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Abstract—Overlapping Snowball Chain is an extension to
Snowball Chain, which is based on the concept of community
formation in line to the snowball chaining process. The inspiration
behind this approach is from the snowball sampling process,
wherein a snowball grows to form chain of nodes, leading to
the formation of mutually exclusive communities in Snowball
Chain. In the current work, the nodes are allowed to be shared
among different snowball chains in a graph, leading to the
formation of overlapping communities. Unlike its predecessor
Snowball Chain, the proposed technique does not require the
use of any hyper-parameter which is often difficult to tune for
most of the existing methods. The proposed algorithm works in
two phases, where overlapping chains are formed in the first
phase, and then they are combined using a similarity-based
criteria in the second phase. The communities identified at the
end of the second phase are evaluated using different measures,
including modularity, overlapping NMI and running time over
both real-world and synthetic benchmark datasets. The proposed
Overlapping Snowball Chain method is also compared with eleven
state-of-the-art community detection methods.
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I. INTRODUCTION

In recent years, there has been a tremendous growth in
the study of linked data in the form of networks, such as
Internet, World Wide Web, and social networks. The relation-
ships among the entities existing in these networks provide
rich insights pertaining to various dynamic interactions and
might prove to be beneficial in various applications [1]. To
analyse and study these networks, graph is used as a data
structure, which consists of a set of nodes joined by links
or edges that can be labelled/unlabelled, directed/undirected,
or signed/unsigned. The representation of an online social
network is termed as social graph, which provides a good
visualization and eases the interpretation of the network.

One of the emerging research areas in social network
analysis is community detection, which digs deep into the
social graph and mines the most dense subgraphs that are
highly cohesive in nature. A community in a network is
represented by a set of nodes with high density links among
themselves, but low-density links among inter-community con-
nections [2]. These subgraphs are called communities or mod-
ules. Community detection in a social graph mainly involves
splitting it into its constituent functional groups. The task has

largely been addressed in a distinct community context wherein
the communities are considered to be mutually exclusive.
However, in case of real-world networks, community struc-
tures can be overlapping wherein a node belongs to multiple
communities. A density-based approach called CMiner in [3],
aims to find similarity among nodes and defines a distance
function. Overlapping communities are identified based on this
distance function. Another work in [4], detects overlapping
communities along with their evolution, called as OCTracker.
A similar work in [5], identifies hierarchical communities
called HOCTracker which works for dynamic social networks.

The work in this paper aims to address this issue by
proposing a novel overlapping community detection algorithm
which extends the existing SbChain algorithm. The proposed
method, named OvSbChain, starts with identification of the
seed or core nodes in a social graph based on a node parameter,
called normalized degree. The nodes in the entire social graph
are ranked on this parameter and processed in a non-increasing
order of their ranks. The method works in two phases. In
the first phase, every node is paired with its best suited
neighbor in accordance to a score value in each iteration. After
several iterations, chains of nodes are formed that may share
nodes with each other, i.e., there could be overlapping nodes
among different chains. Therefore, the proposed technique is
called overlapping snowball chains. The second phase tries to
combine chains based on a similarity criteria as discussed in
Section III, which finally leads to the formation of overlapping
communities. Therefore, the technique focuses on resolving the
problem in hand, i.e., community detection using an uncom-
plicated and elementary strategy. The major enhancements in
this work can be summarized as follows:

1) OvSbChain introduces overlapping communities un-
like SbChain, which produces only crisp communi-
ties.

2) There is no hyper-parameter tuning required in OvS-
bChain, hence, it always produces the same set of
communities every time it is run.

3) SbChain uses a maximum common neighbor criteria
for finding its best neighbor. Whereas, OvSbChain
uses normalized degree function to find its best
neighbor. Also, both the techniques differ in the way
they find the seed nodes. This is discussed in detail
in Section III.

4) The results are evaluated and compared based on
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Nicosia modularity measure [6], two types of ONMI
[7], [8] and their running time, as discussed in Section
IV.

