
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

Improving the Computational Complexity of the
COOL Screening Tool

Mohamed Ghalwash
IBM Research, NY, USA

Ain Shams University, Cairo, Egypt

Abstract—Autoimmune disorder, such as celiac disease and
type 1 diabetes, is a condition in which the immune system attacks
body tissues by mistake. This might be triggered by abnormality
in the development of biomarkers such as autoantibodies, which
are generated by unhealthy beta cells. Therefore, screening of
such biomarkers is crucial for early diagnosis of autoimmune
diseases. However, one of the fundamental questions of screening
is when to screen subjects who might be at a higher risk of au-
toimmune disorder. This requires an exhaustive search to find the
optimal ages of screening in retrospective cohorts. Very recently,
a comprehensive tool was developed for screening in autoimmune
disease. In this paper, we improved the computational time of the
algorithm used in the screening tool. The new algorithm is more
than 100 times faster than the original one. This improvement
would help to increase the utility of the tool among clinicians and
research scientists in the community.

Keywords—Software engineering; screening tool; autoimmune
disorder

I. INTRODUCTION

Autoimmune disorder is a condition in which the immune
system mistakenly attacks healthy body tissues in different
organs of the body. For example, in type 1 diabetes, the
immune system destroys the insulin-producing cells of the
endocrine pancreas, which leads to insulin deficiency [1].
In celiac disease, eating gluten – a protein found in wheat,
rye, and barley – causes the autoimmune system to damage
the small intestine [2]. There are many factors involved in
causing such diseases such as genes, environmental factors,
drugs and/or chemicals. However, autoimmune disorder is
often associated with a few circulating autoantibodies, which
are abnormal antibodies generated by pathogenic β-cells, when
targeting a tissue [3]. Autoantibodies are often precede the
onset of the disease and, therefore, considered as a clinical
biomarker of the autoimmune disorder. In type 1 diabetes and
celica diseases, there are four or five autoantibodies that are
often used to assess the risk of developing the disease [4], [5].

Screening for autoantibodies – a group of serum tests to
assess the presence of autoantibodies – is usually performed
to detect the disease as early as possible so that a proper
treatment or intervention can be administered. Therefore, fre-
quent screening is of upmost importance to detect potential
autoimmune disorder in subjects who in an apparently healthy
population [6], [7]. Although frequent screening is beneficial
for detecting subjects who are at a higher risk of the disease,
it is cost inefficient and may also introduce harm for those
who do not have the diseases by increasing the risk of
overdiagnosis [8]. Therefore, one needs to find the optimal

ages for screening in order to balance between the benefit and
the harm of multiple screening.

To find a proper screening schedule, one needs to do
cross-sectional experiments on retrospective cohort to find the
optimal ages for screening. The authors of a recent paper [9]
proposed a tool, called the Collaborative Open Outcomes tooL
(COOL), that can be used to compute the quality performance
of a given proposed screening schedule according to some
measures that can be used to balance between the benefit and
the harm of the screening schedule. However, computing these
measures for a given schedule is a very time consuming task.
In this paper, we propose to make these computations much
faster. This proposed enhancement will increase the utility of
the tool to compare multiple schedules to find the optimal
(according to the given measures) screening schedule much
faster.

II. METHOD

A. Data Structure

We explain the structure of the data used for defining
the screening schedule. The data has biomarkers information
for each subject. Each subject may visit the clinic multiple
times and each time a blood sample is taken from the subject
to assess the development of biomarkers. The value of each
biomarker is either positive (the autoantibody is developed) or
negative. It is worth mentioning that each subjects may have
a different number of visits.

Notations: We use the upper case letter to define a matrix
– a two dimensional array –, e.g. X , a boldface letter to
define a vector, e.g. xxx, and a italic letter to define an entry
or element, e.g. x. xxx[i] represents the entry i of the vector
xxx. X[i] represents the ith row of the matrix X , and X[i][j]
represents the entry in the row i and column j.

