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Abstract—The generation of daily massive amounts of 

heterogeneous data from a variety of sources presents a challenge 

in terms of storage and analysis capabilities and brings new 

problems into high-performance computing clusters. To better 

utilize this huge and heterogeneous data, the continuous 

development of advanced Big Data platforms and Big Data 

analytic techniques are required. One of the significant issues 

with in-memory Big Data processing platforms, such as Apache 

Spark, is the user’s responsibility to decide whether the 

intermediate data should be cached or not. In addition, the data 

may be kept in several storage systems and physically scattered 

over different racks, regions, and clouds. Data need to be close to 

the computation nodes and hence data locality issue is a 

challenge. In this paper, using a distinct memory management 

layer between the data processing layer and the data storage 

layer, which automatically caches data without the need for any 

interaction from the applications’ developers, is evaluated. K-

means, PageRank and WordCount workloads from the HiBench 

benchmark beside a real case to predict the price of Real Estate 

that is implemented using Gradient Boosting Regression Tree 

model, are used to evaluate this framework. Experiments show 

that the memory management layer outperforms the Apache 

Spark in reducing the execution time. 

Keywords—Apache Spark; Big Data; data analytics algorithms; 

memory management 

I. INTRODUCTION 

For both academic, business and engineering communities, 
Big Data analytics for storing, processing, and analysing large 
scale heterogeneous datasets has become a must-have tool. 
New Big Data analysis techniques [1], as well as the constant 
development of advanced Big Data platforms [2], are required 
to take full advantage of this massive and heterogeneous data. 
Fig. 1 shows the Big Data architecture. The architecture 
consists of four layers. 

Data storage layer, which contains multiple storage systems 
such as distributed file systems Hadoop Distributed File 
System, GlusterFS, Ceph, etc, or remote access file systems 
such as Amazon S3, Swift, Google Cloud Storage, etc. and it 
can contain tools and techniques such as relational databases 
and NoSQL tools. 

Resource management layer controls resource 
management, scheduling, and security. Examples of resource 
managers are YARN, Mesos, and Kubernetes K8s. 

Data processing layer, which contains one of the Big Data 
platforms such as the open-source Hadoop Map Reduce [3], 
the Apache Spark platform [4], The Apache Flink, etc. 

Application layer, the top layer, can contain any application 
type, such as batch, graph analytics, machine learning, 
streaming, etc. 

The default Big Data architecture has many challenges 
[5][6], such as: 

 In some Big Data platforms that support in-memory 
computing, such as Apache Spark and Apache Flink, 
developers can cache data that will most likely be 
reused. As a result, it is entirely up to the developer to 
decide which data to cache in memory. Determining 
which data should be cached is a difficult task when 
dealing with jobs that consist of operations with 
complex dependencies. When there isn’t enough 
memory, caching all data in memory will result in a 
significant performance loss. While disc caching saves 
RAM, it reduces the efficiency of in-memory 
computing; 

 Data locality is another problem for data processing; 
data are physically scattered over different racks, 
regions, and clouds. Data must be near to where data 
computation occurs to be processed; 

 The data needed by the application may be stored in 
different storage systems, the application developer 
must be aware of all Storage APIs, such as HDFS API, 
FUSE API, S3 API, REST API. 

 

Fig. 1. The Big Data Architecture. 
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All the previous challenges necessitate the use of a distinct 
memory management layer between the data processing layer 
and the data storage layer. 

In this paper, to evaluate the distinct memory management 
layer, the Apache Spark platform is used in the processing 
layer because Apache Spark boosts Hadoop’s performance by 
up to 100x using in-memory cluster computing [7] and it is 
widely used in a variety of application domains, including 
bioinformatics [8], image processing [9], deep learning [10], 
finance [11], and astronomy [12], etc. The next section gives a 
background about Apache Spark and memory management 
layer. Three workloads from HiBench [13] are used for 
evaluation with randomly generated dataset, then a real case 
study to predict the price of real estate with real data set is 
developed to be used in the evaluation. 