The proposed OvSbChain method is compared with
eleven state-of-the-art community detection methods, including
CFinder [9], LAIS [10], CONGA [11], PEACOCK [11],
COPRA [12], SLPA [13], Demon [14], BIGCLAM [15],
MULTICOM [16], Lemon [17] and ANGEL [18]. The results
from all these methods are evaluated on different parameters
including modularity, ONMI and running time, as discussed
in Section IV.

The rest of the paper is organized as follows. Section II
presents a brief review of the existing literatures on overlapping
community detection. Section III presents the preliminary
concepts, along with the proposed approach. This section
also presents the functional details of the OvSbChain method.
Section IV describes the details about the datasets, evaluation
parameters, experimental settings, and analysis of the results.
Section V concludes the paper and finally, Section VI provides
future directions of research.

II. RELATED WORK

This section presents a brief description of the state-of-the-
art in the area of overlapping community detection. A review of
the current community detection methods is described in [19].
It segregates the detection methods into probability-based and
deep learning-based. The classical methods use probability-
based models for community identification. Whereas, complex
networks are generally converted to lower dimensional data
using deep learning methods so as to ease the process. A
few other works like [20], [21], [22], discuss various com-
munity detection algorithms based on their weakness and
strengths, performance of algorithm and other domains. We
mainly discusses all the traditional approaches for overlapping
community detection and compare them with OvSbChain in
Section IV.

CFinder is an overlapping community detection technique
that makes use of the Clique Percolation Method (CPM) [23]
to identify the k-cliques in a network. A k-clique is a complete
subgraph consisting of k nodes. This method finds dense
groups of overlapping nodes in a network [9].

LAIS [10] is an algorithm that combines two functions
List Aggregate (LA) and Improved Iterative Scan (IS2). The
LA procedure initializes the clusters, and the IS2 procedure
improves upon these set of clusters in an iterative manner. The
IS procedure starts with a seed node and processes clusters by
expanding or shrinking them according to a metric value, and
IS2 improves upon this by focussing on nodes within a cluster
and its neighboring nodes, instead of considering the entire
graph. The overall algorithm detects overlapping community
in a network.

CONGA (Cluster-Overlap Newman Girvan Algorithm)
[11] is an overlapping community detection algorithm that uses
the concept of split-betweenness, i.e., it counts the shortest
paths that exist between all pairs of nodes in the network. It
keeps removing edges with high betweenness, and thus, keeps
splitting the network into singleton clusters. The partition
with the desired number of clusters is picked up. However, it
requires number of communities as an input for the algorithm.

PEACOCK algorithm [11] consists of two phases; the
first phase is similar to CONGA, where the network is split
using split betweenness. The altered network is processed by
a disjoint community detection algorithm, called centrality of
detecting communities based on node centrality or CNM.

COPRA [12] technique extends the previous work on the
label propagation by Raghavan, Albert, and Kumara [24],
and it is able to detect overlapping communities in a so-
cial network. The main extension is to make the label and
propagation step to include information about more than one
community. Therefore, it allows each node to belong to up to
v communities, where v is a hyper-parameter.

In SLPA (Speaker-listener Label Propagation algorithm)
[13], the nodes store multiple labels, and act either as the
provider or consumer of information. A node keeps gathering
information about the observed labels without removing the
previously stored label. The frequency of observation of a label
by a node is directly related to the spreading of the label among
other nodes. It requires a threshold input parameter that gives
the minimum probability of occurrence of a label, before it is
deleted from the memory of the node.

Demon (Democratic Estimate of the Modular Organization
of a Network) [14] is a simple approach for community
detection which works on the modular structure of networks.
Firstly, each node finds and votes the communities present in
its local neighborhood, using a label propagation algorithm.
These local communities are merged to form a global col-
lection by combining all the votes, leading to the formation
of overlapping modules. However, this algorithm requires a
minimum threshold parameter.

