
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

460 | P a g e

www.ijacsa.thesai.org

Importance of Memory Management Layer in Big

Data Architecture

Maha Dessokey
1
, Sherif M. Saif

2
, Hesham Eldeeb

3

Computer and Systems Department

Electronics Research Institute

Cairo, Egypt

Sameh Salem
4
, Elsayed Saad

5

Computer and Systems Department

Faculty of Engineering, Helwan University

Cairo, Egypt

Abstract—The generation of daily massive amounts of

heterogeneous data from a variety of sources presents a challenge

in terms of storage and analysis capabilities and brings new

problems into high-performance computing clusters. To better

utilize this huge and heterogeneous data, the continuous

development of advanced Big Data platforms and Big Data

analytic techniques are required. One of the significant issues

with in-memory Big Data processing platforms, such as Apache

Spark, is the user’s responsibility to decide whether the

intermediate data should be cached or not. In addition, the data

may be kept in several storage systems and physically scattered

over different racks, regions, and clouds. Data need to be close to

the computation nodes and hence data locality issue is a

challenge. In this paper, using a distinct memory management

layer between the data processing layer and the data storage

layer, which automatically caches data without the need for any

interaction from the applications’ developers, is evaluated. K-

means, PageRank and WordCount workloads from the HiBench

benchmark beside a real case to predict the price of Real Estate

that is implemented using Gradient Boosting Regression Tree

model, are used to evaluate this framework. Experiments show

that the memory management layer outperforms the Apache

Spark in reducing the execution time.

Keywords—Apache Spark; Big Data; data analytics algorithms;

memory management

I. INTRODUCTION

For both academic, business and engineering communities,
Big Data analytics for storing, processing, and analysing large
scale heterogeneous datasets has become a must-have tool.
New Big Data analysis techniques [1], as well as the constant
development of advanced Big Data platforms [2], are required
to take full advantage of this massive and heterogeneous data.
Fig. 1 shows the Big Data architecture. The architecture
consists of four layers.

Data storage layer, which contains multiple storage systems
such as distributed file systems Hadoop Distributed File
System, GlusterFS, Ceph, etc, or remote access file systems
such as Amazon S3, Swift, Google Cloud Storage, etc. and it
can contain tools and techniques such as relational databases
and NoSQL tools.

Resource management layer controls resource
management, scheduling, and security. Examples of resource
managers are YARN, Mesos, and Kubernetes K8s.

Data processing layer, which contains one of the Big Data
platforms such as the open-source Hadoop Map Reduce [3],
the Apache Spark platform [4], The Apache Flink, etc.

Application layer, the top layer, can contain any application
type, such as batch, graph analytics, machine learning,
streaming, etc.

The default Big Data architecture has many challenges
[5][6], such as:

 In some Big Data platforms that support in-memory
computing, such as Apache Spark and Apache Flink,
developers can cache data that will most likely be
reused. As a result, it is entirely up to the developer to
decide which data to cache in memory. Determining
which data should be cached is a difficult task when
dealing with jobs that consist of operations with
complex dependencies. When there isn’t enough
memory, caching all data in memory will result in a
significant performance loss. While disc caching saves
RAM, it reduces the efficiency of in-memory
computing;

 Data locality is another problem for data processing;
data are physically scattered over different racks,
regions, and clouds. Data must be near to where data
computation occurs to be processed;

 The data needed by the application may be stored in
different storage systems, the application developer
must be aware of all Storage APIs, such as HDFS API,
FUSE API, S3 API, REST API.

Fig. 1. The Big Data Architecture.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

461 | P a g e

www.ijacsa.thesai.org

All the previous challenges necessitate the use of a distinct
memory management layer between the data processing layer
and the data storage layer.

In this paper, to evaluate the distinct memory management
layer, the Apache Spark platform is used in the processing
layer because Apache Spark boosts Hadoop’s performance by
up to 100x using in-memory cluster computing [7] and it is
widely used in a variety of application domains, including
bioinformatics [8], image processing [9], deep learning [10],
finance [11], and astronomy [12], etc. The next section gives a
background about Apache Spark and memory management
layer. Three workloads from HiBench [13] are used for
evaluation with randomly generated dataset, then a real case
study to predict the price of real estate with real data set is
developed to be used in the evaluation.