Mathematically, let us define the data for a subject i as
xxxi = [(t1i ,xxx

1
i), (t

2
i ,xxx

2
i), . . . , (t

Ti
i ,xxxTi

i)] where Ti is the number
of visits for the subject i, tji is the subject’s age at the visit j,
and xxxj

i ∈ {0, 1}M is the list of M biomarkers for the visit j. In
addition, the information about whether and when the disease
was developed is recorded. For simplicity, we assume that each
subject either developed the disease within a predefined period
of time from birth or the subject has been observed for the full
period but has not developed the disease1. If the subject has

1The other case where the subject is partially observed and has not
developed the disease (right censored subjects) can be handled using inverse
probability censoring weights [10] but it is outside the scope of this paper.

www.ijacsa.thesai.org 1020 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

developed the disease, the subject is not followed afterwards.
yi is the age when the disease was developed and -1 otherwise.

Example II.1. Let us assume that there are four subjects, 1, 2,
3, and 4. The data for these four subjects can be represented
as

• xxx1 = [(1, [0, 1, 0, 1]), (2.3, [1, 1, 0, 0]), (5.8, [0, 1, 0, 1]),
(7.1, [1, 0, 1, 0])], y1 = 9

• xxx2 = [(2.4, [0, 0, 0, 1]), (6, [1, 0, 0, 1]), (9.2, [0, 0, 0, 1]))],
y2 = −1

• xxx3 = [(1.9, [0, 0, 0, 0]), (7.4, [0, 0, 1, 1]))], y3 = 8
• xxx4 = [(0.6, [0, 1, 0, 0]), (4.7, [0, 0, 0, 1]), (6.4, [0, 0, 1, 1]),
(10, [0, 0, 0, 0]))], y4 = −1

Subject 1 has a sequence of T1 = 4 visits. Each visit has
measurements for M = 4 biomarkers. The first visit was
measured at age t11 = 1 year and the second and the fourth
biomarkers were positives while the other two biomarkers were
negatives. The second visit was sampled at age t21 = 2.3 years.
We can see that the fourth biomarker turned to negative in the
second visit while the first biomarker became positive. The
subject has developed the disease at age y1 = 9 years. The
second subject has T2 = 3 visits at ages 2.4, 6, and 9.2 years
and has not developed the disease, i.e. y2 = −1. We clearly
see that each subject may have a different number of visits and
these visits might be sampled at different ages. A graphical
representation of these data is shown in Fig. 1.

Fig. 1. A Graphical Representation for the given Data in the Example. The
Green Points Represent Visits while the Red Stars Represent the Age at

which the Subjects Developed the Disease. E.g., Subject 3 has 2 Visits and
Developed the Disease at Age 8.

One simple data structure that can be used to store the
data for all subjects is a 3-dimensional array, where the first
dimension is the number of subjects N , the second dimension
is the maximum number of visits S = maxi{Ti}, and the third
dimension is the number of biomarkers M , i.e. RN×S×M .
However, there are two challenges to store the data in a three-
dimensional array. The first challenge is that each subject may
have a different number of visits. The second challenge is
the irregularity in the biomarkers collections. As seen from
the example, the biomarkers are collected at different and
irregular time stamps. These two issues pose a challenge to
store the data for all subjects in a 3-dimensional array, which
assumes that the data are time-aligned. A better data structure
for storing such information would be a 2-dimensional array
(matrix) with a special structure.

Let us assume that T =
∑N

i=1 Ti is the total number of

visits across all N subjects. We construct a matrix X with
dimensions T×M+2, where each row represents one visit for
a particular subject. The first column in the matrix represents
the subject index, the second column is the age of the subject
at the current visit, the other M columns are the values of
the biomarkers. Data is sorted in ascending order by subject
index and age. An additional array yyy stores the age at which
the subject developed the disease, i.e. yyy[i] is the age when the
subject i developed the disease and -1 otherwise.

Example II.2. The matrix for the data in Example II.1 can
be represented as

X =

1 1.0 0 1 0 1
1 2.3 1 1 0 0
1 5.8 0 1 0 1
1 7.1 1 0 1 0
2 2.4 0 0 0 1
2 6.0 1 0 0 1
2 9.2 0 0 0 1
3 1.9 0 0 0 0
3 7.4 0 0 1 1
4 0.6 0 1 0 0
4 4.7 0 0 0 1
4 6.4 0 0 1 1
4 10.0 0 0 0 0

∈ RT×M+2,

yyy =

 9
−1
8
−1

As it can be seen, subject 1 has 4 rows in the matrix

representing 4 visits, and subject 3 has two rows.