BIGCLAM (Cluster Affiliation Model for Big Networks)
[15] is a model-based community detection algorithm that
allows for identification of dense overlapping, hierarchical
communities in massive networks. Each node-community pair
is assigned a non-negative latent factor that decides the degree
of membership between them. The probability of a connection
between a pair of nodes in the network is modeled as a function
of the shared community affiliations. Further, the communities
are identified using non-negative matrix factorization methods
and block stochastic gradient descent.

MULTICOM is another community detection technique
that produces overlapping communities starting with an initial
seed set. Local community is detected around the seed nodes
using a transformation function. After this step, each node
belongs to a single community. Thereafter, the transformation
function is used to transform a node into its respective vector,
that is clustered using a local clustering technique. For each
cluster produced in the previous step, a ratio value is calculated
using a function mentioned in [16]. The clusters having ratio
value less than a pre-defined threshold are considered for
further exploration. The process keeps repeating until the
number of communities is greater than the set value or if there
is no new seed.

In [17], the technique called Lemon (Local Expansion via
Minimum One Norm) detects overlapping communities by
finding a sparse vector in the local spectra span, such that
all the seeds are in its support. The span of vector dimensions
produced by random walk is used as an approximate invariant
subspace, called the local spectra. However, this local spectral
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approach is used for community detection from a small seed
set.

ANGEL [18] is a faster successor of Demon that uses
a bottom-up approach to find overlapping communities. It
works in two phases, where the first phase produces local
communities using ego network of the nodes. The second
phase merges communities until convergence or a threshold
value is met.

The work in [25], develops a PageRank algorithm with
constraints so as to obtain tightly packed overlapping com-
munities. Using probability-based methods, a walker avoids
irrelevant communities. Therefore, it results in communities
with good fitness score. In [26], a method called Adjacency
Propagation Algorithm (APA) is developed using adjacent
nodes as seed nodes. It uses a threshold parameter to identify
subgraphs based on their intraconnectivity. Another work in
[27], can produce disjoint as well as overlapping communities
in a two-step process that uses genetic algorithm. In the
first step, mean path length of a community is calculated in
relation with its respective ER random graph. And the second
step shrinks the search space by selecting a subset of nodes.
Another work in [28], influential nodes are identified to form
local communities. These communities expand as nodes join
these local communities. Overlapping communities are merged
and evaluated on a model.

An application-based work in [29], exploits community
detection to protect the privacy of individuals on social plat-
forms It discusses community detection attacks and rewiring
of connections for development of effective attack approach.

OvSbChain approach focuses on local community de-
tection using graph parameters such as degree and global
clustering coefficient. If these local communities are identical
they are merged. The motivation behind this work is that it
exploits simple topological features of the graph to detect
communities without any expensive overhead in two simple
levels, (i) formation of local communities, and (ii) combining
local communities based on two criteria.

III. PROPOSED APPROACH

The OvSbChain approach discussed in this section is an
extension to the previously developed SbChain [30] method.
It detects overlapping communities, i.e., nodes are allowed to
be shared among more than one community. The approach
works on two levels. In the first level, it starts with finding
the best suited pairs of nodes according to an initial criterion.
This level ends up with formation of overlapping snowball
chains. In the second level, these chains are merged to form
the larger chains, and eventually form communities based on
global clustering coefficient or majority overlapping criteria.

A. Preliminaries

For a graph G(V,E), V represents the set of vertices or
nodes in the graph, i.e {v ∈ V }, where n is the number of
nodes. And E is the set of edges, i.e., {euv = (u, v) : u, v ∈
V }. This section presents the details about frequently used
terms and their meanings, as mentioned in table I.

OvSbChain works at two levels that are described in the
following paragraphs:

TABLE I. NOTATIONS AND THEIR DESCRIPTIONS

Notation Description
N (v) Set of immediate neighbors of a node

v
k(v) =
|N (v)|

Degree of a node v

kmax Maximum degree value in the graph
Nbest(v) Best scoring neighbor of node v

s(n) nth snowball chain
GCC(s(n)) Global clustering coefficient of a snow-

ball chain s(n)

1) Level-I: It starts by finding the seed nodes and sorting
them in non-increasing order, based on the following criteria
so as to begin the processing.