The rest of the paper is organized as follows. In Section 2 
an overview about Apache Spark and memory management 
layer is given. In Section 3, a review of the related work is 
presented. In Section 4, the experimental setup and workloads 
are de-scribed. In Section 5, our experimental results are 
discussed. Finally, the conclusion of our findings is in 
Section 6. 

II. BACKGROUND 

In this section, an overview is given on Apache Spark 
which is used in data processing layer, Apache Spark 
Standalone cluster manager which is used in resource 
management layer, Hadoop Distributed File System which is 
used in data storage layer and the memory management layer. 

A. Apache Spark 

Apache Spark [14] is a computing engine and a suite of 
libraries for processing data in parallel on computer clusters. 
Apache Spark is one of the most used open-source engines for 
Big Data processing. Apache Spark is compatible with several 
popular programming languages (Python, R, Scala, and Java). 
It offers libraries for a wide range of operations, including data 
loading and SQL queries, as well as machine learning and 
streaming computation. The basic abstraction in Apache Spark 
is a Resilient Distributed Dataset (RDD). It acts as an 
immutable, partitioned collection of elements. These elements 
can be run in parallel. 

The Apache Spark cluster can be managed by Apache 
Spark Standalone cluster manager or by other cluster managers 
as Mesos or YARN. The Apache Spark Standalone cluster 
manager is used to test Apache Spark performance in our 
experimental setting. As shown in Fig. 2, the Apache Spark 
master receives the application then a driver process is created 
and connected to the cluster manager through the SparkContext 
[4]. The cluster manager allocates the Apache Spark workers. 
Each worker contains an executor processes. The driver 
process is in charge of running the main () function, keeping 
track of the Apache Spark application’s progress, responding to 
a user’s program input, and analyzing, distributing, and 
scheduling work throughout the executors. The executors are in 
charge of completing the job that has been given to them and 
reporting the state of the computation back to the driver node. 

 

Fig. 2. Apache Spark Cluster Architecture. 

Apache Spark was created to read and write data from and 
to Hadoop Distributed File System (HDFS) [15], allowing it to 
be used with Hadoop clusters. HDFS as a distributed file 
system allows users to access application data quickly. It 
allows enormous amounts of structured and unstructured data 
to be managed. HDFS is a file system that divides the 
processing of massive data sets across inexpensive hardware 
clusters. 

HDFS has a primary NameNode, which keeps track of 
where the file is kept in the cluster and multiple of DataNodes 
on a commodity hardware cluster. Splitting huge files into little 
sections known as blocks is one of the major HDFS 
characteristics. These blocks hold a specific amount of data 
that can be read and written. The block size is set to 128 MB 
by default. Hadoop splits up blocks and distributes them across 
different nodes called DataNodes. 

Another main characteristic in HDFS is replication which 
duplicates data blocks to provide fault tolerance and allows an 
application to select the number of replicas for a file. The 
replication factor can be specified when the file is created and 
can be changed later. If a node fails, you can still access the 
data on other nodes in the HDFS cluster that have a copy of the 
same data. By default, HDFS duplicates blocks three times. 

B. Memory Management Layer 

The challenges in the main Big Data architecture, as 
demonstrated in the introduction, necessitate the use of a 
distinct memory management layer between the data 
processing layer and the data storage layer. Fig. 3 shows the 
distinct memory management layer’s location in the Big Data 
architecture. 

This distinct memory management layer: 

 Caches the most frequently used data automatically. A 
local storage space is set aside in each node of the 
processing cluster for hot and transient data. This 
storage could be of any type (memory, SSD or HDD). 
The size and type of storage are determined by the user. 
When an application attempts to read data that is only 
available in shared storage, the data are duplicated in 
local storage. When the local storage is full, one of the 
eviction policies [5] can be used to determine which 
data should be deleted. 
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 Handles the distributed storage system; because the data 
are duplicated in local storage, this can address the data 
locality issue in distributed storage systems. 

 Serves as a global namespace, a global namespace is an 
important feature of a distributed file system that makes 
it easy to find and access data from multiple storage 
systems using a single control and administration layer. 
The global namespace can be considered as a global file 
directory that allows all data from several storage 
systems to seem as if they were stored in a single 
storage system. It automatically converts the standard 
client-side interface to any storage interface. 