B. Single-Age Screening

Problem 1 (Single-age screening). At which age a, subjects
with a positive test at that age will likely develop the disease
within the observation period?

The objective of screening at a single age is to assess
the likelihood that a subject has the disease. Let us assume
that the screening test is whether any biomarker is positive.
The question would be how likely subjects with any positive
biomarker at a given age will develop the disease within the
observation period (e.g. within 10 years from birth). In order
to compute the quality performance of the screening at a single
age, we need to compute the following Table I:

TABLE I. SUMMARY OF THE SCREENING TEST RESULTS

Screening test Developed the disease Not developed the disease

Positive # true positives (TP) # false positives (FP)

Negative # false negatives (FN) # true negatives (TN)

No test # no test and positives (NP) # no test and negatives (NN)

Each subject will be placed in one of these six cells. If
the subject was tested positive and developed the disease, the
subject will be counted in the TP cell. FP is the number
of subjects who were tested positive and have not developed
the disease. Similarly, FN (TN) is the number of subjects

www.ijacsa.thesai.org 1021 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

who were tested negative and developed (not developed) the
disease, respectively. Finally, since not all subjects may not
necessarily have a visit at a particular age, some subjects may
have no screening test and therefore will be missing from the
screening test. This is accounted for in the last row of Table I.

Using the information provided in Table I, the screening
test is usually evaluated using the sensitivity and the specificity
measures [11]. The sensitivity is the probability that the
screening test is positive among those who have the disease.
Specificity is the probability that the screening test is negative
among those who do not have the disease [12]. These two
measures can be computed as:

Sen =
TP

TP + FN
(1)

Spc =
TN

TN + FP
(2)

Example II.3. If the sensitivity is 80%, it means that 80% of
diseased subjects are identified as diseased (have a positive
test). If the specificity is 90%, it means that 90% of non-
diseased subjects have a negative test (correctly identified as
non-diseased).

These two measures are important as they measure the
percentage of diseased individuals who have positive test
results and the percentage of non-diseased individuals who
have negative test results, respectively. Nevertheless, these
two measures assume that the test result for each subject is
known, i.e. they do not account for subjects with missing
tests. Cumulative sensitivity (CSen) and dynamic specificity
(DSpc) address this issue [13]:

CSen =
TP

TP + FN +NP
(3)

DSpc =
TN

TN + FP +NN
(4)

As it can be seen, CSen and DSpc require all subjects who
do/do not have the disease, respectively. However, from the
subject’s perspective, these two measures do not give insights
about the likelihood to develop the disease if the test results
is positive or negative. Positive predictive value (PPV) and
negative predictive value (NPV) answer this question.

PPV =
TP

TP + FP
(5)

NPV =
TN

TN + FN
(6)

PPV is the probability of having the disease among those
subjects who tested positive. NPV is the probability of not
having the disease among those subjects who tested negative.

So, in order to evaluate the performance of a screening
test, we need to compute 4 measures CSen, DSpc, PPV and
NPV . Algorithm 1 evaluates the performance of a screening
at a given age a by computing these four measures.

Algorithm 1 takes as parameters the age a at which the
screening will be evaluated, the data matrix X that encodes
the age and the biomarkers information, and the label array yyy
that encodes the age at which the disease was developed. The
algorithm utilizes an array found to mark whether the subject

Algorithm 1: Single-Age Screening (SS)
Input: Age a, encoding data matrix X , label array yyy
Return: CSen, DSpc, PPV , and NPV .
// list for all N subjects

1 Initialize all N entries of the found list with false
Initialize TP , TN , FP , FN , NP , and NN with
zeros.

2 for each row in X do
// row is a list of M + 2 entries

3 id = row[1]
4 age = row[2]
5 biomarkers = row[3 : M + 2]

/* if the age is within 6 months of a */

6 if a− .5 ≤ age < a+ .5 then
// found a visit for the current subject

7 found[id] = true
8 if IsPos(biomrakers) then
9 PositiveTest(yyy[id])