The rest of the paper is organized as follows. In Section 2
an overview about Apache Spark and memory management
layer is given. In Section 3, a review of the related work is
presented. In Section 4, the experimental setup and workloads
are de-scribed. In Section 5, our experimental results are
discussed. Finally, the conclusion of our findings is in
Section 6.

II. BACKGROUND

In this section, an overview is given on Apache Spark
which is used in data processing layer, Apache Spark
Standalone cluster manager which is used in resource
management layer, Hadoop Distributed File System which is
used in data storage layer and the memory management layer.

A. Apache Spark

Apache Spark [14] is a computing engine and a suite of
libraries for processing data in parallel on computer clusters.
Apache Spark is one of the most used open-source engines for
Big Data processing. Apache Spark is compatible with several
popular programming languages (Python, R, Scala, and Java).
It offers libraries for a wide range of operations, including data
loading and SQL queries, as well as machine learning and
streaming computation. The basic abstraction in Apache Spark
is a Resilient Distributed Dataset (RDD). It acts as an
immutable, partitioned collection of elements. These elements
can be run in parallel.

The Apache Spark cluster can be managed by Apache
Spark Standalone cluster manager or by other cluster managers
as Mesos or YARN. The Apache Spark Standalone cluster
manager is used to test Apache Spark performance in our
experimental setting. As shown in Fig. 2, the Apache Spark
master receives the application then a driver process is created
and connected to the cluster manager through the SparkContext
[4]. The cluster manager allocates the Apache Spark workers.
Each worker contains an executor processes. The driver
process is in charge of running the main () function, keeping
track of the Apache Spark application’s progress, responding to
a user’s program input, and analyzing, distributing, and
scheduling work throughout the executors. The executors are in
charge of completing the job that has been given to them and
reporting the state of the computation back to the driver node.

Fig. 2. Apache Spark Cluster Architecture.

Apache Spark was created to read and write data from and
to Hadoop Distributed File System (HDFS) [15], allowing it to
be used with Hadoop clusters. HDFS as a distributed file
system allows users to access application data quickly. It
allows enormous amounts of structured and unstructured data
to be managed. HDFS is a file system that divides the
processing of massive data sets across inexpensive hardware
clusters.

HDFS has a primary NameNode, which keeps track of
where the file is kept in the cluster and multiple of DataNodes
on a commodity hardware cluster. Splitting huge files into little
sections known as blocks is one of the major HDFS
characteristics. These blocks hold a specific amount of data
that can be read and written. The block size is set to 128 MB
by default. Hadoop splits up blocks and distributes them across
different nodes called DataNodes.

Another main characteristic in HDFS is replication which
duplicates data blocks to provide fault tolerance and allows an
application to select the number of replicas for a file. The
replication factor can be specified when the file is created and
can be changed later. If a node fails, you can still access the
data on other nodes in the HDFS cluster that have a copy of the
same data. By default, HDFS duplicates blocks three times.

B. Memory Management Layer

The challenges in the main Big Data architecture, as
demonstrated in the introduction, necessitate the use of a
distinct memory management layer between the data
processing layer and the data storage layer. Fig. 3 shows the
distinct memory management layer’s location in the Big Data
architecture.

This distinct memory management layer:

 Caches the most frequently used data automatically. A
local storage space is set aside in each node of the
processing cluster for hot and transient data. This
storage could be of any type (memory, SSD or HDD).
The size and type of storage are determined by the user.
When an application attempts to read data that is only
available in shared storage, the data are duplicated in
local storage. When the local storage is full, one of the
eviction policies [5] can be used to determine which
data should be deleted.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

462 | P a g e

www.ijacsa.thesai.org

 Handles the distributed storage system; because the data
are duplicated in local storage, this can address the data
locality issue in distributed storage systems.

 Serves as a global namespace, a global namespace is an
important feature of a distributed file system that makes
it easy to find and access data from multiple storage
systems using a single control and administration layer.
The global namespace can be considered as a global file
directory that allows all data from several storage
systems to seem as if they were stored in a single
storage system. It automatically converts the standard
client-side interface to any storage interface.

Fig. 3. The Big Data Architecture with a Distinct Memory Management

Layer.