 

Fig. 3. The Big Data Architecture with a Distinct Memory Management 

Layer. 

III. RELATED WORK 

Many optimization strategies have been presented to 
improve memory management in Big Data frameworks. For 
Apache Spark, when the memory used to cache data reaches its 
capacity limit, data must be selected to be deleted to make way 
for new ones. Apache Spark’s cache replacement strategy uses 
Least Recently Used (LRU) criteria to determine which RDDs 
should be replaced, different cache replacement techniques 
were investigated [5] to improve Apache Spark performance. 
Apache Ignite [16], a high-performance, distributed in-memory 
computing platform for large-scale data sets has a cache 
management feature that keeps data in RAM as much as 
possible, having minimal interaction with the disk, but 
researchers in [17] observed that Apache Spark outperform 
Apache Ignite as Apache Ignite does not distribute well data 
among available nodes and it does not balance well the 
communication between the nodes. Other researchers are 
interested in investigating Apache Spark’s performance on 
various disk types. Doppio [18] proposed an I/O Aware 
performance study for Apache Spark, which measured the I/O 
impact of using hard disk drives (HDDs) and Solid-state drives 
(SSDs) with different combinations, and discovered the 
relationship between computation and I/O access by changing 
the CPU core number. As a result, the model could be used to 
locate the best configuration on the public cloud. Instead of 
reserving running memory for caching, RubiX [19], an open 
source project employs SSDs. It is utilized in the Azure 
HDInsight data caching service, which increases the 
performance of Apache Spark processes [20]. Delta Lake [21] 
by Databricks is another open source storage layer. Which also 

leverages nodes' local storage for caching, and the data is 
cached automatically anytime a file has to be retrieved from a 
remote site, resulting in much faster reading speeds. The user is 
not required to take any action throughout the caching process. 
Open Cache Acceleration Software [22], works with node 
memory to build a multilevel cache that optimizes system 
memory usage and automatically chooses the appropriate cache 
level for active data, allowing programmes to run quicker than 
they would on SSDs alone. 

IV. EXPERIMENTAL SETUP  

In this section, the used Big Data architecture is shown in 
Fig. 4, and fully described it in the following subsection then 
the used workloads and the implemented application are 
described. 

 

Fig. 4. Implemented Cluster’s Architecture. 

A. Cluster’s Architecture 

The experiments were deployed in a cluster at Electronics 
Research Institute. The Apache Spark cluster contains five 
servers, which is configured as one master and four slaves. 
There are 160 CPU cores and 640 GB of RAM in the cluster. 
The cluster services are shown in Fig. 5, and its specifications 
are listed in Table I. The data are stored on HDFS with data 
nodes on the same slaves. 

 

Fig. 5. Cluster’s Services. 
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TABLE I. CLUSTER’S SPECIFICATIONS 

Servers 

Configuration  

Processor: Intel(R) Xeon(R) CPU E5-2680 0 @ 

2.70GHz  

Main memory:128MB 

Local storage:1 TB 
CPU cores: 32 

Software 

Operating system: Red Hat 4.8.3-9 

JDK: 1.8 
Hadoop:2.7.1 

Spark: 2.4.6 

Alluxio: 2.3.0 

Workload HiBench 7.1.1 

In the experimental setup, Alluxio [23] a virtual distributed 
storage platform, is used in the memory management layer. 
The master and workers of Alluxio are running on the same 
Apache Spark cluster. 

Alluxio enables users to integrate their data across multiple 
platforms. As shown in Fig. 6, Alluxio is made up of three 
different components: masters, workers, and clients. All user 
requests and file system metadata modifications are served by 
the Alluxio Master. The Alluxio Job Master is a lightweight 
scheduler for file system activities that are then executed on 
Alluxio Job Workers. 

A specific amount of local Alluxio storage is determined 
for each Alluxio worker to store hot and transient data. Client 
requests to read or write data are fulfilled by Alluxio workers 
by reading or constructing new blocks within their local 
resources. 