10 else
11 NegativeTest(yyy[id])

/* loop over subjects with a missing screening

test to compute NN and NP. */

12 for each subject id do
// if the test is missing

13 if found[id] is false then
14 MissingTest(yyy[id])

15 Compute CSen, DSpc, PPV , NPV using equations
3-6

Algorithm 2: Helper Functions
1 Function PositiveTest(label):
2 if label ≥ 0 then
3 TP = TP + 1 // diseased subject

4 else
5 FP = FP + 1 // non-diseased subject

6 return
7 Function NegativeTest(label):
8 if label ≥ 0 then
9 FN = FN + 1 // diseased subject

10 else
11 TN = TN + 1 // non-diseased subject

12 return
13 Function MissingTest(label):
14 if label ≥ 0 then
15 NP = NP + 1 // diseased subject

16 else
17 NN = NN + 1 // non-diseased subject

18 return
19 Function IsPos(biomarkers):
20 return

has a screening test at the given age a, i.e. found[i] = 1 if
the subject i has a visit at the given age a, and 0 otherwise.

www.ijacsa.thesai.org 1022 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

In line 1, the algorithm initializes the boolean array found
with false. In line 2, it initializes all counts with zero. Then, it
loops over all rows in the data matrix X (line 3), and for each
row it checks whether the age of the current visit is within
a specified window of 6 months around the given age (line
7). If yes, it marks that the subject has been tested (line 8)
and checks the results for the screening test (line 9) using
the function IsPos. If the test result is positive (line 10),
the algorithm calls the function PositiveTest in Algrithm 2,
which updates the number of true positives or false positive
depending on whether the patient has developed the disease.
Otherwise, it updates the number of false positives (line 12).
If the test result is negative (line 11), the algorithm calls the
function NegativeTest which updates either false negatives
if the patient developed the disease or true negatives if the
patient has not developed the disease.

Finally, after iterating over the entire matrix X , the algo-
rithm iterates over the found array (line 13) to find those who
have not been tested at the given age (line 14) and calls the
function MissingTest in line 15 to compute the number of
subjects who missed the screening test and developed (NP) or
did not develop the disease (NN). After computing TP , TN ,
FP , FN , NP , and NN counts, the algorithm uses equations
(3-6) to compute CSen, DSpc, PPV , and NPV for the
single-age screening at age a.

Time Complexity: The for loop in line 3 has O(T)
iterations. Let us assume that the function IsPos in line 9
takes O(M). The loop in line 18 takes O(N). Hence, the
total time complexity of Algorithm 1 is O(T.M +N).

Example II.4. We compute the quality performance of screen-
ing for any biomarker (if any biomarker is positive, the
result of the test is positive) at age 2 using data provided
in Example II.2. The summary statistics of screening at age 2
is given in the following Table II:

TABLE II. SUMMARY STATISTICS FOR SCREENING OF ANY BIOMARKER
AT AGE 2. THE SUBJECT ID COLUMNS INDICATES THE SUBJECTS USED

FOR COMPUTING THE MEASURE OR THE COUNT

Screening test Count Subject ids

TP 1 1

FP 1 2

TN 0

FN 1 3

NP 0

NN 1 4

CSen 0.5 1,3

DSpc 0 2,4

PPV 0.5 1,2

NPV 0 3

The screening at a single age might not perform good
as some subjects might miss the screening test and that will
reduce the sensitivity and/or specificity of the test. To increase
the quality performance of a screening, one can screen twice
so that those subjects who missed the first screening can be

covered by the second screening. This is discussed in the next
section.

C. Two-Age Screening

Problem 2 (Two-age screening). How likely subjects with a
positive test at either one of a pair of ages a and b will develop
the disease within the observation period?

The screening test can be performed at the first age a. If
the result is positive then no need to screen again and the
final result is positive. If the screening test is negative or
the subject missed the first screening then another screening
is required at the second age and the result of the second
screening determines the final result. If the subject missed
both screening then it will be counted either in NN or NP
depending whether the subject developed the disease. The two-
age screening can be visualized as in Fig. 2.