III. RELATED WORK

Many optimization strategies have been presented to
improve memory management in Big Data frameworks. For
Apache Spark, when the memory used to cache data reaches its
capacity limit, data must be selected to be deleted to make way
for new ones. Apache Spark’s cache replacement strategy uses
Least Recently Used (LRU) criteria to determine which RDDs
should be replaced, different cache replacement techniques
were investigated [5] to improve Apache Spark performance.
Apache Ignite [16], a high-performance, distributed in-memory
computing platform for large-scale data sets has a cache
management feature that keeps data in RAM as much as
possible, having minimal interaction with the disk, but
researchers in [17] observed that Apache Spark outperform
Apache Ignite as Apache Ignite does not distribute well data
among available nodes and it does not balance well the
communication between the nodes. Other researchers are
interested in investigating Apache Spark’s performance on
various disk types. Doppio [18] proposed an I/O Aware
performance study for Apache Spark, which measured the I/O
impact of using hard disk drives (HDDs) and Solid-state drives
(SSDs) with different combinations, and discovered the
relationship between computation and I/O access by changing
the CPU core number. As a result, the model could be used to
locate the best configuration on the public cloud. Instead of
reserving running memory for caching, RubiX [19], an open
source project employs SSDs. It is utilized in the Azure
HDInsight data caching service, which increases the
performance of Apache Spark processes [20]. Delta Lake [21]
by Databricks is another open source storage layer. Which also

leverages nodes' local storage for caching, and the data is
cached automatically anytime a file has to be retrieved from a
remote site, resulting in much faster reading speeds. The user is
not required to take any action throughout the caching process.
Open Cache Acceleration Software [22], works with node
memory to build a multilevel cache that optimizes system
memory usage and automatically chooses the appropriate cache
level for active data, allowing programmes to run quicker than
they would on SSDs alone.

IV. EXPERIMENTAL SETUP

In this section, the used Big Data architecture is shown in
Fig. 4, and fully described it in the following subsection then
the used workloads and the implemented application are
described.

Fig. 4. Implemented Cluster’s Architecture.

A. Cluster’s Architecture

The experiments were deployed in a cluster at Electronics
Research Institute. The Apache Spark cluster contains five
servers, which is configured as one master and four slaves.
There are 160 CPU cores and 640 GB of RAM in the cluster.
The cluster services are shown in Fig. 5, and its specifications
are listed in Table I. The data are stored on HDFS with data
nodes on the same slaves.

Fig. 5. Cluster’s Services.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

463 | P a g e

www.ijacsa.thesai.org

TABLE I. CLUSTER’S SPECIFICATIONS

Servers

Configuration

Processor: Intel(R) Xeon(R) CPU E5-2680 0 @

2.70GHz

Main memory:128MB

Local storage:1 TB
CPU cores: 32

Software

Operating system: Red Hat 4.8.3-9

JDK: 1.8
Hadoop:2.7.1

Spark: 2.4.6

Alluxio: 2.3.0

Workload HiBench 7.1.1

In the experimental setup, Alluxio [23] a virtual distributed
storage platform, is used in the memory management layer.
The master and workers of Alluxio are running on the same
Apache Spark cluster.

Alluxio enables users to integrate their data across multiple
platforms. As shown in Fig. 6, Alluxio is made up of three
different components: masters, workers, and clients. All user
requests and file system metadata modifications are served by
the Alluxio Master. The Alluxio Job Master is a lightweight
scheduler for file system activities that are then executed on
Alluxio Job Workers.

A specific amount of local Alluxio storage is determined
for each Alluxio worker to store hot and transient data. Client
requests to read or write data are fulfilled by Alluxio workers
by reading or constructing new blocks within their local
resources.

There are three scenarios for reading data:

 If the requested data are already in the worker local
storage, then the client will read the file directly via the
local file system (Local Cache Hit).

 If requested data are stored in another worker, the client
will perform a remote read from that worker that does
have the data. After the client finishes reading the data,
it creates a copy locally for future reads (Remote Cache
Hit).

 If the data are not available in any of the running
workers, the client will read the data from the storage
(Cache Miss).

Fig. 6. Alluxio Architecture.

Workers are only in charge of managing blocks; the master
is the only one who keeps track of the file-to-block mapping.
Because RAM has a finite capacity, blocks in a worker may be
evicted if space is full. Eviction policies as least recently used
and least frequently used can be used by workers to pick which
data to keep in the Alluxio space.