There are three scenarios for reading data: 

 If the requested data are already in the worker local 
storage, then the client will read the file directly via the 
local file system (Local Cache Hit). 

 If requested data are stored in another worker, the client 
will perform a remote read from that worker that does 
have the data. After the client finishes reading the data, 
it creates a copy locally for future reads (Remote Cache 
Hit). 

 If the data are not available in any of the running 
workers, the client will read the data from the storage 
(Cache Miss). 

 

Fig. 6. Alluxio Architecture. 

Workers are only in charge of managing blocks; the master 
is the only one who keeps track of the file-to-block mapping. 
Because RAM has a finite capacity, blocks in a worker may be 
evicted if space is full. Eviction policies as least recently used 
and least frequently used can be used by workers to pick which 
data to keep in the Alluxio space. 

In our experiments some parameters must be set in order to 
make the Apache Spark applications access Alluxio, the 
Alluxio client jar must be in the classpath of all Apache Spark 
drivers and executors so spark.driver.extraClassPath and 
spark.executor.extraClassPath parameters were added to 
spark/conf/spark-defaults.conf and was set to the path where 
the alluxio-2.3.0-client.jar is located. In order for HiBench to 
access Alluxio, hibench.hdfs.master parameter had been set to 
alluxio://{Alluxio_master_Hostname}:19998 in Hibench/ 
conf/hadoop.conf, and the Hibench/sparkbench/assemply/ 
target/sparkbench-assemply.jar had been copied to /spark/jars. 

The following configuration had been added to 
hadoop/coresite.xml 

<configuration> 

  <property> 

    <name>fs.alluxio.impl</name> 

    <value>alluxio.hadoop.FileSystem</value> 

  </property> 

</configuration> 

The experiments compared between Apache Spark 
framework with HDFS and Apache Spark framework with a 
distinct memory management layer and with different RAM 
size per worker. 

B. Workloads 

For a comprehensive evaluation, first three applications 
from HiBench, including K-Means as a machine learning 
algorithm for clustering workload, Page Rank as a graph 
analytics workload and WordCount as a batch processing 
workload were used with randomly generated dataset. Those 
workloads were chosen to compare Apache Spark cluster 
performance with and without memory management layer 
because of their distinct properties. Then a real use case was 
implemented to predict real estate sale price using Gradient-
Boosted Trees as a machine learning algorithm for regression. 

1) K-Means: K-Means [24] is a popular unsupervised 

machine learning clustering algorithm for data mining and 

knowledge discovery. The idea of the algorithm as shown in 

Fig. 7 that it divides a collection of samples into K groups or 

clusters, In Fig. 7, K is equal to 3. In the initialization, the 

algorithm defines K centroids randomly, and makes iterations 

of calculations to define new centroids in order to minimize 

the Euclidean distances between the points forming each 

cluster and its centroid. The iterations are repeated until the 

most optimum centroids are defined or the maximum number 

of iterations is reached. The input data in our experiment were 

100,000,000 samples generated by GenKMeans dataset based 

on uniform distribution and Gaussian distribution. Based on 
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each sample’s attributes, the algorithm assigns each sample to 

one of the k groups iteratively. The algorithm’s input 

parameters used in the experiments were 5 clusters, 20 

dimensions, and 5 iterations. 

2) PageRank: PageRank [25] is an iterative graph 

analytics algorithm, as shown in Fig. 8, it ranks items based on 

the number and quality of their links. The PageRank’s 

mathematics is completely general and may be used to any 

graph or network in any domain. As a result, PageRank and its 

variations are widely used in social and information network 

analysis, link prediction, and recommendation systems. It’s 

even used in road network systems analysis [26]. The 

PageRank algorithm used in our experiments is implemented 

in apache Spark MLLib. The input data were generated from 

web data whose hyperlinks follow the Zipfian distribution. In 

the experiments, the input data parameters used were 

5,000,000 pages and 3 iterations. 

3) WordCount: The WordCount workload is a batch 

processing workload. It scans the input data once and counts 

how many times each word appears. 

Random text writer generates the input data, the input data 
size used in the experiments was 30 GB. 

 

Fig. 7. K-Means Algorithm. 