1) Seed function - A seed v can by identified by sorting
nodes according to their normalized degree value
function, given by equation 1. This also represents
the score score(v) of a node v.

score(v) = k(v)/kmax (1)

These sorted nodes are processed in non-increasing
order of this function value. It should be noted that
SbChain used a combination of normalized degree
and normalized local clustering coefficient for sorting
of nodes.

2) Nbest(v) function - The best suited neighbor for
a seed v is identified using the same score value,
i.e., the normalized degree. This neighbor further
combines with the seed v to form a snowball chain.
Whereas, SbChain used maximum number of over-
lapping neighbors for finding its best neighbor.

It should be noted that these functions have been chosen
and designed empirically.

2) Level-II: The second level starts with the chains formed
in the first level. These chains are merged to form commu-
nities, so as to eliminate almost similar chains. The snowball
pairs/chains formed in first level are combined based on global
clustering coefficient (GCC) or majority overlapping criteria
to form a community. GCC signifies the number of closed
triangles to the number of triplets in a graph. Therefore,
the technique focuses on finding higher values of GCC for
a community, so as to find coherent communities. The first
criteria involves calculation of GCC of the formed community,
along with GCC of each individual snowball chain. If the
combined GCC is higher than the GCC of each chain, then
their combination is permitted, otherwise it is discarded, i.e.,
the chains remain undisturbed. Communities can also be com-
bined as per the second criteria of majority overlapping. This
allows communities to get merged if they have atleast 70%
overlapping nodes. This percentage is decided empirically, as
the value of communities do not change after this point. Also,
the minimum percentage overlap was decided to be above 50%
so as to form coherent communities. The majority overlapping
test prevents the existence of two or more similar communities.

It should be noted that OvSbChain creates overlapping
communities because it does not follow non-redundant node
strategy, previously used by SbChain. According to this
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Algorithm 1: bestNeighbor(v,N (v))
Input : Node v, neighbor list N (v)
Output: Best neighbor of v i.e, Nbest(v)

1 maxWeight← 0
2 foreach v ∈ N (v) do
3 if score(v) ¿ maxWeight then
4 maxWeight← score(v)
5 Nbest(v)← v
6 end
7 end
8 return Nbest(v)

strategy, a node could join with a single node per iteration
which creates mutually exclusive communities. The focus of
OvSbChain is to develop communities that share nodes among
themselves. Therefore, it discards this strategy and allows a
node to be a part of multiple chains within a single iteration
itself.

TABLE II. DIFFERENT TYPES OF REAL-WORLD DATASETS

Dataset Nodes Edges
Zachary [31] 34 78
Dolphin [32] 62 159
Football [33] 115 613
Books1 105 441
Netscience [34] 379 914
Jazz [35] 198 5484
Email [36] 1133 5451
Power [37] 4941 6594
Blogs [38] 3982 6803
Protein [39] 2445 6265

TABLE III. PARAMETERS USED TO GENERATE LFR-1K NETWORK

Parameter Value
Nodes (N) 1000
Average degree (⟨k⟩) 15
Minimum community size (cmin) 20
Maximum community size (cmax) 50
Maximum degree (kmax) 50
Number of overlapping nodes (on) 100
Number of memberships of the overlapping
nodes (om)

30

Mixing parameter (µ) [0.1, 0.5]

B. Algorithm

As discussed in the algorithm 2, OvSbChain starts with the
pre-processing, i.e., it calculates neighbor list N (v), degree list
k(v) and score(v) (equation 1) for each node v in the social
graph. These nodes are then sorted in non-increasing order of
their respective score and processed one at a time. Snowball
chains are formed by finding the best neighbor (algorithm 1)
for each node on the basis of this score value itself, i.e., for a
given node v, the best neighboring node Nbest(v) with highest
value of score parameter is chosen.