In our experiments some parameters must be set in order to
make the Apache Spark applications access Alluxio, the
Alluxio client jar must be in the classpath of all Apache Spark
drivers and executors so spark.driver.extraClassPath and
spark.executor.extraClassPath parameters were added to
spark/conf/spark-defaults.conf and was set to the path where
the alluxio-2.3.0-client.jar is located. In order for HiBench to
access Alluxio, hibench.hdfs.master parameter had been set to
alluxio://{Alluxio_master_Hostname}:19998 in Hibench/
conf/hadoop.conf, and the Hibench/sparkbench/assemply/
target/sparkbench-assemply.jar had been copied to /spark/jars.

The following configuration had been added to
hadoop/coresite.xml

<configuration>

 <property>

 <name>fs.alluxio.impl</name>

 <value>alluxio.hadoop.FileSystem</value>

 </property>

</configuration>

The experiments compared between Apache Spark
framework with HDFS and Apache Spark framework with a
distinct memory management layer and with different RAM
size per worker.

B. Workloads

For a comprehensive evaluation, first three applications
from HiBench, including K-Means as a machine learning
algorithm for clustering workload, Page Rank as a graph
analytics workload and WordCount as a batch processing
workload were used with randomly generated dataset. Those
workloads were chosen to compare Apache Spark cluster
performance with and without memory management layer
because of their distinct properties. Then a real use case was
implemented to predict real estate sale price using Gradient-
Boosted Trees as a machine learning algorithm for regression.

1) K-Means: K-Means [24] is a popular unsupervised

machine learning clustering algorithm for data mining and

knowledge discovery. The idea of the algorithm as shown in

Fig. 7 that it divides a collection of samples into K groups or

clusters, In Fig. 7, K is equal to 3. In the initialization, the

algorithm defines K centroids randomly, and makes iterations

of calculations to define new centroids in order to minimize

the Euclidean distances between the points forming each

cluster and its centroid. The iterations are repeated until the

most optimum centroids are defined or the maximum number

of iterations is reached. The input data in our experiment were

100,000,000 samples generated by GenKMeans dataset based

on uniform distribution and Gaussian distribution. Based on

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

464 | P a g e

www.ijacsa.thesai.org

each sample’s attributes, the algorithm assigns each sample to

one of the k groups iteratively. The algorithm’s input

parameters used in the experiments were 5 clusters, 20

dimensions, and 5 iterations.

2) PageRank: PageRank [25] is an iterative graph

analytics algorithm, as shown in Fig. 8, it ranks items based on

the number and quality of their links. The PageRank’s

mathematics is completely general and may be used to any

graph or network in any domain. As a result, PageRank and its

variations are widely used in social and information network

analysis, link prediction, and recommendation systems. It’s

even used in road network systems analysis [26]. The

PageRank algorithm used in our experiments is implemented

in apache Spark MLLib. The input data were generated from

web data whose hyperlinks follow the Zipfian distribution. In

the experiments, the input data parameters used were

5,000,000 pages and 3 iterations.

3) WordCount: The WordCount workload is a batch

processing workload. It scans the input data once and counts

how many times each word appears.

Random text writer generates the input data, the input data
size used in the experiments was 30 GB.

Fig. 7. K-Means Algorithm.

Fig. 8. Page Rank Algorithm.

4) Real estate sale price prediction: The prediction of real

estate sale price in the presence of a large number of variables

is a known problem, there are many models that were built

with different methods to estimated house price by inputting

house features [27] [28]. The data set used in this experiment

has been downloaded from [29] and was collected from some

popular portals for the sale of real estate in the period from

2018 to 2021. The dataset contains 5,477,005 records with 11

features. Fig. 9 presents the output of Python code to describe

the dataset fields.

Where building type parameter could be { "1” for Panel,
“2” for Monolithic, “3” for Brick, “4” for Blocky, “5” for
Wooden and 0 for other type}. Object type indicates the
apartment type and it could be {“1” for old buildings and “2”
for new building}. Level indicates apartment floor. Levels
indicates the number of stores in the building. Rooms indicates
the number of living rooms and if the value is "-1" then it is for
studio apartment. In our implementation, the data were read
from HDFS once and once from Alluxio system. The code was
written in Python. The dataset first passed through cleaning
phase to remove any null values or negative values in the price
column and take the log value of the price. Then the correlation
matrix shown in Fig. 10 has been calculated to pick the most
correlated features with the price.

Fig. 9. Real Estate Data Set Parameters.