Fig. 2. Visualization of the Two-Age Screening Process. The Final Result of
the Screening is Positive if and only if One of the Screenings at the First or
the Second Age is Positive. The Final Result is Missing if both Screening

are Missing. Otherwise, the Final Result is Negative.

Algorithm 3 describes the two-age screening process. The
algorithm takes a pair of ages a and b to compute the screening
results where a < b. For each row in X , it tests whether
the current visit are withing the window of 6 months of age
a (line 7). If the subject has a visit within that window, the
algorithm applies the screening test (line 8) and if the result
is positive, it marks that the subject id has a positive test at
age a (line 9) and then updates TP and TN in line 10. If the
result is negative, it marks that the subject has a negative first
screening (line 12).

If the current visit is not within the window of 6 months
around a, the algorithms checks for the second screening (note
that the matrix X is sorted in ascending order by age). If the
visit is within the window of 6 months around the second
age b and if the subject has no positive results in the first
screening (line 13), then it checks the results of the screening
at the second age (line 14). If the screening at the second age
is positive, the algorithm marks that the second screening is
positive (line 15) and updates the counts TP and FP (line 16).
If the second screening is negative, it marks that the second
screening is negative (line 18).

After iterating over all rows in X , the algorithm iterates
over all subjects who missed the first and the second tests (line

www.ijacsa.thesai.org 1023 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

Algorithm 3: Two-Age Screening (TS)
Input: Ages a, b where a < b, encoding data matrix

X , label array yyy
Return: CSen, DSpc, PPV , and NPV .
// assume all subject missed both screenings

1 Initialize all N entries of found1 and found2 with
−1

2 Initialize TP , TN , FP , FN , NP , and NN with 0
3 for each row in X do
4 id = row[1]
5 age = row[2]
6 biomarkers = row[3 : M + 2]

/* if the age is within the window of a */

7 if a− .5 ≤ age < a+ .5 then
// found a visit for the current subject

8 if IsPos(biomarkers) then
9 found1[id] = 1 // 1st test is

positive

10 PositiveTest(yyy[id])

11 else
12 found1[id] = 0 // 1st test is

negative

13 else if b− .5 ≤ age < b+ .5 ∧ found1[id] ̸= 1
then

14 if IsPos(biomarkers) then
15 found2[id] = 1 // test is pos

16 PositiveTest(yyy[id])

17 else
18 found2[id] = 0 // test is neg

/* loop over subjects with a missing test */

19 for each subject id do
// if both tests are missing

20 if found1[id] = −1 ∧ found2[id] = −1 then
21 MissingTest(yyy[id])

// if 1st test is neg and 2nd is missing

22 else if found1[id] = 0 ∧ found2[id] = −1 then
23 NegativeTest(yyy[id])

24 Compute CSen, DSpc, PPV , NPV using equations
(3-6)

20) to update the counts NN and NP (line 21) and iterates
over subjects who tested negative in the first screening and
missed the second screening (line 22) to update the FN and
TN counts (line 23). Finally, the screening quality measures
are computed in line 24.

Time Complexity: The time complexity of Algorithm 3 is
O(T.M +N).

Although the time complexity of Algorithm 3 is O(T.M+
N) ≈ O(T), but the actual running time is very large, espe-
cially if the algorithm needs to be executed multiple times. For
example, in almost all cases in medical context, a confidence
interval for each measure (sensitivity, specificity, PPV and
NPV) is required. To compute the confidence interval [14],
the algorithm needs to be run thousands of times on different
samples of the matrix X . In addition, to compare different
screening schedules, we compute the confidence interval for

each schedule and compare them to see how statistically sig-
nificant the difference between the screening schedules is [15].
Therefore, it is preferred that the algorithm that computes the
quality performance of the screening needs to be fast enough
so that all these experiments can be run in a reasonable time.

To do that, we perform a data pre-processing that needs to
be done only once, and then we will devise Algorithm 3 to
make it faster which can be run multiple times and obtain the
results much faster than using Algorithm 3.