 

Fig. 8. Page Rank Algorithm. 

4) Real estate sale price prediction: The prediction of real 

estate sale price in the presence of a large number of variables 

is a known problem, there are many models that were built 

with different methods to estimated house price by inputting 

house features [27] [28]. The data set used in this experiment 

has been downloaded from [29] and was collected from some 

popular portals for the sale of real estate in the period from 

2018 to 2021. The dataset contains 5,477,005 records with 11 

features. Fig. 9 presents the output of Python code to describe 

the dataset fields. 

Where building type parameter could be { "1” for Panel, 
“2” for Monolithic, “3” for Brick, “4” for Blocky, “5” for 
Wooden and 0 for other type}. Object type indicates the 
apartment type and it could be {“1” for old buildings and “2” 
for new building}. Level indicates apartment floor. Levels 
indicates the number of stores in the building. Rooms indicates 
the number of living rooms and if the value is "-1" then it is for 
studio apartment. In our implementation, the data were read 
from HDFS once and once from Alluxio system. The code was 
written in Python. The dataset first passed through cleaning 
phase to remove any null values or negative values in the price 
column and take the log value of the price. Then the correlation 
matrix shown in Fig. 10 has been calculated to pick the most 
correlated features with the price. 

 

Fig. 9. Real Estate Data Set Parameters. 

 

Fig. 10. Correlation Matrix. 
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The data set was split randomly into training set and testing 
set with the ratio 70:30 respectively. Gradient-Boosted Trees 
(GBTs) learning algorithm [30] was used to predict the price. 
GBTs is one of the most powerful and frequently used 
algorithms by data scientists for building predictive models 
[31]. It acts as a machine learning technique for regression and 
classification problems. In our application, the algorithm was 
used as a regression technique using pyspark.ml.regression 
library. Given the input variables, regression analysis estimates 
the conditional expectation of the price variable. The results 
shown in the next section were for 5 iterations, 10 max depth. 
To evaluate the prediction model performance, the Root Mean 
Squared Error (RMSE) evaluation measure was used which 
considers the sample standard deviation difference between the 
predicted and real values. The lower the RMSE, the more 
accurate the model predictions will be. The average RMSE in 
all the runs was 0.13. 

V. RESULT AND DISCUSSION 

In this section, the results obtained after running the 
experiments are shown and evaluated. The execution time in 
minutes is used to calculate performance measures. In the 
experiment, the difference between utilizing the Apache Spark 
with HDFS and Apache Spark using a distinct memory 
management layer with Alluxio was evaluated. 

The results illustrated how Apache Spark with Alluxio in 
the memory management layer improves the performance in all 
cases. Fig. 11 shows the execution time of running Real Estate 
application, K-means, PageRank, and WordCount algorithms 
on ERI cluster. The worker’s RAM size varies between 4, 8, 
16, 32 and 64 GB to study the effect of the memory 
management layer with respect to the RAM size. 

It can be seen from the results that the memory 
management layer has better performance with smaller RAM 
size. 

  
(a)        (b) 

  
(c)        (d) 

Fig. 11. The Execution Time of Running (a) Real Estate, (b) K-means; (c) PageRank and (d) WordCount on Apache Spark with HDFS and Apache Spark using 

Alluxio. 
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VI. CONCLUSION 

In this paper, the impact of using a distinct memory 
management layer between the data processing layer and the 
data storage layer in Big Data Architecture was evaluated. This 
layer automatically caches the most frequently used data and 
handles the distributed storage system without the need for any 
interaction from the applications’ developers. 

First a HiBench benchmark was used with k-means, 
PageRank and WordCount algorithms with randomly 
generated workloads. Then a real case study with real dataset 
was implemented to predict real estate price using Gradient 
Boosting Regression tree. The results showed that when using 
distinct memory management layer, the execution time of the 
real estate application is up to three times faster than the 
normal case. So using memory management layer helps the 
applications’ developers to get better performance up to three 
times faster with less effort. As a future work, other evaluations 
can be done with other tools, mentioned in section 3, other than 
Alluxio, such as Apache Ignite and RubiX. 
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