Fig. 10. Correlation Matrix.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

465 | P a g e

www.ijacsa.thesai.org

The data set was split randomly into training set and testing
set with the ratio 70:30 respectively. Gradient-Boosted Trees
(GBTs) learning algorithm [30] was used to predict the price.
GBTs is one of the most powerful and frequently used
algorithms by data scientists for building predictive models
[31]. It acts as a machine learning technique for regression and
classification problems. In our application, the algorithm was
used as a regression technique using pyspark.ml.regression
library. Given the input variables, regression analysis estimates
the conditional expectation of the price variable. The results
shown in the next section were for 5 iterations, 10 max depth.
To evaluate the prediction model performance, the Root Mean
Squared Error (RMSE) evaluation measure was used which
considers the sample standard deviation difference between the
predicted and real values. The lower the RMSE, the more
accurate the model predictions will be. The average RMSE in
all the runs was 0.13.

V. RESULT AND DISCUSSION

In this section, the results obtained after running the
experiments are shown and evaluated. The execution time in
minutes is used to calculate performance measures. In the
experiment, the difference between utilizing the Apache Spark
with HDFS and Apache Spark using a distinct memory
management layer with Alluxio was evaluated.

The results illustrated how Apache Spark with Alluxio in
the memory management layer improves the performance in all
cases. Fig. 11 shows the execution time of running Real Estate
application, K-means, PageRank, and WordCount algorithms
on ERI cluster. The worker’s RAM size varies between 4, 8,
16, 32 and 64 GB to study the effect of the memory
management layer with respect to the RAM size.

It can be seen from the results that the memory
management layer has better performance with smaller RAM
size.

(a) (b)

(c) (d)

Fig. 11. The Execution Time of Running (a) Real Estate, (b) K-means; (c) PageRank and (d) WordCount on Apache Spark with HDFS and Apache Spark using

Alluxio.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

466 | P a g e

www.ijacsa.thesai.org

VI. CONCLUSION

In this paper, the impact of using a distinct memory
management layer between the data processing layer and the
data storage layer in Big Data Architecture was evaluated. This
layer automatically caches the most frequently used data and
handles the distributed storage system without the need for any
interaction from the applications’ developers.

First a HiBench benchmark was used with k-means,
PageRank and WordCount algorithms with randomly
generated workloads. Then a real case study with real dataset
was implemented to predict real estate price using Gradient
Boosting Regression tree. The results showed that when using
distinct memory management layer, the execution time of the
real estate application is up to three times faster than the
normal case. So using memory management layer helps the
applications’ developers to get better performance up to three
times faster with less effort. As a future work, other evaluations
can be done with other tools, mentioned in section 3, other than
Alluxio, such as Apache Ignite and RubiX.

ACKNOWLEDGMENTS

The authors send their acknowledgement to the Electronics
Research Institute (ERI), Cairo, Egypt for running the
experiments on ERI system.

REFERENCES

[1] M. S. Mahmud, J. Z. Huang, S. Salloum, T. Z. Emara, and K.
Sadatdiynov, “A survey of data partitioning and sampling methods to
support big data analysis,” Big Data Mining and Analytics, vol. 3, no. 2,
Art. no. 2, 2020.

[2] A. H. Ali, “A survey on vertical and horizontal scaling platforms for big
data analytics,” International Journal of Integrated Engineering, vol. 11,
no. 6, Art. no. 6, 2019.

[3] “Apache Hadoop.” https://hadoop.apache.org/.

[4] “Apache Spark.” https://spark.apache.org/.

[5] M. Dessokey, S. M. Saif, S. Salem, E. Saad, and H. Eldeeb, “Memory
Management Approaches in Apache Spark: A Review,” Proceedings of
the International Conference on Advanced Intelligent Systems and
Informatics 2020, Cham, 2021, pp. 394–403.

[6] S. Lee, J. -Y. Jo and Y. Kim, "Survey of Data Locality in Apache
Hadoop," IEEE International Conference on Big Data, Cloud Computing,
Data Science & Engineering (BCD), 2019, pp. 46-53.

[7] N. Ahmed, A. L. C. Barczak, T. Susnjak, and M. A. Rashid, “A
comprehensive performance analysis of Apache Hadoop and Apache
Spark for large scale data sets using HiBench,” Journal of Big Data, vol.
7, no. 1, Art. no. 1, Dec. 2020.

[8] Y. K. Gupta and S. Kumari, “Performance Evaluation of Distributed
Machine Learning for Cardiovascular Disease Prediction in Spark,” 5th
International Conference on Trends in Electronics and Informatics
(ICOEI), 2021, pp. 1506–1512.