D. Improved Two-Age Screening

We start with the improved algorithm for the two-age
screening which can be easily modified for single-age screen-
ing. To improve the computational time of the two-age screen-
ing algorithm, we preprocess the data in a different data struc-
ture so that the computation becomes faster. The preprocessing
step needs to be executed only once for the data and then each
application of the two-age screening uses the preprocessed data
and returns the results faster than the original algorithm.

For now, let us assume that we have already constructed a
matrix B that contains the biomarker information, which will
be used by the screening schedule algorithm (the construction
of this matrix is explained in Section II-E). B ∈ ZN×A where
A is the number of all possible distinct ages in the data that
the screening are to be evaluated at, and N is the number
of subjects. The entry B[id][a] ∈ {−1, 0, 1, 2, . . . , 2M} has
the encoding of the biomarkers for the subject id at age a.
Since the biomarkers are binary, then the number of all possible
cases of biomarkers values is 2M (note that the number of
biomarkers is usually small in these applications as explained
in the introduction section). The value −1 indicates that the
subject id missed the test at age a.

Example II.5. Given Example II.2, there are 24 + 1 = 17
possible values for each entry in the matrix B. The encoding
matrix B is shown here:

B =

 10 3 −1 −1 −1 10 5 −1 −1 −1
−1 8 −1 −1 −1 9 −1 −1 8 −1
−1 0 −1 −1 −1 −1 12 −1 −1 −1
2 −1 −1 −1 8 12 −1 −1 −1 0

Column j encodes the biomarker information at age j. For
example, the entry B[2][6] encodes the biomarker information
for subject id = 2 at age 6. The biomarker for subject 2 at age
6 were [1, 0, 0, 1] which can be encoded as 21+20+20+21 =
9. Similarly, the biomarker of subject 3 at age 2 is encoded as
B[3][2] = 20 +20 +20 +20 = 0. All entries with −1 indicate
that the subject has no visit at that age, e.g. B[2][5] = −1
because the subject 2 has no visit at age 5.

Note that all ages are rounded given the window of interest.
For example, visits at ages 2.4 are considered at age 2 (this
is similar to line 6 in Algorithm 1)2

Given the matrix B, the improved algorithm for two-age
screening is re-written in Algorithm 4. The algorithm iterates
over all subjects (line 1), and for each subject id it checks if
screening at age a and age b are missing (line 2) then it marks

2If there are multiple visits within the window around the given age, we
can consider either the closest visit, the first visit, the last visit, or any other
visit based on the application. This is outside the scope of this paper.

www.ijacsa.thesai.org 1024 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

that the final result is missing (line 3). If one of the tests is
positive (line 4) it marks that the final result is positive (line 5).
Otherwise, it marks that the final results is negative (line 7).

Algorithm 4: Improved Two-Age Screening (ITS)
Input: Ages a, b where a < b, biomarkers matrix B,

label array yyy
Return: CSen, DSpc, PPV , and NPV .
/* loop over all subjects */

1 for each subject id do
// if both tests are missing

2 if B[id][a] = −1 ∧B[id][b] = −1 then
3 MissingTest(yyy[id])

// one of tests is positive

4 else if IsPos(B[id][a]) ∨ IsPos(B[id][b]) then
5 PositiveTest(yyy[id])

// (both tests are negative) or (one is

negative and the other is missing)

6 else
7 NegativeTest(yyy[id])

8 Compute CSen, DSpc, PPV , NPV using equations
(3-6)

Time Complexity: The running time for Algorithm 4 is
O(N).

E. Data Preprocessing for ITS

We preprocess the data only once to construct the
biomarker encoding matrix B which makes the algorithm
runs faster as evident by our experiments. The algorithm for
constructing the matrix B is shown in Algorithm 5. The
algorithm iterates over all rows of the matrix X (line 2). For
each row, it maps the age to the closest age (line 6), encodes the
biomarkers (line 7), and stores the value in the matrix B (line
8). To encode the biomarker information into one integer value
(line 9), we multiple the biomarker vector into the encoding
vector (line 10) to obtain the code value (line 11).