In the first iteration, best suited node pairs are combined.
The snowball chains s(n) so formed grow internally and new
chains are also formed in each iteration, as the nodes find their
matches. This sums up the level-I of the proposed technique.

The level-II starts with calculation of global clustering
coefficient GCC(s(n)) for each snowball chain s(n) formed in
level-I. These chains are combined and added to community
list C if the GCC of the union of two chains GCC(s(j)∪s(k))

Algorithm 2: OvSbChain(G)
Input : A graph G(V,E)
Output: Community list C

1 Pre-processing calculates N (v), k(v), and score(v) for each node
v

2 Arrange score(v) in non-increasing order
3 Initialize new lists snowball s, community C
4 i← 0
// Level-I

5 foreach v ∈ score.keys do
6 Nbest(v)← bestNeighbor(v,N (v))

// Algorithm 1
7 if s = ∅ then
8 i← i+ 1

9 Append ⟨v,Nbest(v)⟩ into s(i)

10 Goto 5
11 end
12 counter ← 0
13 for j ← 1 to len(s) do
14 if Nbest(v) ∈ s(j) and v /∈ s(j) then
15 Append ⟨v⟩ into s(j)

16 else
17 if Nbest(v) /∈ s(j) and v ∈ s(j) then
18 Append ⟨Nbest(v)⟩ into s(j)

19 else
20 counter ← counter + 1
21 end
22 end
23 end
24 if counter = i then
25 i← i+ 1

26 Append ⟨v,Nbest(v)⟩ into s(i)

27 end
28 end

// Level-II
29 while C ̸= s do
30 if C ̸= ∅ then
31 s← C
32 C ← ∅
33 end
34 foreach s(j) ∈ s do
35 foreach s(k) ∈ s do
36 if (GCC(s(j) ∪ s(k)) > GCC(s(j)) and

GCC(s(j) ∪ s(k)) > GCC(s(k))) or∥∥(s(j)∩s(k))
∥∥

min(
∥∥s(j)∥∥,∥∥s(k)

∥∥) > 0.7 then

37 Append ⟨s(j), s(k)⟩ into C
38 else
39 Append ⟨s(j)⟩, ⟨s(k)⟩ into C
40 end
41 end
42 end
43 end
44 return C

is greater than either of their individual GCC or if majority of
their nodes overlap (i.e., ≥ 70%) as mentioned in step 36 of
the algorithm. The chains keep combining until both of the
criteria fail. If the chains do not combine with other chains,
they are directly added to C. The end result is the final set of
communities C.

IV. EXPERIMENTAL SETUP AND RESULTS

In this section, the performance of the OvSbChain al-
gorithm is evaluated over different datasets using various
parameters. The OvSbChain is compared with several other
overlapping community detection techniques. The following
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Fig. 1. Comparison of OvSbChain with Various Techniques on different Evaluation Metrics

subsections discuss the various datasets used in our experi-
mental evaluations and all the parameters used for assessment
of the identified communities.

A. Dataset

The efficacy of OvSbChain and other techniques is evalu-
ated over ten real-world datasets and five computer-generated
Lancichinetti Fortunato Radicchi (LFR) benchmark datasets
[40], as discussed in Tables II and III. The LFR benchmark
datasets consists of 1000 nodes with value of the mixing
parameter (µ) varying from 0.1 to 0.5. Hence, the datasets
are named as LFR1K-0.1, LFR1K-0.2, ..., LFR1K-0.5, respec-
tively.

B. Evaluation Metrics

The communities identified as a result of algorithm 2
are analyzed by an overlapping modularity measure given
by [6], two types of ONMI (Overlapping Normalized Mutual
Information), and their running time.

It should be noted that the modularity measure given by [6]
is represented as Qov . By definition, Qov = 0, for singleton
communities or if all nodes belong to a community. Qov

uses a belonging coefficient for each node which defines the
percentage contribution of a node in a community. The sum
of this coefficient in 1, for each node.