[9] G.-M. Park, Y. S. Heo, and H.-Y. Kwon, “Trade-Off Analysis Between
Parallelism and Accuracy of SLIC on Apache Spark,” IEEE International
Conference on Big Data and Smart Computing (BigComp), 2021, pp. 5–
12.

[10] M. Haggag, M. M. Tantawy, and M. M. El-Soudani, “Implementing a
deep learning model for intrusion detection on apache spark platform,”
IEEE Access, vol. 8, 2020, pp. 163660–163672.

[11] H. Sayed, M. A. Abdel-Fattah, and S. Kholief, “Predicting Potential
Banking Customer Churn using Apache Spark ML and MLlib Packages:
A Comparative Study,” International Journal of Advanced Computer
Science and Applications, vol. 9, no. 11, 2018.

[12] A. M. Mickaelian, “Big Data in Astronomy: Surveys, Catalogs,
Databases and Archives,” Communications of the Byurakan
Astrophysical Observatory, vol. 67, pp. 159–180, 2020.

[13] “HIBench.” https://github.com/Intel-bigdata/HiBench.

[14] M. Zaharia et al., “Apache spark: a unified engine for big data
processing,” Communications of the ACM, vol. 59, no. 11, Art. no. 11,
2016.

[15] D. Borthakur, “HDFS architecture,” Document on Hadoop Wiki. URL
http://hadoop. apache. org/common/docs/r0, vol. 20, 2010.

[16] “Apache Ignite.” https://ignite.apache.org/.

[17] C. Stan, A. Pandelica, V. Zamfir, R. Stan, and C. Negru, “Apache Spark
and Apache Ignite Performance Analysis,” 22nd International Conference
on Control Systems and Computer Science (CSCS), May 2019, pp. 726–
733.

[18] P. Zhou, Z. Ruan, Z. Fang, M. Shand, D. Roazen, and J. Cong, “Doppio:
I/O-aware performance analysis, modeling and optimization for in-
memory computing framework,” IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2018, pp. 22–
32.

[19] “RubiX.” https://github.com/qubole/rubix.

[20] “Azure HDIn-sight.” https://docs.microsoft.com/en-us/azure/hdinsight/
spark/apache-spark-improve-performance-iocache.

[21] “Databricks Delta Lake.” [Online]. Available: https://docs.databricks.
com/delta/optimizations/delta-cache.html.

[22] “Open Cache Acceleration.” https://open-cas.github.io/.

[23] “Alluxio.” https://www.alluxio.io/.

[24] J. Pérez-Ortega, N. N. Almanza-Ortega, A. Vega-Villalobos, R. Pazos-
Rangel, C. Zavala-Díaz, and A. Martínez-Rebollar, “The k-means
algorithm evolution,” Introduction to Data Science and Machine
Learning, IntechOpen, 2019.

[25] D. F. Gleich, “PageRank beyond the web,” Siam Review, vol. 57, no. 3,
Art. no. 3, 2015.

[26] J. Liu, X. Li, and J. Dong, “A survey on network node ranking
algorithms: Representative methods, extensions, and applications,”
Science China Technological Sciences, vol. 64, no. 3, Art. no. 3, 2021.

[27] S. Jamil, T. Mohd, S. Masrom, and N. Ab Rahim, “Machine Learning
Price Prediction on Green Building Prices,” IEEE Symposium on
Industrial Electronics Applications (ISIEA), 2020, pp. 1–6.

[28] N. H. Zulkifley, S. A. rahman, N. H. Ubaidullah, and I. Ibrahim, “House
Price Prediction using a Machine Learning Model: A Survey of
Literature,” International Journal of Modern Education and Computer
Science, vol. 12, 2020, pp. 46–54.

[29] Daniilak, Russia Real Estate 2018-2021. 2021. [Online]. Available:
https://www.kaggle.com/mrdaniilak/russia-real-estate-2018-2021.

[30] C. Krauss, X. A. Do, and N. Huck, “Deep neural networks, gradient-
boosted trees, random forests: Statistical arbitrage on the S&P 500,”
European Journal of Operational Research, vol. 259, no. 2, Jun. 2017, pp.
689–702.

[31] A. D. Lainder and R. D. Wolfinger, “Forecasting with gradient boosted
trees: augmentation, tuning, and cross-validation strategies: Winning
solution to the M5 Uncertainty competition,” International Journal of
Forecasting, 2022.