Algorithm 5: Biomarker Matrix
Input: matrix XXX
Return: biomarkers matrix B

1 Initialize all entries of B with −1
/* loop over all subjects */

2 for each row in X do
3 id = row[1]
4 age = row[2]
5 biomarkers = row[3 : M + 2]
6 a = Round(age) // map it to the closed age

7 code = encode(biomarkers)
8 B[id][a] = code

9 Function encode(biomarker):
10 e =

[
1 2 4 16 . . . 2M

]T
// column

vector

11 code = biomarker × e // matrix

multiplication

12 return code

Time Complexity: The time complexity of Algorithm 5
is O(T) but this process is executed only once not for each
application of screening.

F. Improved Single-Age Screening

The improved algorithm for a single-age screening is
shown in Algorithm 6.

Algorithm 6: Improved Single-Age Screening (ISS)
Input: Ages a, biomarkers matrix B, label array yyy
Return: CSen, DSpc, PPV , and NPV .
/* loop over all subjects */

1 for each subject id do
// if the test is missing

2 if B[id][a] = −1 then
3 MissingTest(yyy[id])

// the test is positive

4 else if IsPos(B[id][a]) then
5 PositiveTest(yyy[id])

// (the test is negative)

6 else
7 NegativeTest(yyy[id])

8 Compute CSen, DSpc, PPV , NPV using equations
(3-6)

III. EXPERIMENTS

We evaluated the performance of the SS, TS, ISS and ITS
algorithms on datasets with different number of subjects and
visits. The description of the datasets is shown in Table III.
The experiments were run on a Mac laptop with processor
2.7 GHz Quad-Core Intel Core i7 and 16 GB of memory.
The screening test used for these experiments is to test for
any positive biomarker, i.e. if any biomarker is positive the
result of the screening test is positive. The code is written
in Python [16]. Python has a data structure called pandas
dataframe [17] which can be used store information in the
matrix X . Using the dataframe, the SS and TS algorithm can
be even run faster if we filter the dataframe on rows where the
age is within the 6 months window of the given age a. This
is done using the command

df[(df[’age’] >= a-0.5) & (df[’age’]<a+0.5)]

In all our experiments for the SS and the TS algorithms we
used the above command.

TABLE III. EACH SUBJECT HAS ON AVERAGE 30 VISITS. THERE ARE 3
BINARY BIOMARKERS. SUCH AS DISTRIBUTION OF VISITS, NUMBER OF

SUBJECTS, ETC

subjects # total visits average # visits

9.170 169,530 19

13.383 219,276 16

15.747 240,917 15

18.984 262,233 14

www.ijacsa.thesai.org 1025 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

A. Single Age Screening

We compared the running time for the single-age screening
algorithms SS and ISS on different datasets. The experiments
were run multiple times and the median and quartiles of the
running times are reported as shown in Fig. 3.

Fig. 3. Running Time Comparison between SS and ISS.

It is clear that the running time of the SS algorithm
increases linearly with the dataset size. It takes about 80
seconds for Algorithm 1 to compute the quality performance of
screening at a single age on data that has about 19,000 subjects,
while the improved algorithm ISS takes only a fraction of
a second to get the results. The running time for the ISS
algorithm is shown in Fig. 4.

Fig. 4. Running Time for the ISS Algorithm.

B. Two Ages Screening

We compared the running time for the TS and ITS algo-
rithms to compute the performance of the two-age screening.
The results are shown in Fig. 5. A very similar behavior is
observed. The TS algorithm scales linearly with the dataset
size. The ITS algorithm is much faster than the TS algorithm.
The running time for the ITS algorithm is shown in Fig. 6. ITS
takes only 0.1 seconds to compute the quality performance of
screening at a given two ages while TS takes 175 seconds.

C. Data Preprocessing for ISS and ITS

The additional overhead that the improved algorithms add
on top of the original algorithms is the data preprocessing, i.e.
the construction of the biomakers encoding matrix B. This

Fig. 5. Running Time Comparison between TS and ITS.

Fig. 6. Running Time for the ITS Algorithm.

step is required only once for each dataset. The running time
for Algorithm 5 is shown in Table IV.

