly
to the previous approach, this will be more efficient than a
single sink but would incur higher costs. Meanwhile, as the
WSN is usually used in harsh environments, the moving in a
high speed can be difficult to achieve.

Consequently, more research is required to find the trade-
off between the efficiency and the total cost of the proposed
solution while taking into account the geographical character-
istic of the environment and the buffer size constraint.

C. Utilizing Additional Energy Resources

One of the approaches to prolong the WSN lifetime is
to recharge sensors’ batteries. Even in a harsh environment,

there are many ways to recharge sensors such as using the
solar power, microwave energy transfer, radio-frequency en-
ergy transfer, and wireless charging stations where the mobile
sink could be used as a recharging station [15]. Joint data
gathering using mobile sink and sensors’ battery recharging
is a promising solution to optimize the WSN lifetime [36]
[37][38][39]. Even though lots of these approaches had been
proposed, few works combine both techniques. A possible
future research direction would be to investigate the strengths
of both techniques (i.e., maximizing the WSN lifetime and
energy recharging) to design a promising WSN lifetime opti-
mization solution.

VIII. CONCLUSION

In this survey, numerous sink mobility models were dis-
cussed in the literature review to mitigate the WSN en-
ergy hole problem and maximize the WSN lifetime. These
sink mobility models were classified into three categories:
Linear programming-based solutions (LP-based), Artificial
Intelligence-based solutions (AI-based), and other computation
models. Regarding the LP-based models, four solutions used
only one mobile sink, while the rest used either an additional
entity or a special property (e.g., recharging sensor nodes).
As for the AI-based models, they have two categories: cluster
based models (i.e., sensors are organized into clusters, where
each cluster has a cluster head), and a non-cluster based
models. Finally, the last section discusses additional solutions
that neither used LP nor AI-based.

All the solutions are discussed in detail and compared ac-
cording to a set of criteria. The comparative analysis shows that
most of the research ignored important constraints that fully
impact WSN lifetime, namely, limited buffer size, overhearing,
and link capacity. Finally, future research directions were
suggested to develop a more comprehensive WSN lifetime
maximization using a mobile sink.
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