ONMI is an extension of the NMI score that accommodates
overlapping partitions within a network. There are two types
of ONMI used in this section; one is LFK (Lancichinetti
Fortunato Kertesz) [7], which is referred as NMILFK , but
it overestimates the similarity of two clusters in some cases.
To fix this, another ONMI called MGH (McDaid Greene
Hurley) is used. This version uses a different normalization
than the original LFK based ONMI [8], and it is represented
as NMIMGH .

C. Results

Techniques like COPRA, PEACOCK, CONGA, SLPA,
CFinder, Demon, and ANGEL use a parameter for tuning.
Hence, the values represented in this paper are the best values
for Qov . Fig. 1a shows the results of various overlapping
techniques compared with OvSbChain on Qov , respectively.
The same is also represented via Table IV. Also, Fig. 2a repre-
sents the number of datasets for each technique that have their
respective value greater than or equal to 80% of the maximum
Qov that exists for all the techniques. It can be observed that
OvSbChain has an above average performance in terms of Qov .
Though other techniques are seen to show a better value in
terms of Qov , it is seen that the respective ONMI values drops.
Hence, high modularity does not necessarily guarantee good
partitions.
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Fig. 2. Comparison of Various Techniques on the Number of Datasets having Values Greater than or Equal to 80% of the Maximum Existing Value of
Different Evaluation Metrics

It can be seen that although modularity values are com-
parable or average in comparison to existing techniques, the
ONMI values are promising. As an example, SLPA has the
highest modularity among all techniques, it does not produce
high ONMI values. OvSbChain is faster for smaller datasets
and produces comparable or better results for certain cases in
terms of both NMILFK and NMIMGH .

Both NMILFK and NMIMGH are calculated and com-
pared on both real-world and LFR datasets, as shown in Fig.
1b and 1c for OvSbChain and other techniques. OvSbChain
is seen to perform well in most of the cases. Fig. 2b and 2c
also show the comparison of the number of datasets that have
NMI values greater than or equal to 80% of the maximum
existing value of NMI (among all the given datasets). Tables
VI and VII show both the ONMI values. It can be observed
that the performance of OvSbChain is above average for both
NMILFK and NMIMGH measures.

A comparison of the running time of all the techniques
is presented in Fig. 1d. Logarithmic scale is used for this
comparison because it provides a better visualization. CFinder
technique is excluded from this comparison because it does
not mention the time it takes to evaluate the communities so
formed. It can be observed that OvSbChain is works fast on
smaller datasets, and it is comparable to other techniques on

larger datasets. The same can be seen through table V. As
mentioned before, a few techniques use a parameter which
needs to be defined every time they are executed. Therefore,
in our experimental evaluation, these techniques were run for
different parameter values and the best value for Qov was
chosen and the corresponding ONMI and run time values
are represented. On the other hand, our proposed OvSbChain
approach does not need any parameter value to be set, hence,
produces the same result every time it is run.

V. CONCLUSION

It can be seen that the technique OvSbChain discussed
in the current article works well on real-world datasets with
good results in terms of NMILFK and NMIMGH . It gives
comparable results on a few benchmark datasets as well. It
should be noted that the running speed of the algorithm was
at par with other techniques, or even better in a few cases.
The experiments show average results on modularity measure
as well. OvSbChain does not use any external parameter like
most of its counterparts. Also, it produces the same results
every time it is run, unlike the other techniques, e.g., COPRA.
It gives different results each time it is run (for same parameter
value). Hence, it is run for ten times, and the results are
averaged. Therefore, it can be established that our technique
works well without any parameter tuning, unlike the other
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approaches. The overhead of calculations involved in the
technique slows it down, but that can be resolved using better
hardware options.

VI. FUTURE WORK

The future scope of improvement includes extension of
the technique to directed graphs as real-world networks are
generally directed in nature. OvSbChain can be improvised to
find faster and high coverage seed nodes for snowball chains
formation and eventually communities.
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