TABLE IV. RUNNING TIME FOR CONSTRUCTING THE MATRIX B

Dataset size (# subjects) Time (mins)

9170 5.3

13383 6.7

15747 7.5

18984 8.4

IV. CONCLUSION

Screening of biomarkers is of atmost importance to assess
the risk of developing autoimmune diseases such as type 1
diabetes and celiac diseases. To improve the quality perfor-
mance of the screening test, screening more than one time is
required. Algorithms to compute the quality performance of
a screening schedule were developed as part of a screening
tool. However, the running time of these algorithms are large
which hinders the utility of the tool on large applications. We
improved the running time of the screening algorithms by more
than 800 times at an additional cost of preprocessing the data
only once. We evaluated the running time of these screening
algorithms on datasets with different sizes.

REFERENCES

[1] S. A. Paschou, N. Papadopoulou-Marketou, G. P. Chrousos, and
C. Kanaka-Gantenbein, “On type 1 diabetes mellitus pathogenesis,”
Endocrine connections, vol. 7, no. 1, pp. R38–R46, 2018.

www.ijacsa.thesai.org 1026 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

[2] P. H. Green and C. Cellier, “Celiac disease,” New england journal of
medicine, vol. 357, no. 17, pp. 1731–1743, 2007.

[3] Z. X. Xiao, J. S. Miller, and S. G. Zheng, “An updated advance
of autoantibodies in autoimmune diseases,” Autoimmunity Reviews,
vol. 20, no. 2, p. 102743, 2021.

[4] C. E. Taplin and J. M. Barker, “Autoantibodies in type 1 diabetes,”
Autoimmunity, vol. 41, no. 1, pp. 11–18, 2008.

[5] S. Caja, M. Mäki, K. Kaukinen, and K. Lindfors, “Antibodies in
celiac disease: implications beyond diagnostics,” Cellular & molecular
immunology, vol. 8, no. 2, pp. 103–109, 2011.

[6] W. H. Organization et al., “Screening programmes: a short guide.
increase effectiveness, maximize benefits and minimize harm,” 2020.

[7] L. Frommer and G. J. Kahaly, “Type 1 diabetes and associated au-
toimmune diseases,” World journal of diabetes, vol. 11, no. 11, p. 527,
2020.

[8] N. Gilbert, “The pros and cons of screening,” Nature, vol. 579, no.
7800, pp. S2–S2, 2020.

[9] M. Ghalwash, E. Koski, R. Veijola, J. Toppari, W. Hagopian, M. Rewers,
and V. Anand, “Simulating screening for risk of childhood diabetes: The
collaborative open outcomes tool (cool),” in AMIA Annual Symposium
Proceedings, vol. 2021. American Medical Informatics Association,
2021, p. 516.

[10] D. M. Vock, J. Wolfson, S. Bandyopadhyay, G. Adomavicius, P. E.
Johnson, G. Vazquez-Benitez, and P. J. O’Connor, “Adapting machine
learning techniques to censored time-to-event health record data: A
general-purpose approach using inverse probability of censoring weight-
ing,” Journal of biomedical informatics, vol. 61, pp. 119–131, 2016.

[11] S. Nissen-Meyer, “Evaluation of screening tests in medical diagnosis,”
Biometrics, pp. 730–755, 1964.

[12] R. Trevethan, “Sensitivity, specificity, and predictive values: founda-
tions, pliabilities, and pitfalls in research and practice,” Frontiers in
public health, vol. 5, p. 307, 2017.

[13] A. N. Kamarudin, T. Cox, and R. Kolamunnage-Dona, “Time-dependent
roc curve analysis in medical research: current methods and applica-
tions,” BMC medical research methodology, vol. 17, no. 1, pp. 1–19,
2017.

[14] B. Efron, The jackknife, the bootstrap and other resampling plans.
SIAM, 1982.

[15] P. Armitage, G. Berry, and J. N. S. Matthews, Statistical methods in
medical research. John Wiley & Sons, 2008.

[16] G. Van Rossum and F. L. Drake Jr, Python reference manual. Centrum
voor Wiskunde en Informatica Amsterdam, 1995.

[17] T. pandas development team, “pandas-dev/pandas: Pandas,” Feb. 2020.
[Online]. Available: https://doi.org/10.5281/zenodo.3509134

www.ijacsa.thesai.org 1027 | P a g e

